
Abstract

We propose a method for the optimal scheduling of
collective data exchanges relying on the knowledge of the
underlying network topology. The method ensures a
maximal utilization of bottleneck communication links and
offers an aggregate throughput close to the flow capacity of
a liquid in a network of pipes. On a 32 node K-ring cluster
we double the aggregate throughput by applying the
presented scheduling technique. Thanks to the presented
theory, for most topologies, the computational time
required to find an optimal schedule takes less than 1/10 of
a second.

Keywords: Optimal network utilization, traffic scheduling,
all-to-all communications, collective operations, network
topology, topology-aware scheduling.

1. Introduction

The interconnection topology is one of the key factors of a
computing cluster. It determines the performance of the
communications, which are often a limiting factor of
parallel applications [1], [2], [3], [4]. Depending on the
transfer block size, there are two opposite factors (among
others) influencing the aggregate throughput. Due to the
message overhead, communication cost increases with the
decrease of the message size. However, smaller messages
allow a more progressive utilization of network links.
Intuitively, the data flow becomes liquid when the packet
size tends to zero [5], [6]. The aggregate throughput of a
collective data exchange depends on the underlying
network topology and on the allocation of processing nodes
to a parallel application. The total amount of data together
with the longest transfer time across the most loaded links
(bottlenecks) gives an estimation of the aggregate
throughput. This estimation is defined here as the liquid
throughput of the network. It corresponds to the flow
capacity of a non-compressible fluid in a network of pipes
[6]. Due to the packeted behaviour of data transfers,
congestions may occur in the network and thus the
aggregate throughput of a collective data exchange may be

lower than the liquid throughput. The rate of congestions
for a given data exchange may vary depending on how the
sequence of transfers forming the data exchange is
scheduled by the application.

The present contribution presents a scheduling technique
for obtaining the liquid throughput. There are many other
collective data exchange optimization techniques such as
message splitting [7], [8], parallel forwarding [9], [10] and
optimal mapping of an application-graph onto a processor
graph [11], [12], [13]. Combining the above mentioned
optimizations with the optimal scheduling technique
described in the present article may be the subject of further
research. There are numerous applications requiring highly
efficient network resources: parallel acquisition of multiple
video streams with successive contiguous all-to-all
retransmission [14], [15], voice-over-data traffic switching
[16], [17], high energy physics data acquisition and
transmission from numerous detectors to a cluster of
processing nodes for filtering and event assembling [18],
[19].

Let us analyze an example of a collective data exchange on
a simple topology (Fig. 1). Suppose that an all-to-all
operation is taking place such that each of 5 transmitting
processors sends an equal size packet to each of 5 receiving
processors. Suppose the packet size is 1MB so that the data
exchange operation transfers 25MB of data over the
network.
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Fig. 1. Simple network topology. 
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During the collective data exchange, links 1 to 10 transfer
5MB of data each (Fig. 1). Links 11 and 12 are the
bottlenecks and transfer 6MB each. Suppose that the
throughput of a link is 100MB/s. Since links 11 and 12 are
the bottleneck, the longest transfer of the collective data
exchange lasts . Therefore the
liquid throughput of the global operation is

. Let us now propose a
schedule for successive data transfers and analyze its
throughput.

Intuitively, a good schedule for an all-to-all exchange is a
round-robin schedule where at each step each sender has a
receiver shifted by one position. Let us now examine the
round-robin schedule of an all-to-all data exchange on the
network topology of figure 1. Figure 2 shows that logical
steps 1, 2 and 5 can be processed in the timeframe of a
single transfer. But logical steps 3 and 4 can not be
processed in a single timeframe, since there are two
transfers trying to simultaneously use the same links 11 and
12, causing a congestion. Two conflicting transfers need to
be scheduled in two single timeframe substeps. Thus the
round-robin schedule takes 7 timeframes instead of the
expected 5 and accordingly, the throughput of the round-
robin all-to-all exchange is:

. It is therefore

less than the liquid throughput (416.67MB/s). Can we
propose an improved schedule for the all-to-all exchange
such that the liquid throughput is reached?

By ensuring that at each step the bottlenecks are always
used, we create an improved schedule, having the
performance of the network’s liquid throughput (Fig. 3).
According to this improved schedule only 6 steps are
needed for the implementation of the collective operation,
i.e. the throughput is:

.

Section 2 shows how to describe the liquid throughput as a
function of the number of contributing processing nodes
and their underlying network topologies. An introduction to
the formal theory of traffic scheduling is given in section 3.
Section 4 presents measurements for the considered sub-
topologies and draws the conclusions.

2. Throughput as a function of sub-topology

In order to evaluate the throughput of collective data
exchanges we need to specify along an independent axis the
number of processing nodes as well as significant
variations of their underlying network topologies. To
simplify the model let us limit the configuration to an
identical number of receiving and transmitting processors
forming successions of node pairs. The applications
perform all-to-all data exchanges over the allocated nodes
(each transmitting processor sends one packet to each
receiving processor).

Let us demonstrate how to create variations of processing
node allocations by considering the specific network of the
Swiss-T1 cluster (called henceforth T1, see Fig. 4). The
network of the T1 forms a K-ring [20] and has a static
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Fig. 2. Round-robin schedule of transfers.
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Fig. 3. An optimal schedule.
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routing scheme. The throughputs of all links are identical
and are equal to 86MB/s. The cluster consists of 64
processors paired into 32 nodes [21], [22].

Since the T1 cluster incorporates 32 nodes, there exist

 possible allocations of nodes to an
application. Considering only the number of nodes in front

of each switch, there are only  different
processing node allocations, since there are 8 switches
having each n used nodes ( ). Each allocation may

be represented by a vector .

With a model incorporating the given network topology
and routing tables, we can compute the liquid throughput of
an all-to-all traffic for any allocation. The full set of 390625
allocation vectors is given as input to the model and the
liquid throughput is computed for each input vector. For the
T1’s network, only 363 different values of liquid
throughput are formed and thus the set of 390625 is
partitioned into 363 different subsets. Each of the obtained

363 key sub-topologies is characterized by its liquid
throughput and the number of allocated nodes (see Fig. 5).
The figure demonstrates that depending on the sub-
topology, the liquid throughput for a given number of nodes
may considerably vary.

For the purpose of enumerating the 363 sub-topologies we
sort these sub-topologies according to the number of nodes
and within the same number of nodes according to the
value of the liquid throughput. Figure 6 demonstrates the
liquid throughput of the network together with the
throughput of an imaginary full crossbar network. The
horizontal axis represents the collection of the 363 sub-
topologies together with the number of contributing
processing nodes (in parentheses).

3. Liquid schedules

This section proposes a formal model of a collective data
exchange. In this model a single point-to-point transfer is
represented by the set of communication links forming the
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Fig. 4. Architecture of the T1 cluster computer.
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path between a transmitting and a receiving processor. The
collective data exchange comprises a set of transfers having
identical packet sizes. A sending processor may transfer a
packet to a given receiving processor not more than once.

DEFINITIONS. A transfer is a set of links (i.e. the path from
a sending processor to a receiving processor). A traffic is a
set of transfers (see Fig. 7). A link l is utilized by a transfer
x if . A link l is utilized by a traffic X if l is utilized by
a transfer of X. Let a and b be transfers of a traffic X, the
transfer b is in congestion with a, if b uses a link utilized by
a. A sub-traffic of X (a subset of X) is simultaneous if it
forms a collection of non-congesting transfers.

A simultaneous subset of a traffic is processed in the
timeframe of a single transfer. The load of link l in the
traffic X is the number of transfers in X using l. The
duration  of a traffic X is the maximal value of the
load among all links involved in the traffic. The links
having maximal load values are called bottlenecks. The
liquid throughput of a traffic X is the ratio 
multiplied by a single link throughput, where  is the
number of transfers in the traffic X. For example, the traffic
X shown in figure 7 has a number of transfers 
and the duration of the traffic is . Therefore the
aggregate liquid throughput is the ratio  of a single
link throughput, i.e. , supposing a
single link throughput of 100 MB/s.

Recall that a partition of X is a disjoint collection of non-
empty subsets of X whose union is X [23]. A schedule  of
a traffic X is a collection of simultaneous subsets of X
partitioning the traffic X. A timeframe of a schedule  is an
element of . The length  of a schedule  is the
number of timeframes in . A schedule of a traffic is
optimal if the traffic does not have any shorter schedule. If
the length of a schedule is equal to the duration of the
traffic then the schedule is liquid. A liquid schedule is
optimal, but the inverse is not always true, meaning that a
traffic may not have a liquid schedule (the demonstration is
beyond the scope of this article). Figure 8 shows a liquid
schedule of the collective traffic shown in figure 7.
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Fig 5. Liquid throughput in relation to the number
of nodes with variations according to sub-
topologies.
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Fig. 6. Liquid and crossbar throughputs on T1.
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Fig. 7. All-to-all traffic.
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The duration of a traffic X is the load of its bottlenecks.
Consider l as one of the bottlenecks of X. The load of l is
the number of transfers in X using l. Now let  be a
schedule on X. By definition  is a collection of
simultaneous subsets of X, partitioning X. Since 
partitions X, a transfer of X (using l) shall be found in one
and only one of the timeframes of . Since a timeframe of

 is simultaneous it may contain only one or no transfer
using l. Therefore if the length of  is equal to the number
of transfers in X using the bottleneck l, then each timeframe
of  shall contain a transfer using l. Inversely, if each
timeframe of  has a transfer using l, then the length of 
shall be equal to the number of transfers using l. Hence if a
schedule is liquid then each of its timeframes uses all
bottlenecks, and if all timeframes of a schedule use all
bottlenecks then the schedule is liquid.

In other words, we derived an equivalent condition for the
liquidity of a schedule. The necessary and sufficient
condition for the liquidity of a schedule is that all
bottlenecks be used by each timeframe of the schedule. Let
us define a simultaneous subset of X as a team of X if it uses
all bottlenecks of X. Consequently, an equivalent condition
for the liquidity of a schedule  on X is that each
timeframe of  be a team of X.

Our goal is to design an algorithm that may partition a
traffic so as to form a liquid schedule (whenever possible). 

DISCUSSION. Suppose A is a timeframe of a liquid schedule
 on a traffic X. Therefore A is a team of . Remove the

team A from X so as to form a new traffic . The
duration of the new traffic  is the load of the
bottlenecks in . The bottlenecks of X are bottlenecks
of . The load of a bottleneck of X decreases by one in
the new traffic . However the new traffic  may
have additional bottlenecks. The schedule  without the
element A is a schedule for  with the previous length
decreased by one. The new schedule  has as many
timeframes as the duration of the new traffic .
Therefore  is a liquid schedule on .

In other words, if the traffic has a liquid schedule, then a
schedule reduced by one team is a liquid schedule on the
reduced traffic.

This is the key point in searching for a liquid schedule.
Consider traffic X as a problem whose solution is a liquid
schedule . Assume a technique capable of generating the
set of all teams of X. If X has a solution  then a timeframe
A of the schedule  is a member of the set of all teams of X
and  is a schedule on . Therefore the
problem X can be reduced into smaller problems. Examine
each possible team A of X and search inductively (e.g.
recursively) a solution for . If a solution exists for X,
then the method will find it. If the method does not find a
solution for X, and since we explored the full solution
space, we conclude that X does not have a liquid schedule.

We limit at each iteration our choice to the collection of
only those teams of the original traffic which are also teams
of the current reduced sub-traffic. By doing so, we
considerably reduce the search space without affecting the
solution space.

DEFINITIONS. A simultaneous subset A of a traffic X is full
with respect to X if each transfer of  is in congestion
with a transfer of A. A team of X is called full team if it is a
full simultaneous subset of X.

We intend to limit the search space when building a liquid
schedule. Let us modify a liquid schedule so as to convert
one of its teams into a full team. Let X (a traffic) have a
solution  (a liquid schedule). Let A be a timeframe of .
If A is not a full team of X, then, by moving the necessary
transfers from other timeframes of , we can convert
timeframe A to a full team. Evidently, the properties of
liquidity (partitioning, simultaneousness and length) of 
will not be affected. Therefore if X has a solution then it has
also a solution when one of its timeframes is full, hence the
choice of the teams in the construction may be narrowed
from the set of all teams to the set of full teams only.

By a choice of a full team A of a traffic X we are faced with
the new smaller problem of searching a liquid schedule for
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a traffic . The traffic  may not have a solution,
or it may not have even a team. In these cases we have to
backtrack to evaluate other choices. Evaluation of all
choices ultimately leads to a solution if it exists.

Figure 8 shows a liquid schedule built as explained above.
Let us denote the timeframes in figure 8 as follows:

, according to the order given in
figure 8. Traffic X is the union of the timeframes

. The schedule is constructed such that at any

step i, the timeframe  is a full team of the sub-traffic

. The timeframe  being a team of the sub-

traffic  incorporates therefore all bottlenecks of

this sub-traffic (shown in bold).

In order to be able to explore the full solution space for
obtaining a liquid schedule, we need to successively build
all full teams. We designed a procedure capable of
generating (without repetitions) all successive full teams
for an arbitrary traffic. It first builds skeletons, an
intermediate collection of teams from a sub-traffic
including only those transfers which comprise bottlenecks.
Then it extends each skeleton by applying variations of all
non-congesting transfers in order to build up all full teams.

5. Results and conclusion

For an unknown network topology only two intuitively
reasonable schedules make sense, the round-robin and the
random schedule. Measurements of the round-robin

schedule and of the random schedule show a similar
throughput. The round-robin schedule on a T1 cluster is
shown in figure 9. The amount of data transferred from one
processor to another processor is equal to 2MB and the
transfer block size is 520KB. The figure presents the result
of 4344 measurements of all-to-all data exchanges. For
each topology, 20 measurements were performed. The
median of the collected results is represented as a small
black square. The thick curve represents the liquid
throughput. The thin curve below the graph of the liquid
throughput represents the theoretically predicted
throughput of the round-robin schedule, computed for the
model of the T1 cluster.

The measured throughput is higher than the predicted
throughput. This increase in throughput in the real network
is explained by a “semifluid” behaviour of transfers: time
shifts in packet transfers tend to reduce congestions.
Nevertheless the measured round-robin throughput for a
large number of sub-topologies is only 50% of the liquid
throughput.
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Fig. 10. Predicted liquid throughput and measured throughput according to the computed liquid schedule.
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Thanks to the presented theory, we strongly reduce the
search space of liquid schedules. The computation time of a
liquid schedule takes for more than 97% of the considered
sub-topologies of the T1 cluster less than 1/10 of a second
on a single 500MHz Alpha processor. Figure 10 shows the
measured aggregate throughput of an all-to-all collective
traffic executed on T1, optimized by applying our liquid
schedule based traffic partitioning technique. Each black
dot represents the median of 7 measurements. The
horizontal axis represents the 363 sub-topologies as well as
the number of contributing nodes. Processor to processor
transfers have a size of 5MB, transferred as a single
message of 5MB. The measured all-to-all aggregate
throughputs (black dots) are close to the theoretically
computed liquid throughput (gray line). For many sub-
topologies, the proposed liquid scheduling technique
allows to increase the aggregate throughput by at least a
factor of two compared with a simple round-robin or
random schedule.
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