
Abstract

We introduce the theory of liquid schedules, a method for the optimal scheduling of collective data exchanges relying
on the knowledge of the underlying network topology and routing scheme. Liquid schedules ensure the maximal
utilization of network’s bottlenecks and offers an aggregate throughput as high as the flow capacity of a liquid in a
network of pipes. The limiting factors of liquid schedules’ current theory are equality of packet sizes, ignoring of
network delays and predictability of the traffic. In spite of limitations of the current theory the liquid schedules may be
used in many contiguous data flow processing applications such as parallel acquisition of multiple video streams,
high energy physics detector-data acquisition and event assembling, voice-over-data traffic switching, etc. The
collective data flow processing throughput assured by liquid schedules in highly loaded complex networks may be
multiple times higher in comparison with the throughput of traditional topology-unaware techniques such as round-
robin, random or fully asynchronous transfer schemes. The measurements of the theoretically computed liquid
schedules applied to the real low-latency network have given results very close to the theoretical predictions. On a 32
node (64 processor) low latency K-ring cluster we’ve doubled the aggregate throughput compared with the traditional
exchange technologies. This paper presents the theoretical basis of the liquid schedules and an efficient technique for
the construction of liquid schedules.

Keywords: Liquid schedules, optimal network utilization, traffic scheduling, all-to-all communications, collective
operations, network topology, topology-aware scheduling.

1. Introduction

The interconnection topology is one of the key - and often limiting - factors of parallel
applications [1], [2], [3], [4]. Depending on the transfer block size, there are two opposite factors
(among others) influencing the aggregate throughput. Due to the message overhead,
communication cost increases with the decrease of the message size. However, smaller messages
allow a more progressive utilization of network links. Intuitively, the data flow becomes liquid
when the packet size tends to zero [5], [6] (see also [7], [8]). The aggregate throughput of a
collective data exchange depends on the application’s underlying network topology. The total
amount of data together with the longest transfer time across the most loaded links or bottlenecks,
gives an estimation of the aggregate throughput. This estimation will be defined here as the liquid
throughput of the network. It corresponds to the flow capacity of a non-compressible fluid in a
network of pipes [6]. Due to the packeted behaviour of data transfers, congestions may occur in
the network and thus the aggregate throughput of a collective data exchange may be lower than the
liquid throughput. The rate of congestions for a given data exchange may vary depending on how
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the sequence of transfers forming the data exchange is scheduled by the application. Similar
problems have been shaped in one-to-all and all-to-all communications over satellite-switch/TDM
networks [9] and wavelength division multiplexing optical networks [10]. However, besides a few
relatively similar problems, we haven’t found research on this topic.

For example consider an all-to-all collective data exchange represented by Fig. 1. Suppose the
throughput of links is 100 MB/s. There are 5 transmitting processors (T1,... T5), each of them
sending a packet to each of the receiving processors (R1... R5). One may easily compute that the
liquid throughput of this data exchange is 416.67 MB/s (for details see the end of this section). A
round-robin schedule consists of five logical steps: (1) {T1!R1,T2!R2...T5!R5}, (2)
{T1!R2,T2!R3...T5!R1}, etc. Intuitively the round-robin schedule shall provide the best
performance, however one may compute that its throughput (357.14 MB/s) is lower than the liquid
throughput, due to the non-optimal utilization of the bottlenecks l11 and l12. Nevertheless Fig. 9
shows that there exists a schedule achieving the liquid throughput of the data exchange. Our
theory applied to much more complex topologies computes optimal traffic schedules considerably
increasing collective data exchange throughputs relatively to the traditional topology-unaware
techniques such as round-robin, random or fully asynchronous transfer modes. On the Swiss-Tx
supercomputer [11], [12], a 32 node K-ring [13] cluster, we’ve doubled the aggregate throughput
by applying the presented scheduling technique. Thanks to the presented theory, for most of the
underlying topologies (allocations of computing nodes), the computational time required to find
an optimal schedule had taken less than 1/10 of a second (the presentation of performance
measurements is given in another paper).

This section introduces the traffic-set model
which underlies the proposed theory of optimal
scheduling. In the traffic-set model a single point-
to-point transfer is represented by the set of
communication links forming the network path
between a transmitting and a receiving processor
according to the static routing scheme. Let’s give
a few introducing definitions.

A transfer is a set of links (i.e. the path from a
sending processor to a receiving processor). A
traffic is a set of transfers. Fig. 1 shows the traffic
for the all-to-all exchange. Note that the all-to-all
exchange in a network for our model is just a
particular case of a traffic. A link l is utilized by a
transfer x if . A link l is utilized by a traffic X
if l is utilized by a transfer of X. Two transfers are
in congestion if they utilize a common link
otherwise they are simultaneous. We see,
therefore, that this model is limited by the
representation of the data exchanges consisting of

identical size packets. The optimal scheduling of a traffic of variable size packets is a subject of
another research.

{l1, l6}, {l1, l7}, {l1, l8}, {l1, l12, l9}, {l1, l12, l10},

{l2, l6}, {l2, l7}, {l2, l8}, {l2, l12, l9}, {l2, l12, l10},

{l3, l6}, {l3, l7}, {l3, l8}, {l3, l12, l9}, {l3, l12, l10},

{l4, l11, l6}, {l4, l11, l7}, {l4, l11, l8}, {l4, l9}, {l4, l10},

{l5, l11, l6}, {l5, l11, l7}, {l5, l11, l8}, {l5, l9}, {l5, l10}

}}

l1 l2 l3 l4 l5

l6 l7 l8 l9 l10

l11

l12

T1 T2 T3 T4 T5

R1 R2 R3 R4 R5

Fig. 2. All-to-all traffic. The links are unidirec-
tional. Nevertheless each of the pairs of
links (l1,l6)...(l11,l12) and each of the pairs
of processors (T1,R1)...(T5,R5) may be
considered respectively as single bidirec-
tional link and single physical processor.

l x∈



One would think that the traffic-set model may not represent a collective exchange where a
sending processor may transfer a packet to a given receiving processor more than once, however
such a collective exchange may be easily converted into an equivalent problem so as to be
represented by the traffic-set model. For example, suppose that a collective exchange of Fig. 1 in
addition to all 25 transfers, performs once more the transfer {l1, l6} (i.e. T1!R2). Clearly this 26-
transfer-traffic may not be directly represented as a set of transfers. However, Fig. 2 shows that we
may easely add to the topology of Fig. 1 two additional virtual links l13 and l14 and distinguish two
identical transfers and therefore represent the 26-transfer-traffic through the set-traffic model.

Many contiguous data flow processing applications such as parallel acquisition of multiple video
streams, high energy physics detector-data acquisition and event assembling, voice-over-data
traffic switching, etc. may be covered by this model. Note that the limitation on the equality of
packet sizes obviously doesn’t limit applications by equal bandwidth cross-streams.

Simultaneity is a subset of X formed from a
collection of mutually simultaneous (non-
congesting) transfers. A transfer is in
congestion with a simultaneity if the transfer is
in congestion with an element of the
simultaneity. A simultaneity of a traffic is full if
all transfers in the complement of the
simultaneity in the traffic are in congestion with
the simultaneity (see section 2). A simultaneity
of a traffic is processed in the timeframe of a
single transfer. , the load of link l in the
traffic X is the number of transfers in X using l,

i.e. (see Fig. 5 and

Fig. 6). The duration of a traffic X is the
maximal value of the load among all links
involved in the traffic. The links having
maximal load values are called bottlenecks. The
liquid throughput of a traffic X is the ratio

multiplied by a single link throughput, where is the number of transfers in the

traffic X. For example, the traffic X shown in Fig. 1 has a number of transfers and the

duration of the traffic is . Therefore the aggregate liquid throughput is the ratio

of a single link throughput, i.e. , supposing a single link throughput of 100
MB/s.

DEFINITIONS. Let us define a simultaneity of X as a team of X if it uses all bottlenecks of X (note
that a traffic may not have a team, see Fig. 8). A team of X is full if it is a full simultaneity of X

l1

l13 l14

l2 l3 l4 l5

l6 l7 l8 l9 l10

l11

l12

{l13, l1, l6}, {l14, l1, l6}, {l13, l1, l7},

{l13, l1, l8}, {l13, l1, l12, l9}, {l13, l1, l12, l10},

{l2, l6}, {l2, l7}, {l2, l8}, {l2, l12, l9}, {l2, l12, l10},

{l3, l6}, {l3, l7}, {l3, l8}, {l3, l12, l9}, {l3, l12, l10},

{l4, l11, l6}, {l4, l11, l7}, {l4, l11, l8}, {l4, l9}, {l4, l10},

{l5, l11, l6}, {l5, l11, l7}, {l5, l11, l8}, {l5, l9}, {l5, l10}

}}

Fig. 2. Multiple transfers through same paths
(modification of the topology of Fig.1)
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(see section 3). Let and be respectively the sets of all full simultaneities and all full

teams of X. Let be the set of bottlenecks of X, i.e. .

In sections 2 and 3 we present techniques for the construction of full simultaneities and full teams
of a traffic, respectively, and prove the coverage of the whole solution space. Based on the
achievements of the previous sections we’ll conclude this paper in section 4 by presenting a liquid
schedule searching technique that will be proven to be succsessful whenever a solution exists.

2. Full simultaneities

The construction of the liquid schedules discussed in the section 4 is based on the ability to
construct the set of all full teams of an arbitrary traffic. It is a critical requirement that each full
team be efficiently built once and only once. This section presents the technique for the
enumerated construction of the whole set of full simultaneities of a traffic counting each full
simultaneity one by one by the use of a recursive tree. Meanwhile the following section, based on
the simultaneities construction technique, presents an efficient algorithm for building the set of all
full teams of the traffic. The building of the set of all full simultaneities is based on its

successive partitioning into subcollections. Subcollections of are represented by so called
ancestors (defined later). Take a - not necessarily full - simultaneity A of a traffic X. A direct
mapping between the simultaneity A and a subcollection of may be defined in natural way

such that the subcollection of , corresponding to A, consists of all and only those full

simultaneities of X which includes A. We may call the so defined subcollection of as a
posterity of A. Of course any member of the posterity of A besides of the elements of A may
consists of only A-simultaneous transfers (non-congesting with any element of A). Also any A-
simultaneous transfer of X may be found in one or more members of the posterity of A. Thereby a
subcollection (but not any subcollection) of may be represented as a posterity of a
simultaneity of A. Relatively to a simultaneity A, in this section, an option will be required
allowing to select only those members of posterity of A which doesn’t contain some of A-
simultaneous transfers, specified separately. The simultaneity A together with the “denied” subset
of A-sumultaneous transfers will be defined as an ancestor.

By definition the ordered pair (outer, inner) is an ancestor of full simultaneities of X if the inner is
a simultaneity of X and the outer consists of some of simultaneous with the inner transfers of X.
An ancestor may be also represented as an ordered triplet (outer, depot, inner) where the depot
contains all remaining in X simultaneous with the inner transfers not contained in the outer. The
triplet representation of ancestors formally does not involve additional information, although it
will be used in the further context. An ancestor of full simultaneities of X may be referred to in
short as an ancestor within X. The outer, depot and inner of an ancestor R may be denoted as ,

and respectively.

Let’s demonstrate an ancestors on an example. Consider an eight-transfer-traffic on a network
consisting of two switches, 4 sending and 2 receiving processors as it’s shown in Fig. 3. Let us
introduce the following graphical notation for the 8-transfer-traffic { , , , , ,

ℜ X( ) ℑ X( )

σ X∪( ) l X∪∈ λ l X,( ) Λ X( )=
 
 
 

ℜ X( )
ℜ X( )

ℜ X( )
ℜ X( )

ℜ X( )

ℜ X( )

R 1–[ ]

R 0[ ] R +1[ ]



, , }. Accordingly the triplet ({ , }, { }, { }) is an example of an ancestor
within this traffic.

An ancestor R is completed if its outer and its depot are empty i.e.
and . The inner of a completed ancestor within X is

a full simultaneity of X. For example the triplet ( , , { , }) is a
completed ancestor within the eight-transfer-traffic and accordingly the
set { , } is a full simultaneity of this traffic. Further, we may
represent simultaneities compactly through a single shaped graphical

symbol so as is a synonym for { , }.

A heir of an ancestor within X is any full simultaneity of X which
includes the inner of the ancestor and does not contain any element of the

outer. Considering the traffic of the Fig. 3 the full simultaneity is the

heirs of the ancestor ({ }, { , }, { }), but isn’t.
Completed ancestor have one heir, its inner, so that the sole heir of the

following completed ancestor ( , , { , }) is . Any full simultaneity of X is a heir of

the prim-ancestor . The prim-ancestor of the eight-transfer-traffic is ( , { , ,

, , , , , }, ).

The collection of all heirs of an ancestor is the progeny of the ancestor. For example, the progeny

of the ancestor ({ }, { , }, { }) is { , }. By definition the operator applied

to an ancestor R forms its progeny . The progeny of the prim-ancestor within X is the set of

all full simultaneities of X, .

Consequently to the definition, the progeny of an ancestor R within X is the collection of all those
full simultaneities of X that may be built up from the inner by the elements of the depot. The depot
of an ancestor shall be in congestion with each element of outer, otherwise the ancestor is barren
and may not have an heir (the proof is straight forward). This is an example of a barren ancestor
({ }, { }, ) within the eight-transfer-traffic. Precisely an

ancestor R is barren if .

Let R be an ancestor within X. Let a be an element of the depot. An R-heir may either contain a or
not. All R-heirs containing a together form the progeny of an ancestor (1) having the inner of R
enlarged by a and having the depot and the outer of R diminished by each congesting with a
transfer. Further, all R-heirs non-containing a together form the progeny of an ancestor (2)
obtained from R by moving the element a from the depot to the outer. Let us define and

as the operators forming from R the two sub-ancestors, such that the progeny of is the set

of all R-heirs containing a and the progeny of is the set of all R-heirs non-containing a,

i.e. and .

{ }
{l1, l5, l6}, {l1, l5, l7},

{l2, l5, l6}, {l2, l5, l7},

{l3, l6}, {l3, l7},

{l4, l6}, {l4, l7},

Fig. 3. A traffic on a
simple network
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DEFINITION. Formally the operators and from an ancestor to an ancestor are defined as

follows: , and

; , and

; where .

For an example let the ancestor R in the above definition be the prim-ancestor of the eight-
transfer-traffic and let the transfer a, an element of the prim-ancestor’s depot, be . Then

= ({ }, { , }, { }) and = ({ }, { , , , , , ,

}, { }). The following partitioning properties about the operators and are true:

and .

DEFINITIONS. Let be a set of ancestors within X. The operator applied to removes from

all barren elements. The binary fission operation applied to splits each ancestor of having

a non empty depot into two sub-ancestors using the operators and with an arbitrarily

chosen element a from the ancestor’s depot. Note that the fission operation has an uncertainty

property, since the assertion does not imply that . An assertion about the

fission operation may be true only if it is true for all possible outcomes.

Let us demonstrate the operator and the fission operation on an example. The operator

applied to the following set of ancestors {( , , { }), ({ }, , { }), ({ },

{ }, { })} forms the following set {( , , { }), ({ }, { }, { })}. The

fission operation applied on the last set of ancestors forms {( , , { }), ( , ,

{ }), ({ }, , { })}. We’ve omitted in these examples the separating comas in
the sets of transfers.

The progeny of a collection of ancestors is the union of the progenies of its members. A collection
of ancestors within a traffic is dividing if the corresponding collection of the progenies of its
members partitions the set of all full simultaneities of the traffic. Consequently but particularly,
the progeny of a dividing collection is the set of all full simultaneities of a traffic. Clearly, the
singleton of the prim-ancestor is a dividing collection. The operation applied to a dividing

collection does not affect the dividing property of . Further, the fission operation applied

to a collection reduces the depot of each non-completed ancestor in at least by one element,

which from follows that at some point a finite composition

forms a collection of completed ancestors each containing as an inner a full simultaneity of X. The
equation is the key point to the building of all full

disjoint subsets of X one by one without repetition. The implementations of the operator and the

fission operation do not require any additional techniques and have a low cost functionality.
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Fig. 4 shows the concluded reproduction tree of the eight-transfer-traffic’s prim-ancestor’s
singleton leading to the formation of ten complete ancestors representing all ten full
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Fig. 4. Reproduction tree of the prim-ancestor. The signs ‘ ’ and ‘ ’ signify completed and
barren ancestors respectively.
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simultaneities: , , , , , , , , , . (The parentheses of
triplets and the comas are omitted in the figure).

3. Full Teams

Let an ancestor within X be viscid if its inner and its depot together
don’t use all bottlenecks of X. A viscid ancestor may not have a
team in its progeny (the proof is straight forward). Precisely an
ancestor R within a traffic X is viscid if

.

Let be an operator that removes from a collection of ancestors all

viscid members. Reproduction of the initial singleton

through the operation forms developing collections of

ancestors . The progeny of the collection consists of full
simultaneities of X and narrows from generation to generation,
although it always envelopes all full teams of X and ultimately
leads to (the proof is straight forward). A finite composition

contains one and only one

corresponding ancestor for each full team of X. Formally this technique, represented by the
equation , is sufficient for the construction of all full

teams. Referring this equation as on the first approximation bellow we present an efficient
construction.

Let the skeleton of a traffic X be the smallest subset of X using all
bottlenecks of X. Let the skeleton of a team of X be the smallest subset
of the team using all the bottlenecks of X. Let the operator be the

skeleton of the traffic X, and the two operand operator be the
skeleton of A, a team of X. For an example consider a ten-transfer-traffic
shown on the Fig. 5. Similarly to what we’ve done in the previous
section, let us represent this ten-transfer-traffic as a set of graphically
denoted transfers { , , , , , , , , ,

}. Fig. 6. shows in bold the three bottlenecks of the network in the example. The transfers
and of the ten-transfer-traffic are not using the bottlenecks and therefore the skeleton of

this ten-transfer-traffic is the following eight-transfer-traffic { , , , , , ,

, }. For example , and are teams of the ten-transfer-traffic. Their

corresponding skeletons respectively are , and .

{ }
{l1, l6}, {l1, l5, l7}, {l1, l5, l8},

{l2, l6}, {l2, l5, l7}, {l2, l5, l8},

{l3, l7}, {l3, l8},

{l4, l7}, {l4, l8},

Fig. 5. A traffic on a simple
network
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∪=

Fig. 6. The load of links of
the traffic of Fig. 5.
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Consider a traffic X. A full team of the traffic’s skeleton is a skeleton of the traffic’s (full) team and
a skeleton of traffic’s (full) team is a full team of traffic’s skeleton (the proof is out of scope of this
paper). In other words, and

. Since each full team of X is a simultaneity built up
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Fig. 7. Two phase reproduction leading to 8 full teams. The signs ‘ ’, ‘ ’ and ‘ ’ signify completed barren and
viscid ancestors respectively.
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on a full team of an efficient building of full teams may be implemented in two phases.
Initially we build all full teams of the skeleton of X using the above presented approximation

. Further, the idea is to build up all variations of

bodies on each skeleton. For each full team A of we build an ancestor within X whose
progeny consists of all those full teams of X whose skeleton is A. By doing so we form a collection
of ancestors whose reproduction with the operator ultimately leads to the set of all full teams
of X, i.e.

Fig. 7 demonstrates the evolution of the two phase reproduction. First phase propagates the prim-
ancestor of the skeleton of the original traffic by means of binary fission. The first phase is
concluded by a set of completed ancestors each representing a full team of the traffic’s skeleton
and therefore a skeleton of some teams of the traffic. Second phase evolves each skeleton building
up collection of traffic’s full teams.

4. Liquid schedules

Recall that a partition of X is a disjoint collection of non-
empty subsets of X whose union is X [14]. A schedule of
a traffic X is a collection of simultaneities of X partitioning
the traffic X. A timeframe of a schedule is an element of

. , the length of a schedule , is the number of

timeframes in . A schedule of a traffic is optimal if the
traffic does not have any shorter schedule. If the length of a
schedule is equal to the duration of the traffic then the
schedule is liquid. A liquid schedule is optimal, but the
inverse is not always true, meaning that a traffic may not
have a liquid schedule. The Fig. 8. demonstrates a traffic,
which does not have a team and therefore may not have a
liquid schedule. Fig. 9 shows a liquid schedule of the
collective traffic shown in Fig 1.

The duration of a traffic X is the load of its bottlenecks.
Consider l as one of the bottlenecks of X. The load of l is
the number of transfers in X using l. Now let be a

schedule on X. By definition is a collection of simultaneities of X, partitioning X. Since
partitions X, a transfer of X (and particularly a transfer using l) shall be found in one and only one
of the timeframes of . Since a timeframe of is simultaneous it may contain only one or no
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Fig. 8. No team and no liquid schedule

α

α
α # α( ) α

α

α
α α

α α



transfer using l. Therefore if the length of is equal to the number of transfers in X using the

bottleneck l, then each timeframe of shall contain a transfer using l. Inversely, if each timeframe

of has a transfer using l, then the length of shall be equal to the number of transfers using l.
Hence if a schedule is liquid then each of its timeframes uses all bottlenecks, and if all timeframes
of a schedule use all bottlenecks then the schedule is liquid.

In other words, we derived an equivalent
condition for the liquidity of a schedule.
The necessary and sufficient condition for
the liquidity of a schedule is that all
bottlenecks be used by each timeframe of
the schedule. Recall that we’ve defined a
simultaneity of X as a team of X if it uses
all bottlenecks of X. Consequently, an
equivalent condition for the liquidity of a
schedule on X is that each timeframe of

be a team of X.

Our goal is to design an algorithm that may
partition a traffic so as to form a liquid schedule (whenever possible).

DISCUSSION. Suppose A is a timeframe of a liquid schedule on a traffic X. Therefore A is a team

of . Remove the team A from X so as to form a new traffic . The duration of the new traffic

is the load of the bottlenecks in . The bottlenecks of X are also the bottlenecks of

. The load of a bottleneck of X decreases by one in the new traffic (note that the new

traffic may have additional bottlenecks). The schedule shortened by one element A is a

schedule for . The new schedule has as many timeframes as the duration of the

corresponding new traffic . A chain of interesting properties are successively derived

(whose formal proof is out of scope of this paper): If is a liquid schedule on X then for any

timeframe A of the schedule is a liquid schedule on . Further, any non-empty

subset of a liquid schedule is liquid. Consequently, the necessary and sufficient condition of

liquidity of a schedule is that for any non-empty subset of each timeframe of use all

bottlenecks of (note that (1) i.e. the bottlenecks of form

larger set than bottlenecks of ).

If the traffic has a liquid schedule, then, according to the above discussion, a schedule reduced by
one team is a liquid schedule on the shortened traffic. This is the key point in searching for a liquid
schedule. Consider traffic X as a problem whose solution is a liquid schedule . Assume a

technique capable of generating the set of all teams of X. If X has a solution then a timeframe

A of the schedule is a member of the set of all teams of X and is a schedule on .
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Fig. 9. A liquid schedule of the collective traffic shown in Fig. 1.
The comas separating elements of the schedule are
omitted.
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Therefore the problem X can be reduced into smaller problems. Examine each possible team A of
X and search inductively (e.g. recursively) a solution for . If a solution exists for X, then this
method will find it. If the method does not find a solution for X, then, since we explored the full
solution space, we conclude that X does not have a liquid schedule.

We limit at each iteration our choice to the collection of only those teams of the original traffic
which are also teams of the current reduced sub-traffic (having an expanded number of
bottlenecks, see the equation (1) above). By doing so, we considerably reduce the search space
without affecting the solution space.

We intend to limit the search space when building a liquid schedule. Let us modify a liquid
schedule so as to convert one of its teams into a full team. Let X (a traffic) have a solution (a

liquid schedule). Let A be a timeframe of . If A is not a full team of X, then, by moving the

necessary transfers from other timeframes of , we can convert timeframe A to a full team.

Evidently, the properties of liquidity (partitioning, simultaneousness and length) of will not be
affected. Therefore if X has a solution then it has also a solution when one of its timeframes is full,
hence the choice of the teams in the construction may be narrowed from the set of all teams to the
set of full teams only.

By a choice of a full team A of a traffic X we are faced with the new smaller problem of searching
a liquid schedule for a traffic . The traffic may not have a solution, or it may not have
even a team. In these cases we have to backtrack to evaluate other choices. Evaluation of all
choices ultimately leads to a solution if it exists.

Fig. 9 shows a liquid schedule built as explained above. Let us denote the timeframes in Fig. 9 as
follows: (according to the order given in Fig. 9.) Traffic X is the union of

the timeframes . The schedule is constructed such that at any step i, the timeframe

is a full team of the sub-traffic . The timeframe being a team of the sub-traffic

incorporates therefore all bottlenecks of this sub-traffic (shown in bold).

References

[1] H. Sayoud, K. Takahashi, B. Vaillant, “Designing communication network topologies using steady-state genetic
algorithms”, IEEE Communications Letters, Vol. 5, No. 3, March 2001, 113-115.

[2] Pangfeng Liu, Jan-Jan Wu, Yi-Fang Lin, Shih-Hsien Yeh, “A simple incremental network topology for worm-
hole switch-based networks”, Proc. 15th International Parallel and Distributed Processing Symposium, 2001, 6-
12.

[3] P.K.K. Loh, Wen Jing Hsu, Cai Wentong, N. Sriskanthan, “How network topology affects dynamic loading bal-
ancing”, IEEE Parallel & Distributed Technology: Systems & Applications, Vol. 4, No. 3, 25-35.

X A–

α
α

α
α

X A– X A–

A1 A2 A3 A4 A5 A6, , , , ,{ }

X Ai
i 1=

6

∪= Ai

X Ak
k 1=

i 1–

∪– Ai

X Ak
k 1=

i 1–

∪–



[4] V. Puente, C. Izu, J. A. Gregorio, R. Beivide, J. M. Prellezo, F. Vallejo, “Improving parallel system performance
by changing the arrangement of the network links”, Proc. of the International Conference on Supercomputing,
May 2000, 44-53.

[5] M. Naghshineh, R. Guerin, “Fixed versus variable packet sizes in fast packet-switched networks”, Proc.Twelfth
Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM '93., Networking:
Foundation for the Future, IEEE Press, Vol. 1, 1993, 217-226.

[6] Benjamin Melamed, Khosrow Sohraby, Yorai Wardi, “Measurement-Based Hybrid Fluid-Flow Models for Fast
Multi-Scale Simulation”, DARPA/NMS BAA 00-18 AGREEMENT No. F30602-00-2-0556, http://
www.darpa.mil/ito/research/nms/meetings/nms2001apr/Rutgers-SD.pdf

[7] K.G. Yocum, J.S. Chase, A.J. Gallatin, A.R. Lebeck, “Cut-through delivery in Trapeze: An Exercise in Low-
Latency Messaging”, 6th IEEE International Symposium on High Performance Distributed Computing, 1997,
243-252.

[8] N.M.A. Ayad, F.A. Mohamed, “Performance analysis of a cut-through vs. packet-switching techniques”, Proc.
Second IEEE Symposium on Computers and Communications, 1997, 230-234.

[9] R. Jain, G. Sasaki, “Scheduling packet transfers in a class of TDM hierarchical switching systems”, IEEE Inter-
national Conference on Communications ICC '91, Vol. 3, 1991, 1559-1563.

[10] J.-C. Bermond, L. Gargano, S. Perennes, A. A. Rescigno, and U. Vaccaro, “Efficient collective communication
in optical networks”, Proc. of ICALP'96. Lecture Notes in Computer Science, 574-585, 1996.

[11] Pierre Kuonen, Ralf Gruber, “Parallel computer architectures for commodity computing and the Swiss-T1
machine”, EPFL Supercomputing Review, Nov 99, pp. 3-11, http://sawww.epfl.ch/SIC/SA/publications/SCR99/
scr11-page3.html

[12] Ralf Gruber, “Commodity computing results from the Swiss-Tx project Swiss-Tx Team”, http://www.grid-com-
puting.net/documents/Commodity_computing.pdf

[13] P. Kuonen, “The K-Ring: a versatile model for the design of MIMD computer topology”, Proc. of the High-Per-
formance Computing Conference (HPC'99), San Diego, USA, April 1999, 381-385.

[14] Paul R. Halmos, Naive Set Theory, Springer-Verlag New York Inc, ISBN 0-387-90092-6, 1974, 26-29.


