[1'dab'l dovecot shared |dap]

ADMIN WEB PAGE FOR
IMAP ACLS
AND

SHARED FOLDERS INCOMING
EMAILS

Document created on 2014-01-16
Nicolas Bondier

(pdf][doc][htm]

Page 1 of 47

index.pdf
index.docx
index.htm

[1'dab'l dovecot shared |dap]

Contents
T ageTe [V 4T] o HAR T U PO TS UU P PUTOPOROPPOP 3
e == o UYL= N 4
PreSeNTatioNciiiiiiiii i 5
Configuration Of @PACKHE SEIVENco e e e e s et e e e e b e e e e s bae e e enareeas 8
INstallation Of the WED SEIVETeieii e s e 8
Basic authentication With PAM ..ottt st et e s 8
SUAO FOr WWW=ATA USET ...ttt sttt be e sae e s e e bt e nbeesbeesbeesane e 9
(6foTo [lo [oTolU] 0 o 1= o1 1 4 1] o FAUUT USSP U PP PP URPPPTON 10
FIlES LB ettt ettt ettt ettt e s bt e s ab e st e e bt e e s bt e e a bt e e be e e ntee s beeeshbee s teesnteesbaeenne 10
[[aTo [N] T J USRS 11
folder_control_WindOW.PRP ..o e e e e e bte e e e sbee e e eareeas 15
Fod o VIRV 1A E=1 o] (=13 o] o o JPU SRR 24
L0 TaToruToT o T3 o] o] o NP USSR 25
L=l - To I o o 13 o] '« J PSPPI 41
oI To [oY o fl 11y Y o] o o PSSP 42
get_ids_and_paths 1o reload.php .. e e e 42
Lol Y] (=Tt A = o 1T o T L1y o) o o USSR 43
oL =] (=T O =L g L) 0] o o IO SRR 44
Lol A U] o] o] (o [T 3N o] o o PSSP 45
RETEIEINCES ...ttt ettt et e st sat e st e e b e e e r e e s me e et e e et et e e r e e reesneesane e 47

Page 2 of 47

[1'dab'l dovecot shared |dap]

Introduction

This document presents the source code of the administration web page for IMAP ACLs and for
routing email to shared folders and subfolders.

It describes the architecture, the configuration of the Debian servers and the source code the web
page.

Page 3 of 47

[1'dab'l dovecot shared |dap]

Prerequisites

For this how-to, we require the installation of a Dovecot and Postfix server as described in the
precedent document presented here : http://switzernet.com/3/public/131212-shared-imap-
dovecot/index.pdf. However, it is not required to have a Ceph cluster and shared block device for

continuing.

Page 4 of 47

http://switzernet.com/3/public/131212-shared-imap-dovecot/index.pdf
http://switzernet.com/3/public/131212-shared-imap-dovecot/index.pdf

[1'dab'l dovecot shared Idap]

Presentation

In order to have a full control on IMAP ACLs and each public folder incoming mail address, we decide
to create a web interface for that purpose.

The page is protected with http authentication. This authentication permit only on group of the LDAP
users to login.

The index page display the shared folders tree. On each folder, a summary of the settings is
displayed:

- User initials with a color meaning the permission set.
- Email address on which the folder receive emails.

/ % IMAP ACL and email recep ~

« CnH b 5.135.149.195/imap-admin/ _{? M A /A A

("] Switzernet (] monitoring (] Recrutement (] intrum [T] portaone » (7] Autres favoris

IMAP ACLs & public email addresses

Folder tree

nicolas.bondier
I root

-1k bilIing%‘ntarnet.com | @1 | *,%%,&: 3!
[+1 & 2017 J*Ec,nB

-1k 2013 | =EG,NB

k 01 | *EGNB billing@intamet.coml
k 02 | *EG,NB
-1 b billing@switzernet.com | @1 ,@2 | *

[+1 b 2013 | *
l. first_shared_folder | @1 ,@2 | *

Display ACLs

Created on 2013-11-08 by Nicolas Bondier
© Switzernet

On clicking on any of the folders, the settings window is opened to view and edit information. There
are two tabs, one for the ACLs and one for the mail addresses.

Page 5 of 47

[1'dab'l dovecot shared Idap]

®) 5.135.149.195/imap-admin/folder_control_window.php?path=billing%40intarnet,com

Folder : billing@intarnet.com

J AClLs Mail adresses

User Permission

All List directories [+] -
nicolas.bondier All permissions [ZI x
emin.gabrielyan lEmaiI read only [ZI x
+ Add new

Group Permission

+ Add new

recursive Apply ACLs

5.135.149.195/imap-admin/folder_control_window.php?path=billing%40intarnet.com#t...

Page 6 of 47

[1'dab'l dovecot shared Idap]

]

& Contrl window - Chromiun =

®) 5.135.149.195/imap-admin/folder_control_window.php?path=billing%40switzernet.com

Folder : billing@switzernet.com

ACls Mail adresses

Name Domain
biling @ intarnet.com x
billing @ switzernet.com x
+ Add new

 Define addresses |

Page 7 of 47

[1'dab'l dovecot shared |dap]

Configuration of apache server

Installation of the web server

Install apache and libraries used for the web pages:

@ceph-client-2:~# aptitude update; aptitude install apache2 libap

=

-php5 phpb-sglite

We use a special path for the IMAP administration web pages, not under the traditional “/var/www”
folder. The files are located under “/mnt/switzernet rbd/131205-mail-server-www/131108-
imap-admin”.

Basic authentication with PAM

For authenticating to the IMAP admin page, we use a simple basic authentication. But instead of
using simple “.htpasswd” files, we use PAM authentication with the user of the LDAP server.

root@ceph-client-2:~# aptitude install libapache2-mod-authnz-external

uth
root@ceph-client-2:~# aptitude install libapache2-mod-authz-uni oup

We edit the config file for our host. Itis “/etc/apache2/sites-available/default”.

We add the following clause:

or

Page 8 of 47

[1'dab'l dovecot shared |dap]

The “imap-administrator” group is set in the LDAP directory. It groups the users that will be able
to access the IMAP administration web page.

For activating the group authentication, we first download the last version of “pwauth” in order to
extract the “unixgroup” script. Last version number is available at
https://code.google.com/p/pwauth/.

uth-2.3.11

uth-2 11.tar.
2.3.11/unixgroup /usr/sbin/

bin/unixgroup

root@ceph-client-2:~
Restartin
h-c

Sudo for www-data user

Our PHP functions use some UNIX commands in order to retrieve and modify files on the system. We
need to enable “sudo” access to apache. We added the following line in “/etc/sudoers”:

Page 9 of 47

https://code.google.com/p/pwauth/

[1'dab'l dovecot shared Idap]

Code documentation

Files tree

@ceph-client-1:/mnt/s tzernet rbd/131205-mail- = # tree 131108-imap
131108-imap-admin/
| -- favicon.png
| -— folder control window.php
| -— include
functions.php

get acl short list.php

adr short list.php
ids and paths to reload.php
select group list.php
select user list.php
subfolders.php
global variables.php
—-— index.php
-- Js
|-— jguery-1.10.2.min.Jjs
"—— jquery.blockUI.js
—-— styles
| -— images

| -— background. jpg

Page 10 of 47

data/131108-imap-admin
data/131108-imap-admin/favicon.zip
data/131108-imap-admin/folder_control_window.zip
data/131108-imap-admin/include
data/131108-imap-admin/include/functions.zip
data/131108-imap-admin/include/get_acl_short_list.zip
data/131108-imap-admin/include/get_adr_short_list.zip
data/131108-imap-admin/include/get_ids_and_paths_to_reload.zip
data/131108-imap-admin/include/get_select_group_list.zip
data/131108-imap-admin/include/get_select_user_list.zip
data/131108-imap-admin/include/get_subfolders.zip
data/131108-imap-admin/include/global_variables.zip
data/131108-imap-admin/index.zip
data/131108-imap-admin/js
data/131108-imap-admin/js/jquery-1.10.2.min.zip
data/131108-imap-admin/js/jquery.blockUI.zip
data/131108-imap-admin/styles
data/131108-imap-admin/styles/images
data/131108-imap-admin/styles/images/background.zip
data/131108-imap-admin/styles/images/del.zip
data/131108-imap-admin/styles/images/folder.zip
data/131108-imap-admin/styles/images/switzernet-logo.zip
data/131108-imap-admin/styles/style.zip
data/131108-imap-admin/styles/table.zip
data/131108-imap-admin/virtual.zip

verify user();

<!DOCTYPE html

<html xmlns="http:

TR/xhtml1l1l

Page 11 of 47

DTC

xhtmlll.dtd">

[1'dab'l dovecot shared Idap]

Starting script and including
external functions and global
variables.

We verify the user.

Document type definition and
headers.

We use jQuery libraries.

This is a jQuery function to check
if the child window is closed when
main window is closing.
“childWindow” is called on folder
click.

Links to the style sheets.

Closing the head.

[1'dab'l dovecot shared Idap]

Table containing the folder tree.

PHP function “directory display”
build on level of the tree. Argument
is empty because this is the base
folder.

| Folitut trew
alt="folder" height="16"
| K root

| [+1 & dilling@ntarmet.com

| (+1 4 hlling@switzernet.com

Lo frst_shared folder

Beginning of the JavaScript

functions.
(id, path,e) { This function is called when
") { clicking on the “[+]” or “[-1".

html ent ("include/g subfold s.ph h="+path) ;
tent) ;

It detect if the folder is open or
not. If yes, we have to close the
folder, meaning removing the
t-iUUEIHTMLl: Gr™e subfolders from the page.

((”ﬁ”+1d). ; . ("ul") .length > If not, the

("#"+id) . AL 0 IEE e () “include/get subfolders.php” is
called with the path in the name.
This PHP page return the HTML for
the subfolders and is inserted
after.

|

|

I [+1 & 2013

| . first_shared_folder

A simple application for converting
back URL to normal character chain.

Page 12 of 47

[1'dab'l dovecot shared Idap]

This function loads and return the
html content of any page passed as
argument.

There is a special adaptatuion for
Internet Explorer which keep the
content in cache if we do not change
the URL.

Function for opening a new floating
window or load a page always in the
same floating window. Defining a
size permit to not open the window
in a tab.

(id, path, recursive This function permit to update the
short information about permissions
("include/c ds and paths tc oad.ph h="+path) ; on main page.

1tent?2) ;

- “id” argument is the id of the
html span to reload.

- “path” is the folder path for
reading the ACL files.

- “recursive” is the argument for
knowing if all subfolders
permissions should be refreshed too.

If the uptade must be processed
recursively,
“get_ids_and paths to reload.php”
list all the subfolder tree and
return a JSON array with all span ID
to reload.

h="+path) ;

Page 13 of 47

[1'dab'l dovecot shared Idap]

After a recursive applying, all
subfolders are updated:

I root

1-1 k20124

|
| |
| |
[I Billing@intarnct.com | 1 1 * l
| |
| oz, l
| |

Same, but it update only one folder
| tent ("1 sle/@ _list. h="+path) ; with email address:
G entById(id) ;
n.innerHTML ntent;

Displaying or hiding the ACLs and
receiving emails addresses
information with CSS.

Lo i e o o L

The button for toggle on or off the
X “hec I] displaying of the informations on
onclick="'hand]l < (tl : ay the page. It launch the

</1 > “display short info” function.

Foot div and closing the HTML
dier
 { > > t
</p> document.

Page 14 of 47

folder_control_window.php

Page 15 of 47

[1'dab'l dovecot shared Idap]

Start of the PHP page.
Session starting. For getting all
server variables if needed.

Includes to global variables and
common PHP functions.
Function to verify the user.

Formatting the path set as parameter
in the URL

Before loading the content of the
page, we check if a form was
submitted in order to process an
update.

There are two types of updates, ACLs
and receiving email address.

For the ACLs update, we need:
- Groups and/or users array with
permissions for each.

[1'dab'l dovecot shared Idap]

- The path of the folder to modify.

- If the modification is recursive or
not.

We launch the “replace_acls” or
“recursively replace_acls” functions
depending if the recursive option is
set.

For the receiving email addresses, we
need:

- The array of email addresses.

- The folder path, which is the
folder identifier in the database.

We launch the

“save incoming adresses” function for
saving the mail addresses.

&

i from path (format path ($pat ; Variables that will be needed latter.

(PERMS_GUTI) ; Some variables are originate from the
“global variables.php” file.

SUI_TO_IMAP) ;

We get the current folder permissions
in “$permissions” with the
“get_folder perms”.

map) ;
ms ($path);

Var “$span_id to_update” is
calculated the same way as in the
“index.php” page (with the
“directory display” function) for
easely retireve it and replace the
content.

End of the first PHP part.

Document type definition and headers.

We use jQuery libraries.

Page 16 of 47

<?php

Page 17 of 47

[1'dab'l dovecot shared Idap]

CSS style sheets. One for the texts.
One for the tables.

Set the first tab as the active one.

Here begin the tables. This one has
only one row for displaying the
folder path.

“tabs” div contains the div “tabs-
container” for the displaying the

available tabs and the two div for
the tab’s contents.

Beginning of the content of the first
tab.

Opening user’s ACL form.

We open the form.

An hidden input contain the file path
for resubmitting latter.

Header of the table.

Here is the first line of the user’s
permissions.

By default, we always have an “All”
user for the definition of anyone
permissions.

Available permissions come from the
variable “$available perms” build
from global variables. There are:
- 1d: For directory listing only.

Page 18 of 47

[1'dab'l dovecot shared Idap]

- ro: For reading only the emails in
the folders.

- rw: For reading and modifying
emails and folders.

For the permissions, an array is
built from the form. Example:

“users acls[0] [auth name]=‘anyone’”
“users acls[0] [auth type]=' anyone’”
“users acls[0] [permission]='1d’"

We set the not editable values in the
hidden inputs.

User permission are defined here.

The “$permissions” variable contains
all the current set permission for
this folder. The form is rebuilt with
those values. Ex:
“users_acls[1l] [auth_name]=‘name’”
“users_acls[1l] [auth_type]=‘user’”
“users_acls[1l] [permission]=‘rw’”

“users_acls[2] [auth _name]=‘name2’”
“users_acls[2] [auth_type]=‘user’”
“users_acls[2] [permission]=‘rw’”

In this part, the loop build a select
input, to permit the change of the
permission for an user but the
username and type are not editable.
We set those values in the hidden
inputs. It is possible to remove the
lines with the “Delete button”
(represented by a red cross picture)
that launch the “remove row()”
JavaScript function.

Button for adding a new line at the
end of the user’s ACLs table.

Closing the user’s ACLs table.

[1'dab'l dovecot shared Idap]

Creating a new group’s ACL table with
th>Permission</th> headers.

Here we build the table the same way
as un the user’s table.

We increment the html inputs in order
to post an array of group’s ACLs.

l_____________________l
I Narme Dormain |
| |
| 1'd59'3 @ SWITZEMAS, Con x l
| |
| |
| + Add new |

Button for adding a new line at the
end of the group’s ACLs table.

A checkbox for applying the ACLs
recursively is added to the form.

\put type="c

Page 19 of 47

style="flc

onclick

mS

1bomi t (

action
int

Page 20 of 47

</button>

[1'dab'l dovecot shared Idap]

En of the ACL form.
End of the content of the first tab.

Beginning of the content of the
second tab.

A form for the addresses is created.

We set a hidden input with the path
of the folder for that form.

We create a table of email addresses
with information from the database we
get with
“directory incoming addresses ($path)”
function.

[1'dab'l dovecot shared Idap]

The “+ Add new” button that launch
the “add Row addr('mail adresses')”
function in order to add a new row in
="edit href"> + Add new t the “mail addresses” table.

—————— I
</table> End of the table.
</form> End of the form.

The button for posting the”Mail
addresses” form.

right;" onclick="formSubmit ('ac ;">Define addr button> r ————————————————————

Beginning of the JavaScript part.

Function for adding a new line in the
tables before the “+ Add new” button.

The table is the only parameter.

The first loop get all precedent set
user names Or group names in order to

document. i
locumen not suggest them again.

= table.

Then, the script pass the parameters
to pages “get select user list.php”
or “get select group list.php” with
the names present in the tables as

/pe+" auth name "+i)) { i
tByTd(type+" auth name "+1); paramters. These scripts return an

"select"){

Page 21 of 47

name

table =
ount

= +nan
_lenght =

documen
= table.

ctedIndex] .value;

"+present;

ion]

Page 22 of 47

[1'dab'l dovecot shared Idap]

html code with the available option
like:

“<option>name</option>
<option>name2</option>".

The options are included in a select
list and past in the table with other
available fields (available ACLs).

ACLs Mall adresses ’}
yoas Pusrmslon

Lt deoctenes (=)

Enad 7000 0ty 7] x
ncalag, bondes (o) Emal read ondy (=] X

If all users or groups have been
added to the table, a message appears
“There are no more "+typet+"s to add
to this table”.

This function concern the adding of a
row in the address table of the “Mail
addresses” panel.

It works the same as the “add Row()”
function, except it doesn’t get all
the used values for the “Names” and

Page 23 of 47

[1'dab'l dovecot shared Idap]

“Domain” but these values are
suggested by the
“include/get select domains.php” PHP
script, based on the folder name.

Mumye [E=—"

tling switzernat com s X

= Add new

The remove row function, only get the
cell element usually passed with
“this” as argument, retrieve the row
and remove it.

This way, inputs of this row will not
be present anymore in the form.

A function for getting html content
of a PHP page.

The function for submitting form. Not
that we use a library,
“jguery.blockUI.js” for blocking the
window UI and displaying a waiting
message.

oot');
"All permissions

Page 24 of 47

[1'dab'l dovecot shared Idap]

This window launch the

“load mail list to span()” of the
parent window in order to reload span
with mail addresses information for
this folder.

This window launch the

“load acls list to span()” of the
parent window in order to reload span
with ACLs information for this folder
and subfolders if the option is set
to “true”.

Once this is done, we focus back to
our child window.

End of the scripts.

End of the document.

The general variables are explicit
enough. I used them for retrieving
information across many files, but
also for easily move the project
path.

Page 25 of 47

[1'dab'l dovecot shared Idap]

This function display the folder
tree structure.

The “S$base path” argument is the
path of the folder that will be
opened.

The “list directory()” function
return the list of subfolders.

Then, for each of the subfolders, we
get the list of ACLs, an id for the
html elements, and the html code of
the receiving mail addresses for the
folders.

We then create a “<1i></1i>"” element
for the folder.

If it is not empty (tested by
“empty directory()” function) , we
add the “[+]” notation at the
beginning of the line and

a function for opening/closing the
folder on a “onclick” action.

[1'dab'l dovecot shared Idap]

span style ont-weight:normal ont-st c:normal; font-family:monos ce; text coration: Then we add the folder image and the
#000000; snbsp; </spa ; directory name. The directory name
has has a link with a JavaScript
action for opening the management
window.

Finally, we and the spans with the
receiving mailboxes and ACLs short
description

This create the spans with the
content “@1”, “@2”, .. for each email
address.

The information comes from the
database used by both Dovecot and
Postfix.

Each contain a span “class=‘label’”
with the complete email address. It
is not displayed until the mouse go
over.

(Spath) { Same function as above, but it
returns only the array of email
Sarray = ; addresses for one directory.

Page 26 of 47

''.$path. 3

'".Spath."

0o o
7o

Page 27 of 47

[1'dab'l dovecot shared Idap]

Function for saving the incoming
email addresses for a folder the
submission of the folder management
window.

It matches only the available
characters for email addresses.

Test if a directory has subfolders.
For the Maildir format, we must
exclude the regular ™ “cur”,
and “tmp” subfolders.

new”,

[1'dab'l dovecot shared Idap]

This function built the short
informations about ACLs on the main
page.

It get the info from the
“get folder perms()” function.

Then, it displays “*” for “anyone”
the initials for users and GID for
groups with a color corresponding to
the permission.

tml = "";

The info of each is in a span. Each
span contains a “class=‘label’” span
with the full name of the user or
group. There are not displayed until
the mouse go over.

Shtml
roup

Shtml;

Page 28 of 47

Page 29 of 47

[1'dab'l dovecot shared Idap]

This function list subfolders of the
folder locate under the “$path”
argument and return an array.

Function for getting the ACLs from a
“dovecot-acl” file.

For each line, it stores the
permission in a hash with this
structure:

“Array[type] [name] = permission”

Then, it pass the array to the
“correct perms()” function that
makes verifications and replacement
on the array.

We verify it the returned array is
equal to the one passed as argument.

If not, it means that something were
wrong and we replace all the
permissions with default ones.

)

Page 30 of 47

[1'dab'l dovecot shared Idap]

Function that verify the
permissions. It checks if the set
values are available in the list of
allowed permissions. And it verify
that the “anyone” user has
permissions. The return is true or
false.

Resetting the folder permissions
consist in deleting all users from
the “dovecot-acl” file, resetting
the owner of the file and resetting
the owner of the files in the UNIX
file system.

This is done through the

“replace acls()” function.

This is the main function for
setting the ACLs.

IR}
. ’

Page 31 of 47

[1'dab'l dovecot shared Idap]

We define variables.

Here is the command to get all files
in folder. We do not get the
“dovecot.index.log” file, because
dovecot bug when we try to midify
anything on it. It cause lock
problems. The “dovecot-acl” file
must be readable by dovecot only. We
change this better.

Control of the presence of the

“anyone” user. If it is not set in
the “$perms” array, then we erase
everything and set default values.

Here, we begin to set UNIX ACLs for
a folder.

First we set the owner of the folder
to the “vmail” user.

We do the same for all files
included in the folder we get above.

The same owner is applied to the
Maildir regular folders “new

“cur” and “tmp”.

”

[1'dab'l dovecot shared Idap]

ARED MAIL USER.":". M SHARED MAIL USER. 0 TS oib 2 We also set the UNIX permissions to
“rwx” for this user and group and no
other permission for other users.

ARED MAIL USER.":". SHARED MAIL USER. . er. ; The “chmod g+rwxs” command is the
permission to keep the group as
default for contained new

tmp'"; files/subfolders.

We remove all UNIX ACLs on the files
and folders.

Here, we begin to read all ACLs
passed as parameters.

Page 32 of 47

Page 33 of 47

[1'dab'l dovecot shared Idap]

If it is the “anyone” user, we add a
line, for example:
“anyone lr”.

If it is another user, the format
is:
“user=username 1d”.

Format is explained at this page:
http://wiki2.dovecot.org/ACL

For the UNIX ACLs, I divided the
script for each kind of users and
permissions. This was easier for
debugging the dovecot bugs.

We set the minimum permission on
each file for each kind of access.

If the permission is “1d” (List
Directories).

We set the permissions for anyone to
“r-x” on the folder and the default
to the same value for new files and
directories created inside.

”

“r” on directory is used for
listing, and “x” is used for
entering the directory.

For each of the files (without the
exception file for which we do not
change the permissions) we give no
access, except for the “dovecot-
uidlist” file, which need to have
“rwx” permissions (for Dovecot).

”

”

The Maildir folders “new”, “cur”,
“tmp” and their content are not
accessible by “anyone”.

http://wiki2.dovecot.org/ACL

[1'dab'l dovecot shared Idap]

W ”

If the permission is
Read Only) .

ro (email

We authorize access to the
directory, without being able to
change the name or delete it.

All dovecot files under this folder
can be accessed for reading.

Except “dovecot-uidlist” which need
to be “rwx” by the user for afford
Dovecot bug.

The “new”, “cur” and “tmp” folders
ovecot-uidlist'"; and included files (emails) can be
accessed but cannot be modified.

”

Finally, for the “rw” (emails Read
Write) permission, we set the
permissions to the maximum values.

Page 34 of 47

[1'dab'l dovecot shared Idap]

Unix permission for users are set
the same way as for “anyone”, except
we define the name of the user.

.Svalue|

Page 35 of 47

[1'dab'l dovecot shared Idap]

.S$value['auth name'].":rwx

lue['auth name'].

Svalue['perm

~ot-uidlist'";

Page 36 of 47

[1'dab'l dovecot shared Idap]

Unix permission for groups are set
the same way as for “anyone”, except
we define the name of the group.

Page 37 of 47

[1'dab'l dovecot shared Idap]

g:".Svalue|

.Svalue|

Page 38 of 47

[1'dab'l dovecot shared Idap]

T FOLDER

IATIL USER.':'

This function is called for applying
the ACLs recursively.

It increments the folder path with
subfolder, then launch the

“replace acls()” function, and enter
in subdirectories, and launch again
itself with new path arguments.

This function returns an array of
all subfolders of the folder passed
as path in the email storage
directory.

Page 39 of 47

> path and

Page 40 of 47

[1'dab'l dovecot shared Idap]

It is recursive and can retrieve all
branches of the tree.

Not used.

A function for helping in JavaScript
coding. It creates an unique id
depending on the full path of the
directory (the base is the root
Maildir folder). This make html
elements for one folder, unique.

Just a function to trim the
backslashes at the beginning and at
the end of the path strings.

Function for getting the group id of
a group.

A function to verify if the user is
authorized to access the
administration web page.

If not, it display a text and exit
for returning the page to the user
browser.

[1'dab'l dovecot shared Idap]

A function to verify is the user is
in the admin group.

This function is used for formatting
the folder names.

get_acl_short_list.php

The page returning the summary of
ACLs short list.

Page 41 of 47

[1'dab'l dovecot shared Idap]

The parameter passed in the GET is
the path of the folder for which we
want to know the ACLs.

The page returning the summary of
reception email address.

The parameter passed in the GET is
the path of the folder for which we
want to know the reception email
address.

".$html."";

This page return a JSON array with
the html ids of the html elements to

Page 42 of 47

[1'dab'l dovecot shared Idap]

reload. These elements are the ACLs
summary and the summary of reception
email addresses on the folder tree.

This PHP script is returning the
list of available groups that is
inserted in the select on the setup
page.

First, it gets all users settings
and save the primary group of each
one to exclude them later.

Then, we get all groups with a GID
greater than 1001. This is the
starting GID in the LDAP.

If the group is not the mail group
or any of the user’s primary group,
we save it.

Page 43 of 47

Page 44 of 47

[1'dab'l dovecot shared Idap]

We get the groups present in the
table of the administration window
that are passed as parameters and we
exclude these groups for our final
list.

The PHP script return the option
list of the available users to set
permissions to.

First, we get all users that are
present in the array

“$ GET['present']”, which is the
array of username already set in the
administration window.

Then, we get all users that are in
the “dovecot-mail” group, which is

Page 45 of 47

[1'dab'l dovecot shared Idap]

the LDAP group authorized to access
to mails.

For each users, if it is present in
the array of already set users, we
do nothing. Else we add the new
option.

The PHP script which is used for
displaying a layer of subfolders of
one folder in the folder tree.

We get the path parameter in the
posted GET.

s = list directory(MAIL ROOT FOLDER

Page 46 of 47

[1'dab'l dovecot shared Idap]

Then we call the function to display
subdirectories of the folder with
the full system path.

Some debug.

[1'dab'l dovecot shared |dap]

References

This document: http://switzernet.com/3/public/140116-imap-addresses-and-acls-admin/

Dovecot shared folders and LDAP: http://switzernet.com/3/public/131212-shared-imap-
dovecot/index.pdf

Apache 2 and HTTP Authentication with PAM: http://icephoenix.us/linuxunix/apache-and-http-
authentication-with-pam/

% o
swWifzernet o
Copyright © 2014 by Switzernet

Page 47 of 47

http://switzernet.com/3/public/140116-imap-addresses-and-acls-admin/
http://switzernet.com/3/public/131212-shared-imap-dovecot/index.pdf
http://switzernet.com/3/public/131212-shared-imap-dovecot/index.pdf
http://icephoenix.us/linuxunix/apache-and-http-authentication-with-pam/
http://icephoenix.us/linuxunix/apache-and-http-authentication-with-pam/

	Introduction
	Prerequisites
	Presentation
	Configuration of apache server
	Installation of the web server
	Basic authentication with PAM
	Sudo for www-data user

	Code documentation
	Files tree
	index.php
	folder_control_window.php
	﻿global_variables.php
	functions.php
	get_acl_short_list.php
	get_adr_short_list.php
	get_ids_and_paths_to_reload.php
	get_select_group_list.php
	get_select_user_list.php
	get_subfolders.php

	References

