
SCaLE Puppet Introduction

Puppet Assigns and Maintains a Machine’s
Desired Role

Managing Configuration Drift

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

1 of 24 2/23/10 7:41 PM



Puppet Executables that we will employ:
ralsh – The Resource Abstraction Layer Shell.
facter – Executable and library that discovers facts about client systems.
puppet – Executable that interprets Puppet manifests, compiles the catalog, and applies the
catalog locally.
puppetmasterd – Centralized daemon that authenticates client connections, serves files,
compiles templates, and provides puppet clients with a catalog.
puppetd – Puppet daemon that runs on client machines, makes connections to the
puppetmaster, retrieves the catalog, and applies that catalog locally.
puppetca – Puppet’s built-in certificate authority.

Resources
Resources are the building blocks Puppet uses to model system configurations.

Simple user resource declaration.

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

2 of 24 2/23/10 7:41 PM



user{'redmine':
  ensure => present,
  shell  => '/usr/sbin/nologin',
}

RAL: Resource Abstraction Layer
The RAL provides a consistent model for resources across supported platforms.

RAL: Resource Abstraction Layer
Resource types depend on providers to translate specification into
implementation.

package{'rubygems': 
  ensure => installed,
}

Package is just one of the many native Puppet resource types.

RAL: Resource Abstraction Layer
Each resource type has one or more providers.

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

3 of 24 2/23/10 7:41 PM



RAL: Resource Abstraction Layer
Providers are the interface between the underlying OS and the resource types.

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

4 of 24 2/23/10 7:41 PM



RAL: Resource Abstraction Layer
The package resource type has 23 providers:

ls -1 /usr/lib/ruby/site_ruby/1.8/puppet/provider/package

appdmg.rb      freebsd.rb  sunfreeware.rb
apple.rb       gem.rb      sun.rb
aptitude.rb    hpux.rb     up2date.rb
apt.rb         openbsd.rb  urpmi.rb
aptrpm.rb      pkgdmg.rb   yumhelper.py
blastwave.rb   portage.rb  yumhelper.pyc
darwinport.rb  ports.rb    yumhelper.pyo
dpkg.rb        rpm.rb      yum.rb
fink.rb        rug.rb

Ralsh: The Resource Abstraction Layer Shell
Executing ralsh and providing a resource and a title returns the state of a
resource.

root@puppetclient:~$ ralsh user redmine

user { 'redmine':
  ensure => 'absent'
}

Ralsh: The Resource Abstraction Layer Shell
Executing ralsh and providing a resource, a title, and specifying an attribute
alters the resource.

root@puppetclient:~$ ralsh user redmine ensure=present

notice: /User[redmine]/ensure: created
user { 'redmine':
    uid => '500',
    password => '!!',
    gid => '500',
    home => '/home/redmine',
    shell => '/bin/bash',
    ensure => 'present'
}

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

5 of 24 2/23/10 7:41 PM



Core Resource types:
user
group
host
cron
exec
file
package
service
mount
tidy

Core Resource types:
The type reference documentation can also be found on the Reductive Labs
website.

http://docs.reductivelabs.com/guides/types/index.html

The User Resource Type
Some basic attributes for the user resource type:

name: OS specified limits apply. (namevar)
ensure: Sets the basic state of the user resource. Valid values are absent, present.
gid: The user’s primary group. Can be specified numerically or by name.
groups: The secondary group or groups to which the user is assigned. The primary group should
not be listed. Multiple groups should be specified as an array.
home: The users home directory.
managehome: Whether to manage the home directory when managing the user. Valid values are
true, false.

The File Resource Type
Basic Attributes:

path: Specifies the target location for file. (namevar)
ensure: Accepts absent, present, file, and directory. Any other value will be treated as a symlink.
owner: Owner of file.

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

6 of 24 2/23/10 7:41 PM



group: Group of file.
mode: Mode of file
content: Specifies the content of file as a string.
source: Specifies the source of file.
force: Force replacement of directories with a link. Valid values (true, false).
ignore: Omits files matching specified patterns during recursion (Ex: .svn, .git).
recurse: Whether or not directories should be managed recursively. Valid values (true, false)
purge: Whether or not to purge unmanaged file resources within a directory. Valid values (true,
false)

The File Resource Type
Simple file resource declaration with a local source.

file {'/etc/sudoers':
  ensure => file,
  group  => 'root',
  owner  => 'root',
  mode   => '440',
  source => '/etc/puppet/files/sudoers',
}

The File Resource Type
Directory example.

file {'/tmp/src':
  ensure => directory,
  mode   => '755',
}

The File Resource Type
Symlink example.

file {'/tmp/testfile':
  source => '/tmp/src/testfile',
}

file {'/tmp/testlink':
  ensure => '/tmp/testfile',
}

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

7 of 24 2/23/10 7:41 PM



Facter and Facts
Puppet uses facter to gather information about the host system.

Facter and Facts
Executing the facter command returns a list of key value pairs.

root@puppetclient:~$ facter
architecture => x86_64
domain => reductivelabs.com
facterversion => 1.5.2
fqdn => puppetclient.reductivelabs.com
hardwaremodel => x86_64
hostname => aku
interfaces => eth0
ipaddress => 172.16.10.1
kernel => Linux
operatingsystem => Ubuntu
...

The returned key value pairs are facts.

The Puppet Executable
The standalone puppet executable:

interprets puppet code

The Puppet Executable
The standalone puppet executable:

interprets puppet code
compiles a catalog

The Puppet Executable
The standalone puppet executable:

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

8 of 24 2/23/10 7:41 PM



interprets puppet code
compiles a catalog
uses the RAL to apply the catalog locally.

The Puppet Executable

The Puppet Executable
Files containing Puppet code are known as manifests and by convention have a
.pp suffix.

The Puppet Executable
Example Puppet Manifest:

user {'elvis':
  ensure     => present,

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

9 of 24 2/23/10 7:41 PM



  home       => '/home/elvis',
  gid        => 'elvis',
  shell      => '/bin/bash',
  managehome => true,
}

# A group resource definition
group {'foo':
  ensure => present,
}

Specifying Dependencies
Puppet is not a procedural language, it is declarative.
All ordering dependencies between resources must be explicity specified.

Specifying Dependencies
The require and before metaparameters establish dependencies between
resources.

Specifying Dependencies
require

Specifying Dependencies

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

10 of 24 2/23/10 7:41 PM



before

Specifying Dependencies
This ensures that permissions of these directories are managed only after the db
migration task is run.

exec{'migrate':
  command => '/usr/bin/rake db:migrate',
  cwd     => $reddir,
  environment => 'RAILS_ENV=production',
  require => Exec['session'],
  creates => "${reddir}/db/schema.rb"
}
file{
  [ "${reddir}/public",
    "${reddir}/files",
    "${reddir}/log",
    "${reddir}/tmp",
    "${reddir}/public/plugin_assets"
  ]:
  ensure  => directory,
  recurse => true,
  owner   => 'redmine', group   => 'redmine', mode    => '0755',
  require  => Exec['migrate'],
}

Redmine Dependencies

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

11 of 24 2/23/10 7:41 PM



Specifying Dependencies
Resources can be refreshed by other resources.

The subscribe and notify metaparameters establish refresh relationships
between resources.

Specifying Dependencies
The subscribe metaparameter establishes a refresh relationship from the
containing resource to a change in the referenced resource.

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

12 of 24 2/23/10 7:41 PM



Specifying Dependencies
This manifest ensures that mysqld is restarted only if /root/.my.cnf changes.

service{'mysqld-restart':
  restart => '/usr/sbin/service mysqld restart'
}
file{'/root/.my.cnf':
  content => template('mysql/my.cnf.erb'),
  notify    => Service['mysqld-restart'],
}

The Resources Resource Type
Using the host resource type we can specify specific host entries.

host {'kermit.reductivelabs.com':
  ensure        => present,
  host_aliases  => 'aku',
  ip            => '172.16.238.131',
}
host {'piggy.reductivelabs.com':
  ensure       => present,
  host_aliases => ['piggy', 'missy'],
  ip           => '172.16.238.132',
}
host {'oscar.reductivelabs.com':
  ensure => absent,
}

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

13 of 24 2/23/10 7:41 PM



What if we only want to have explicitly declared entries in the /etc/hosts file?

The Resources Resource Type
If a resource is ensurable then the resources resource type can be used to
enable purging of unmanaged resources.

The Resources Resource Type
This will purge all unspecified host resources.

resources {'host':
  purge => true,
}

The Resources Resource Type
Attributes:

name: the name of the resource type that is to be managed. (namevar)
purge: true or false
unless_system_user: true, false, or some upper uid limit specified as an integer.

The Resources Resource Type
Exercise: Purging unmanage resources.

Use ralsh to generate a manifest named hosts.pp in /etc/puppet/manifests.
Edit hosts.pp to include a resources type that enables purging for the host resource type.
Manually add a host entry to /etc/hosts.
Use puppet to interpret the hosts.pp manifest and ensure that the unmanaged resource is
purged.

The Service Resource Type:
Attributes:

name: The name of the service as understood on the underlying services subsystem. (namevar)

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

14 of 24 2/23/10 7:41 PM



enable: If a service should be started at boot. Can be true or false.
ensure: If the resource should currently be running. Can be true, false, running, or stopped.
hasrestart: Specifies that your service has a restart command. Can be true or false.
hasstatus: Specifies that your service has a status command. Can be true or false.
pattern: The pattern to search for in the process table.
restart: Specify a restart command.
start: Specify a start command.
status: Specify a status command.
stop: Specify a stop command.

The Service Resource Type:
Example of a service resource type:

service {'sshd':
  enable     => true,
  ensure     => running,
  hasstatus  => true,
  hasrestart => true,
}

The Service Resource Type:
Exercise:

Use ralsh to stop the sshd service.
What happens if you execute the same ralsh command again?
Set the parameter hasstatus=true and use ralsh to ensure sshd is stopped.
Use ralsh to ensure that the sshd service is started. Be sure to use hasstatus=true.

Classes
Classes in Puppet are used to model fundamental aspects of nodes.

Classes
Example: ruby::dev class.

class ruby::dev {
  require ruby

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

15 of 24 2/23/10 7:41 PM



  package {['ruby-rdoc', 'ruby-irb', 'rubygem-rake']:
    ensure => installed,
  }
}

Classes
You can also create relationships to classes using require and before.

class redmine::webbrick {
  include redmine
  $redmine_port='3000'
  exec{'start-redmine':
    command => 'ruby script/server webrick -e production &',
    unless  => "netstat -ltn | grep ${redmine_port}",
    cwd     => $redmine::params::reddir,
    user    => 'redmine',
    path    => '/bin:/usr/bin',
    require => Class['redmine'],
  }
}

Redmine Class Relationships

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

16 of 24 2/23/10 7:41 PM



Defined Resource Types
Defined resource types behave like custom resource types.

Accepts Metaparameters
Can be used multiple times

Defined Resource Types
Vhost example

define rails::db_config(
  $adapter,
  $database,
  $host='localhost',
  $username,
  $password,
  $encoding='utf8',
  $environment='production',
  $socket='/tmp/mysql.sock'
){
  file{"${name}/config/database.yml":
    content => template('rails/database.yml.erb'),
  }
}

Defined Resource Types
Using a defined resource example.

$reddir='/opt/redmine'
rails::db_config{$reddir:
  adapter  => 'mysql',
  username => 'redmine',
  password => 'password',
  database => 'redmine',
  socket   => '/var/run/mysqld/mysqld.sock',
}

Templates
Puppet uses Ruby’s builtin templating, ERB.

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

17 of 24 2/23/10 7:41 PM



http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html

Templates
Basic ERB for productions rails db configuration.

<%= environment %>:
  adapter: <%= adapter %>
  database: <%= database %>
  host: <%= host %>
  username: <%= username %>
  password: <%= password %>
  encoding: <%= encoding %>
  socket: <%= socket %>

Templates
Basic ERB syntax: Iteration

# We can also iterate over arrays

<% fooarray.each do |val| %> 
   Foo array has a value of <%= val %> 
<% end %>

Client/Server Diagram

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

18 of 24 2/23/10 7:41 PM



Environments

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

19 of 24 2/23/10 7:41 PM



External Nodes Diagram

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

20 of 24 2/23/10 7:41 PM



Exported Resources
Puppet has the ability to export resources to a database so that they can be
collected and used on other hosts.

class hosts {
 @@host { $hostname: ip => $ipaddress, alias => $fqdn }
 Host <<||>>
}

Exported Resources

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

21 of 24 2/23/10 7:41 PM



Exporting resources requires configuration of storeconfigs.

Exported Resources
But what if there is a host entry that we don’t want to have in the /etc/host files.

We can use the resources resource to purge rogue entries.
Exported resources for decommissioned servers must be purged from the database using a
script.

Future Architecture

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

22 of 24 2/23/10 7:41 PM



I am known by many names
Dan Bode

dan <at> reductivelabs.com

bodepd <on> irc://chat.freenode.net/#puppet

Want to learn more?
http://reductivelabs.com/

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

23 of 24 2/23/10 7:41 PM



http://docs.reductivelabs.com/

http://reductivelabs.com/trac/puppet

Puppet Training file:///Users/danbode/puppet/puppet-training/project/project.html#

24 of 24 2/23/10 7:41 PM


