
SCaLE Puppet Introduction

Puppet Assigns and Maintains a Machine’s
Desired Role

Managing Configuration Drift
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Puppet Executables that we will employ:
ralsh – The Resource Abstraction Layer Shell.
facter – Executable and library that discovers facts about client systems.
puppet – Executable that interprets Puppet manifests, compiles the catalog, and applies the
catalog locally.
puppetmasterd – Centralized daemon that authenticates client connections, serves files,
compiles templates, and provides puppet clients with a catalog.
puppetd – Puppet daemon that runs on client machines, makes connections to the
puppetmaster, retrieves the catalog, and applies that catalog locally.
puppetca – Puppet’s built-in certificate authority.

Resources
Resources are the building blocks Puppet uses to model system configurations.

Simple user resource declaration.
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user{'redmine':
  ensure => present,
  shell  => '/usr/sbin/nologin',
}

RAL: Resource Abstraction Layer
The RAL provides a consistent model for resources across supported platforms.

RAL: Resource Abstraction Layer
Resource types depend on providers to translate specification into
implementation.

package{'rubygems': 
  ensure => installed,
}

Package is just one of the many native Puppet resource types.

RAL: Resource Abstraction Layer
Each resource type has one or more providers.
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RAL: Resource Abstraction Layer
Providers are the interface between the underlying OS and the resource types.
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RAL: Resource Abstraction Layer
The package resource type has 23 providers:

ls -1 /usr/lib/ruby/site_ruby/1.8/puppet/provider/package

appdmg.rb      freebsd.rb  sunfreeware.rb
apple.rb       gem.rb      sun.rb
aptitude.rb    hpux.rb     up2date.rb
apt.rb         openbsd.rb  urpmi.rb
aptrpm.rb      pkgdmg.rb   yumhelper.py
blastwave.rb   portage.rb  yumhelper.pyc
darwinport.rb  ports.rb    yumhelper.pyo
dpkg.rb        rpm.rb      yum.rb
fink.rb        rug.rb

Ralsh: The Resource Abstraction Layer Shell
Executing ralsh and providing a resource and a title returns the state of a
resource.

root@puppetclient:~$ ralsh user redmine

user { 'redmine':
  ensure => 'absent'
}

Ralsh: The Resource Abstraction Layer Shell
Executing ralsh and providing a resource, a title, and specifying an attribute
alters the resource.

root@puppetclient:~$ ralsh user redmine ensure=present

notice: /User[redmine]/ensure: created
user { 'redmine':
    uid => '500',
    password => '!!',
    gid => '500',
    home => '/home/redmine',
    shell => '/bin/bash',
    ensure => 'present'
}
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Core Resource types:
user
group
host
cron
exec
file
package
service
mount
tidy

Core Resource types:
The type reference documentation can also be found on the Reductive Labs
website.

http://docs.reductivelabs.com/guides/types/index.html

The User Resource Type
Some basic attributes for the user resource type:

name: OS specified limits apply. (namevar)
ensure: Sets the basic state of the user resource. Valid values are absent, present.
gid: The user’s primary group. Can be specified numerically or by name.
groups: The secondary group or groups to which the user is assigned. The primary group should
not be listed. Multiple groups should be specified as an array.
home: The users home directory.
managehome: Whether to manage the home directory when managing the user. Valid values are
true, false.

The File Resource Type
Basic Attributes:

path: Specifies the target location for file. (namevar)
ensure: Accepts absent, present, file, and directory. Any other value will be treated as a symlink.
owner: Owner of file.
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group: Group of file.
mode: Mode of file
content: Specifies the content of file as a string.
source: Specifies the source of file.
force: Force replacement of directories with a link. Valid values (true, false).
ignore: Omits files matching specified patterns during recursion (Ex: .svn, .git).
recurse: Whether or not directories should be managed recursively. Valid values (true, false)
purge: Whether or not to purge unmanaged file resources within a directory. Valid values (true,
false)

The File Resource Type
Simple file resource declaration with a local source.

file {'/etc/sudoers':
  ensure => file,
  group  => 'root',
  owner  => 'root',
  mode   => '440',
  source => '/etc/puppet/files/sudoers',
}

The File Resource Type
Directory example.

file {'/tmp/src':
  ensure => directory,
  mode   => '755',
}

The File Resource Type
Symlink example.

file {'/tmp/testfile':
  source => '/tmp/src/testfile',
}

file {'/tmp/testlink':
  ensure => '/tmp/testfile',
}
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Facter and Facts
Puppet uses facter to gather information about the host system.

Facter and Facts
Executing the facter command returns a list of key value pairs.

root@puppetclient:~$ facter
architecture => x86_64
domain => reductivelabs.com
facterversion => 1.5.2
fqdn => puppetclient.reductivelabs.com
hardwaremodel => x86_64
hostname => aku
interfaces => eth0
ipaddress => 172.16.10.1
kernel => Linux
operatingsystem => Ubuntu
...

The returned key value pairs are facts.

The Puppet Executable
The standalone puppet executable:

interprets puppet code

The Puppet Executable
The standalone puppet executable:

interprets puppet code
compiles a catalog

The Puppet Executable
The standalone puppet executable:
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interprets puppet code
compiles a catalog
uses the RAL to apply the catalog locally.

The Puppet Executable

The Puppet Executable
Files containing Puppet code are known as manifests and by convention have a
.pp suffix.

The Puppet Executable
Example Puppet Manifest:

user {'elvis':
  ensure     => present,
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  home       => '/home/elvis',
  gid        => 'elvis',
  shell      => '/bin/bash',
  managehome => true,
}

# A group resource definition
group {'foo':
  ensure => present,
}

Specifying Dependencies
Puppet is not a procedural language, it is declarative.
All ordering dependencies between resources must be explicity specified.

Specifying Dependencies
The require and before metaparameters establish dependencies between
resources.

Specifying Dependencies
require

Specifying Dependencies
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before

Specifying Dependencies
This ensures that permissions of these directories are managed only after the db
migration task is run.

exec{'migrate':
  command => '/usr/bin/rake db:migrate',
  cwd     => $reddir,
  environment => 'RAILS_ENV=production',
  require => Exec['session'],
  creates => "${reddir}/db/schema.rb"
}
file{
  [ "${reddir}/public",
    "${reddir}/files",
    "${reddir}/log",
    "${reddir}/tmp",
    "${reddir}/public/plugin_assets"
  ]:
  ensure  => directory,
  recurse => true,
  owner   => 'redmine', group   => 'redmine', mode    => '0755',
  require  => Exec['migrate'],
}

Redmine Dependencies
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Specifying Dependencies
Resources can be refreshed by other resources.

The subscribe and notify metaparameters establish refresh relationships
between resources.

Specifying Dependencies
The subscribe metaparameter establishes a refresh relationship from the
containing resource to a change in the referenced resource.
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Specifying Dependencies
This manifest ensures that mysqld is restarted only if /root/.my.cnf changes.

service{'mysqld-restart':
  restart => '/usr/sbin/service mysqld restart'
}
file{'/root/.my.cnf':
  content => template('mysql/my.cnf.erb'),
  notify    => Service['mysqld-restart'],
}

The Resources Resource Type
Using the host resource type we can specify specific host entries.

host {'kermit.reductivelabs.com':
  ensure        => present,
  host_aliases  => 'aku',
  ip            => '172.16.238.131',
}
host {'piggy.reductivelabs.com':
  ensure       => present,
  host_aliases => ['piggy', 'missy'],
  ip           => '172.16.238.132',
}
host {'oscar.reductivelabs.com':
  ensure => absent,
}
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What if we only want to have explicitly declared entries in the /etc/hosts file?

The Resources Resource Type
If a resource is ensurable then the resources resource type can be used to
enable purging of unmanaged resources.

The Resources Resource Type
This will purge all unspecified host resources.

resources {'host':
  purge => true,
}

The Resources Resource Type
Attributes:

name: the name of the resource type that is to be managed. (namevar)
purge: true or false
unless_system_user: true, false, or some upper uid limit specified as an integer.

The Resources Resource Type
Exercise: Purging unmanage resources.

Use ralsh to generate a manifest named hosts.pp in /etc/puppet/manifests.
Edit hosts.pp to include a resources type that enables purging for the host resource type.
Manually add a host entry to /etc/hosts.
Use puppet to interpret the hosts.pp manifest and ensure that the unmanaged resource is
purged.

The Service Resource Type:
Attributes:

name: The name of the service as understood on the underlying services subsystem. (namevar)
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enable: If a service should be started at boot. Can be true or false.
ensure: If the resource should currently be running. Can be true, false, running, or stopped.
hasrestart: Specifies that your service has a restart command. Can be true or false.
hasstatus: Specifies that your service has a status command. Can be true or false.
pattern: The pattern to search for in the process table.
restart: Specify a restart command.
start: Specify a start command.
status: Specify a status command.
stop: Specify a stop command.

The Service Resource Type:
Example of a service resource type:

service {'sshd':
  enable     => true,
  ensure     => running,
  hasstatus  => true,
  hasrestart => true,
}

The Service Resource Type:
Exercise:

Use ralsh to stop the sshd service.
What happens if you execute the same ralsh command again?
Set the parameter hasstatus=true and use ralsh to ensure sshd is stopped.
Use ralsh to ensure that the sshd service is started. Be sure to use hasstatus=true.

Classes
Classes in Puppet are used to model fundamental aspects of nodes.

Classes
Example: ruby::dev class.

class ruby::dev {
  require ruby
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  package {['ruby-rdoc', 'ruby-irb', 'rubygem-rake']:
    ensure => installed,
  }
}

Classes
You can also create relationships to classes using require and before.

class redmine::webbrick {
  include redmine
  $redmine_port='3000'
  exec{'start-redmine':
    command => 'ruby script/server webrick -e production &',
    unless  => "netstat -ltn | grep ${redmine_port}",
    cwd     => $redmine::params::reddir,
    user    => 'redmine',
    path    => '/bin:/usr/bin',
    require => Class['redmine'],
  }
}

Redmine Class Relationships
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Defined Resource Types
Defined resource types behave like custom resource types.

Accepts Metaparameters
Can be used multiple times

Defined Resource Types
Vhost example

define rails::db_config(
  $adapter,
  $database,
  $host='localhost',
  $username,
  $password,
  $encoding='utf8',
  $environment='production',
  $socket='/tmp/mysql.sock'
){
  file{"${name}/config/database.yml":
    content => template('rails/database.yml.erb'),
  }
}

Defined Resource Types
Using a defined resource example.

$reddir='/opt/redmine'
rails::db_config{$reddir:
  adapter  => 'mysql',
  username => 'redmine',
  password => 'password',
  database => 'redmine',
  socket   => '/var/run/mysqld/mysqld.sock',
}

Templates
Puppet uses Ruby’s builtin templating, ERB.

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

17 of 24 2/23/10 7:41 PM



http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html

Templates
Basic ERB for productions rails db configuration.

<%= environment %>:
  adapter: <%= adapter %>
  database: <%= database %>
  host: <%= host %>
  username: <%= username %>
  password: <%= password %>
  encoding: <%= encoding %>
  socket: <%= socket %>

Templates
Basic ERB syntax: Iteration

# We can also iterate over arrays

<% fooarray.each do |val| %> 
   Foo array has a value of <%= val %> 
<% end %>

Client/Server Diagram
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Environments
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External Nodes Diagram
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Exported Resources
Puppet has the ability to export resources to a database so that they can be
collected and used on other hosts.

class hosts {
 @@host { $hostname: ip => $ipaddress, alias => $fqdn }
 Host <<||>>
}

Exported Resources

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

21 of 24 2/23/10 7:41 PM



Exporting resources requires configuration of storeconfigs.

Exported Resources
But what if there is a host entry that we don’t want to have in the /etc/host files.

We can use the resources resource to purge rogue entries.
Exported resources for decommissioned servers must be purged from the database using a
script.

Future Architecture

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

22 of 24 2/23/10 7:41 PM



I am known by many names
Dan Bode

dan <at> reductivelabs.com

bodepd <on> irc://chat.freenode.net/#puppet

Want to learn more?
http://reductivelabs.com/
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http://docs.reductivelabs.com/

http://reductivelabs.com/trac/puppet

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

24 of 24 2/23/10 7:41 PM


