Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

SCaLLE Puppet Introduction

Puppet Assigns and Maintains a Machine’s
Desired Role

Blank
Hardware
Puppet's Task
Provision Maintain
* Configure
Base 7 Assigned
Install Role

Managing Configuration Drift

1 of 24 2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

2 of 24

— |Report
Convergence ~~/ Report
Server
Node Desired
State State
Drift

Puppet Executables that we will employ:

e ralsh — The Resource Abstraction Layer Shell.

o facter — Executable and library that discovers facts about client systems.

o puppet — Executable that interprets Puppet manifests, compiles the catalog, and applies the
catalog locally.

e puppetmasterd — Centralized daemon that authenticates client connections, serves files,
compiles templates, and provides puppet clients with a catalog.

e puppetd — Puppet daemon that runs on client machines, makes connections to the
puppetmaster, retrieves the catalog, and applies that catalog locally.

e puppetca — Puppet’s built-in certificate authority.

Resources

Resources are the building blocks Puppet uses to model system configurations.

Simple user resource declaration.

2/23/10 7:41 PM

Puppet Training

3of24

user{'redmine':

}

ensure
shell

=> present,

=> '/usr/sbin/nologin',

file:///Users/danbode/puppet/puppet-training/project/project.html#

RAL: Resource Abstraction Layer

The RAL provides a consistent model for resources across supported platforms.

Resource Abstraction Layer

Ruby Apt Redhat Useradd
Yum Launchd Ldap
Gems SMF Netinfo
Deb Debian
RPM

RAL: Resource Abstraction Layer

Resource types depend on providers to translate specification into
implementation.

package{ 'rubygems':
ensure => jinstalled,

}

Package is just one of the many native Puppet resource types.

RAL: Resource Abstraction Layer

Each resource type has one or more providers.

2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

Resource Abstraction Layer

Ruby Apt Redhat Useradd
Yum Launchd Ldap
Gems SMF Netinfo
Deb Debian
RPM

RAL: Resource Abstraction Layer

Providers are the interface between the underlying OS and the resource types.

Resource Abstraction Layer

File | Package Service | ‘ User
Ruby Apt Redhat Useradd
Yum Launchd Ldap
Gems SMF Netinfo
Deb Debian
RPM

4 of 24 2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

RAL: Resource Abstraction Layer

The package resource type has 23 providers:

ls -1 /usr/lib/ruby/site ruby/1l.8/puppet/provider/package

appdmg.rb freebsd.rb sunfreeware.rb
apple.rb gem.rb sun.rb
aptitude.rb hpux.rb up2date.rb
apt.rb openbsd.rb urpmi.rb
aptrpm.rb pkgdmg.rb yumhelper.py
blastwave.rb portage.rb yumhelper.pyc
darwinport.rb ports.rb yumhelper.pyo
dpkg.rb rpm.rb yum.rb

fink.rb rug.rb

Ralsh: The Resource Abstraction Layer Shell

Executing ralsh and providing a resource and a title returns the state of a
resource.

root@puppetclient:~$ ralsh user redmine

user { 'redmine':
ensure => 'absent'

}

Ralsh: The Resource Abstraction Layer Shell

Executing ralsh and providing a resource, a title, and specifying an attribute
alters the resource.

root@puppetclient:~$ ralsh user redmine ensure=present

notice: /User[redmine]/ensure: created

user { 'redmine':
uid => '500"',
password => '
gid => '500',
home => '/home/redmine',
shell => '/bin/bash',
ensure => 'present’

1!
e e 7

5o0f24 2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

6 of 24

Core Resource types:

e user
e group

e host

e Ccron

e ecxec

o file

o package
e service
e mount
e tidy

Core Resource types:

The type reference documentation can also be found on the Reductive Labs
website.

http://docs.reductivelabs.com/guides/types/index.html

The User Resource Type

Some basic attributes for the user resource type:

e name: OS specified limits apply. (namevar)

e ensure: Sets the basic state of the user resource. Valid values are absent, present.

e gid: The user’s primary group. Can be specified numerically or by name.

e groups: The secondary group or groups to which the user is assigned. The primary group should
not be listed. Multiple groups should be specified as an array.

e home: The users home directory.

o managehome: Whether to manage the home directory when managing the user. Valid values are
true, false.

The File Resource Type

Basic Attributes:

e path: Specifies the target location for file. (namevar)
e ensure: Accepts absent, present, file, and directory. Any other value will be treated as a symlink.
e owner: Owner of file.

2/23/10 7:41 PM

Puppet Training

7 of 24

e group: Group of file.
e mode: Mode of file

e content: Specifies the content of file as a string.

e source: Specifies the source of file.

file:///Users/danbode/puppet/puppet-training/project/project.html#

o force: Force replacement of directories with a link. Valid values (true, false).

e ignore: Omits files matching specified patterns during recursion (Ex: .svn, .git).

 recurse: Whether or not directories should be managed recursively. Valid values (true, false)

o purge: Whether or not to purge unmanaged file resources within a directory. Valid values (true,

false)

The File Resource Type

Simple file resource declaration with a local source.

file {'/etc/sudoers':
ensure => file,
group => 'root',
owner => 'root',
mode => '440"',

source => '/etc/puppet/files/sudoers’,

The File Resource Type

Directory example.

file {'/tmp/src':
ensure => directory,
mode => '755",

}

The File Resource Type

Symlink example.

file {'/tmp/testfile':
source => '/tmp/src/testfile’,

}

file {'/tmp/testlink':
ensure => '/tmp/testfile’,

}

2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

Facter and Facts

Puppet uses facter to gather information about the host system.

Facter and Facts

Executing the facter command returns a list of key value pairs.

root@puppetclient:~$ facter
architecture => x86_ 64
domain => reductivelabs.com
facterversion => 1.5.2

fgdn => puppetclient.reductivelabs.com
hardwaremodel => x86_ 64
hostname => aku

interfaces => eth0
ipaddress => 172.16.10.1
kernel => Linux
operatingsystem => Ubuntu

The returned key value pairs are facts.

The Puppet Executable

The standalone puppet executable:

e interprets puppet code

The Puppet Executable

The standalone puppet executable:

e interprets puppet code
e compiles a catalog

The Puppet Executable

The standalone puppet executable:

8 of 24 2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

e interprets puppet code
e compiles a catalog
« uses the RAL to apply the catalog locally.

The Puppet Executable
0S
Manifests Facts
Facter
Puppet Executable)

'
Catalog

A4

0 Puppet Executable]

Resource Abstraction Layer

Resource Types| | Providers

| Operating System]

The Puppet Executable

Files containing Puppet code are known as manifests and by convention have a
.pp suffix.

The Puppet Executable

Example Puppet Manifest:

user {'elvis':
ensure => present,

9 of 24 2/23/10 7:41 PM

Puppet Training

10 of 24

home => '/home/elvis',
gid => 'elvis',
shell => '/bin/bash',
managehome => true,

}

A group resource definition
group {'foo':
ensure => present,

}
Specifying Dependencies

o Puppet is not a procedural language, it is declarative.
o All ordering dependencies between resources must be explicity specified.

Specifying Dependencies

The require and before metaparameters establish dependencies between
resources.

Specifying Dependencies

require

1. Reference

\

require

—

2. | containing resource

Specifying Dependencies

file:///Users/danbode/puppet/puppet-training/project/project.html#

2/23/10 7:41 PM

Puppet Training

11 of 24

before

.| containing resource

—

before

T

2 Reference

Specifying Dependencies

file:///Users/danbode/puppet/puppet-training/project/project.html#

This ensures that permissions of these directories are managed only after the db

migration task is run.

exec{'migrate':
command => '/usr/bin/rake db:migrate',
cwd => Sreddir,
environment => 'RAILS ENV=production',
require => Exec|['session'],
creates => "${reddir}/db/schema.rb"
}
file{
["${reddir}/public",
"${reddir}/files",
"${reddir}/log",
"${reddir}/tmp",
"${reddir}/public/plugin_ assets"
]:
ensure => directory,
recurse => true,
owner => 'redmine', group => 'redmine', mode
require => Exec['migrate'],

Redmine Dependencies

'0755",

2/23/10 7:41 PM

Puppet Training

12 of 24

Class['redmine']

Exec['download’]
A
Exec['untar’]

?

\
Exec['session']}ails::dbconfig[]
¢
User['red mine'&Exec{'mig rate']
f

Directories

Specifying Dependencies

Resources can be refreshed by other resources.

The subscribe and notify metaparameters establish refresh relationships
between resources.

Specifying Dependencies

The subscribe metaparameter establishes a refresh relationship from the
containing resource to a change in the referenced resource.

file:///Users/danbode/puppet/puppet-training/project/project.html#

2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

1. Reference

-

_/v
subscribe

-

2| containing resource

refresh

Specifying Dependencies

This manifest ensures that mysqld is restarted only if /root/.my.cnf changes.

service{ 'mysgld-restart':
restart => '/usr/sbin/service mysqgld restart'

}
file{'/root/.my.cnf':

content => template('mysql/my.cnf.erb'),
notify => Service['mysqld-restart'],

}

The Resources Resource Type

Using the host resource type we can specify specific host entries.

host {'kermit.reductivelabs.com':

ensure => present,
host aliases => 'aku',
ip => '172.16.238.131",
}
host {'piggy.reductivelabs.com':
ensure => present,
host aliases => ['piggy', 'missy'],
ip => '172.16.238.132",
}

host {'oscar.reductivelabs.com':
ensure => absent,

}

13 of 24 2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

14 of 24

What if we only want to have explicitly declared entries in the /etc/hosts file?

The Resources Resource Type

If a resource is ensurable then the resources resource type can be used to
enable purging of unmanaged resources.

The Resources Resource Type

This will purge all unspecified host resources.

resources {'host':
purge => true,

}

The Resources Resource Type

Attributes:

« name: the name of the resource type that is to be managed. (namevar)
e purge: true or false
e unless_system_user: true, false, or some upper uid limit specified as an integer.

The Resources Resource Type

Exercise: Purging unmanage resources.

Use ralsh to generate a manifest named hosts.pp in /etc/puppet/manifests.

Edit hosts.pp to include a resources type that enables purging for the host resource type.
Manually add a host entry to /etc/hosts.

Use puppet to interpret the hosts.pp manifest and ensure that the unmanaged resource is
purged.

The Service Resource Type:

Attributes:

« name: The name of the service as understood on the underlying services subsystem. (namevar)

2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

« enable: If a service should be started at boot. Can be true or false.

e ensure: If the resource should currently be running. Can be true, false, running, or stopped.
e hasrestart: Specifies that your service has a restart command. Can be true or false.

e hasstatus: Specifies that your service has a status command. Can be true or false.

e pattern: The pattern to search for in the process table.

e restart: Specify a restart command.

e start: Specify a start command.

e status: Specify a status command.

e stop: Specify a stop command.

The Service Resource Type:

Example of a service resource type:

service {'sshd':
enable => true,
ensure => running,
hasstatus => true,
hasrestart => true,

The Service Resource Type:

Exercise:

Use ralsh to stop the sshd service.

What happens if you execute the same ralsh command again?

Set the parameter hasstatus=true and use ralsh to ensure sshd is stopped.

Use ralsh to ensure that the sshd service is started. Be sure to use hasstatus=true.

Classes

Classes in Puppet are used to model fundamental aspects of nodes.

Classes

Example: ruby::dev class.

class ruby::dev {
require ruby

15 of 24 2/23/10 7:41 PM

Puppet Training

16 of 24

package {['ruby-rdoc', 'ruby-irb', 'rubygem-rake']:
ensure => installed,
}
}

file:///Users/danbode/puppet/puppet-training/project/project.html#

Classes

You can also create relationships to classes using require and before.

class redmine::webbrick {
include redmine
$redmine port='3000"
exec{'start-redmine':
command => 'ruby script/server webrick -e production &',
unless => "netstat -ltn | grep ${redmine port}",

cwd => Sredmine::params::reddir,
user => 'redmine',

path => '/bin:/usr/bin’',

require => Class['redmine'],

Redmine Class Relationships

ruby
1 T~
ruby::dev mysql::ruby mysql::server
! ! ——7
rails redmine::mysq| git
= T
redmine

redmin::webbrick

2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

Defined Resource Types

Defined resource types behave like custom resource types.

o Accepts Metaparameters
¢ Can be used multiple times

Defined Resource Types

Vhost example

define rails::db _config(
$adapter,
Sdatabase,
Shost='localhost',
Susername,
Spassword,
$encoding—'utf8'
Senvironment='production',
$socket="'/tmp/mysqgl.sock'’

) {
file{"${name}/config/database.yml":

content => template('rails/database.yml.erb'),

}
}

Defined Resource Types

Using a defined resource example.

$reddir="'/opt/redmine'
rails::db config{$reddir:
adapter => 'mysql’,
username => 'redmine',
password => 'password',
database => 'redmine',
socket => '/var/run/mysqgld/mysqld.sock',

Templates

Puppet uses Ruby’s builtin templating, ERB.

17 of 24 2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB .html

Templates

Basic ERB for productions rails db configuration.

<%= environment %>:
adapter: <%= adapter %>
database: <%= database
host: <%= host %>
username: <%= username
password: <%= password
encoding: <%= encoding
socket: <%= socket %>

oe
\Y%

o o°
VvV V

o°
\Y

Templates

Basic ERB syntax: Iteration

We can also iterate over arrays
<% fooarray.each do |val| %>

Foo array has a value of <%= val %>
<% end %>

Client/Server Diagram

18 of 24 2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

| Files H manifests || puppetca |

Facts

SSL Cert

Facter

| Resource Types | Providers
| Operating System |

Environments

19 of 24 2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

Node
Environment

¥

Puppet
Server(s)

Environments

Prod Test Dev
Prod-Manifests Test-Manifests Dev-Manifests
Prod-Modules Test-Modules Dev-Modules

Repo

External Nodes Diagram

20 of 24 2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

=

Parameter Lookup

Classes/

& Params
R
'ﬁiﬁil

DB Node
Classifier Puppet
Node

name

Node1

Exported Resources

Puppet has the ability to export resources to a database so that they can be
collected and used on other hosts.

class hosts {
@@host { Shostname: ip => $ipaddress, alias => $fqdn }
Host <<||>>

}

Exported Resources

21 of 24 2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

collector
exporter 2
Host<<ll>> collector
@@hosty| |] :
\‘ / Host<<l|>>

Puppet

/

‘ storedconfigs \

Exporting resources requires configuration of storeconfigs.

Exported Resources

But what if there is a host entry that we don’t want to have in the /etc/host files.

e We can use the resources resource to purge rogue entries.
» Exported resources for decommissioned servers must be purged from the database using a
script.

Future Architecture

22 of 24 2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

Module
Forge
—
Module
Repo
4 3 .~ ~
Dashboard
<Mﬁm nodes Node Management)@ﬁ
Source
Pu t Cobbler
ppe Provisioning]@ Jumpstart
Kickstart

generate > .
B [Reporting]
T T
; COR——
Stored
Configs

I am known by many names

Dan Bode
dan <at> reductivelabs.com

bodepd <on> irc://chat.freenode.net/#puppet

Want to learn more?

http://reductivelabs.com/

23 of 24 2/23/10 7:41 PM

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

http://docs.reductivelabs.com/

http://reductivelabs.com/trac/puppet

24 of 24 2/23/10 7:41 PM

