
Abstract

We propose a method for the optimal scheduling of collective data exchanges relying on the knowledge of the underlying
network topology. The method ensures a maximal utilization of bottleneck communication links and offers an aggregate
throughput close to the flow capacity of a liquid in a network of pipes. On a 32 node K-ring cluster we double the aggregate
throughput by applying the presented scheduling technique. Thanks to the presented theory, for most topologies, the
computational time required to find an optimal schedule takes less than 1/10 of a second.

Keywords: Optimal network utilization, traffic scheduling, all-to-all communications, collective operations, network
topology, topology-aware scheduling.

1. Introduction

The interconnection topology is one of the key factors of a computing cluster. It determines the performance of the
communications, which are often a limiting factor of parallel applications [1], [2], [3], [4]. Depending on the transfer block
size, there are two opposite factors (among others) influencing the aggregate throughput. Due to the message overhead,
communication cost increases with the decrease of the message size. However, smaller messages allow a more progressive
utilization of network links. Intuitively, the data flow becomes liquid when the packet size tends to zero [5], [6]. In this paper
we consider collective data exchanges between nodes where packet sizes are relatively large, i.e. the network latency is much
smaller than the transfer time. The aggregate throughput of a collective data exchange depends on the underlying network
topology and on the allocation of processing nodes to a parallel application. The total amount of data together with the
longest transfer time across the most loaded links (bottlenecks) gives an estimation of the aggregate throughput. This
estimation is defined here as the liquid throughput of the network. It corresponds to the flow capacity of a non-compressible
fluid in a network of pipes [6].

Due to the packeted behaviour of data transfers, congestions may occur in the network and thus the aggregate throughput of
a collective data exchange may be lower than the liquid throughput. The rate of congestions for a given data exchange may
vary depending on how the sequence of transfers forming the data exchange is scheduled by the application. The present
contribution presents a scheduling technique for obtaining the liquid throughput. Besides a few relatively similar problems,
we haven’t found research on this topic, however there are many other collective data exchange optimization techniques such
as message splitting [7], [8], parallel forwarding [9], [10] and optimal mapping of an application-graph onto a processor
graph [11], [12], [13].

The limiting factors of liquid schedules’ current theory are equality of packet sizes, ignoring of network delays, predictability
of the traffic and support of only static routing networks. There are numerous applications requiring highly efficient network
resources where our technique may be applied: parallel acquisition of multiple video streams with successive contiguous all-
to-all retransmission [14], [15], voice-over-data traffic switching [16], [17], high energy physics data acquisition and
transmission from numerous detectors to a cluster of processing nodes for filtering and event assembling [18], [19].
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Let us analyze an example of a collective data exchange on a simple
topology (Fig. 1). Suppose that a kind of an all-to-all operation is taking
place such that each of 5 transmitting processors sends an equal size packet
to each of 5 receiving processors. Suppose the packet size is 1MB so that
the data exchange operation transfers 25MB of data over the network.

During the collective data exchange, links 1 to 10 transfer 5MB of data
each (Fig. 1). Links 11 and 12 are the bottlenecks and transfer 6MB each.
Suppose that the throughput of a link is 100MB/s. Since links 11 and 12 are
the bottleneck, the longest transfer of the collective data exchange lasts

. Therefore the liquid throughput of the global

operation is . Let us now propose a
schedule for successive data transfers and analyze its throughput.

Intuitively, a good schedule for an all-to-all exchange is a round-robin schedule where at each step each sender has a receiver
shifted by one position. Examination of the round-robin schedule of an all-to-all data exchange on the network topology of
Fig. 1 shows that only three logical steps can be processed in the timeframe of a single transfer. Two logical steps can not be
processed in a single timeframe, since they contain transfers trying to simultaneously use the same links 11 and 12, causing a
congestion. Conflicting transfers of each logical step need to be scheduled in two different timeframe substeps. Thus the
round-robin schedule takes 7 timeframes instead of the expected 5 and accordingly, the throughput of the round-robin all-to-

all exchange is: . It is therefore less than the liquid throughput (416.67MB/s).

Can we propose an improved schedule for the all-to-all exchange such that the liquid throughput is reached?

By ensuring that at each step the bottlenecks are always used,
we create an improved schedule, having the performance of the
network’s liquid throughput (Fig. 2). According to this
improved schedule only 6 steps are needed for the
implementation of the collective operation, i.e. the throughput

is: .

An introduction to the formal theory of traffic scheduling is
given in section 2. Section 3 shows how to describe the liquid
throughput as a function of the number of contributing
processing nodes and their underlying network topologies.
Section 4 presents measurements for the considered sub-
topologies and draws the conclusions.

2. Liquid schedules

This section proposes a formal model of a collective data exchange. In this model a single point-to-point transfer is
represented by the set of communication links forming the path between a transmitting and a receiving processor. The
collective data exchange comprises a set of transfers having identical packet sizes. A sending processor may transfer a packet
to a given receiving processor not more than once.

DEFINITIONS. A transfer is a set of links (i.e. the links forming the path from a sending processor to a receiving processor). A
traffic is a set of transfers (i.e. the transfers forming the collective exchange, see Fig. 3). A link l is utilized by a transfer x if

. A link l is utilized by a traffic X if l is utilized by a transfer of X. Let a and b be transfers of a traffic X, the transfer b is
in congestion with a, if b uses a link utilized by a. A sub-traffic of X (a subset of X) is simultaneous if it forms a collection of
non-congesting transfers.

Fig. 1. Simple network topology.
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A simultaneous subset of a traffic is processed in the timeframe of
a single transfer. The load of link l in the traffic X is the number of
transfers in X using l. The maximally loaded links are called
bottlenecks. The duration of a traffic X is the load of its

bottlenecks. The size of the traffic is the number of its
transfers. Let Tlink be the throughput of the network’s single link.

The liquid throughput of a traffic X is . For example,

the traffic X shown in Fig. 3 has a number of transfers

and the duration of the traffic is . Therefore the
aggregate liquid throughput is the ratio of a single link
throughput, i.e. , supposing a single link
throughput of 100 MB/s.

2.1. Partitioning

Recall that a partition of X is a disjoint collection of non-empty
subsets of X whose union is X [23]. A schedule of a traffic X is a
collection of simultaneous subsets of X partitioning the traffic X. A

step of a schedule is an element of . The length of a schedule is the number of steps in . A schedule of a
traffic is optimal if the traffic does not have any shorter schedule. If the length of a schedule is equal to the duration of the
traffic then the schedule is liquid. A liquid schedule is optimal, but the inverse is not always true, meaning that a traffic may
not have a liquid schedule (the demonstration is beyond the scope of this article). Fig. 4 shows a liquid schedule of the
collective traffic shown in Fig 3.

Let us show that the necessary and sufficient condition for the liquidity of a schedule is that all bottlenecks be used by each
step of the schedule.

The duration of a traffic X is the load of its bottlenecks. Consider l as one of the bottlenecks of X. The load of l is the number
of transfers in X using l. Let be a schedule on X. By definition is a collection of simultaneous subsets of X, partitioning
X. Since partitions X, a transfer of X (using l) shall be found in one and only one of the steps of . Since a step of the
schedule consists of simultaneous transfers, it may contain only one or no transfer using l. Therefore if the length of is
equal to the number of transfers in X using the bottleneck l, then each step of shall contain a transfer using l. Inversely, if
each step of has a transfer using l, then the length of shall be equal to the number of transfers using l. Hence if a
schedule is liquid then each of its steps uses all bottlenecks, and if all steps of a schedule use all bottlenecks then the schedule
is liquid.

Therefore the necessary and sufficient condition for the liquidity of a schedule is that all bottlenecks be used by each step of
the schedule. Let us define a simultaneous subset of X as a team of X if it uses all bottlenecks of X. Consequently, an
equivalent condition for the liquidity of a schedule on X is that each step of be a team of X.

Our goal is to design an algorithm that may partition a traffic so as to form a liquid schedule (whenever possible).
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Fig. 3. All-to-all traffic.
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Fig. 4. A liquid schedule of the collective traffic shown in Fig. 3.
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Let us show that by removing an element (step) from a liquid schedule, we form a new liquid schedule on the remaining
traffic. This property will allow us to reduce the search space for creating a liquid schedule. Let us formally prove this
property.

Suppose A is a step of a liquid schedule on a traffic X. Let’s show that is a liquid schedule on . Clearly A is
a team of X. Remove the team A from X so as to form a new traffic . The duration of the new traffic is the load
of the bottlenecks in . The bottlenecks of X are bottlenecks of . The load of a bottleneck of X decreases by one in
the new traffic . However the new traffic may have additional bottlenecks. The schedule without the element

A is a schedule for with the previous length decreased by one. The new schedule has as many steps as the

duration of the new traffic . Therefore is a liquid schedule on .

In other words, if the traffic has a liquid schedule, then a schedule reduced by one team is a liquid schedule on the reduced
traffic.

2.2. Construction of liquid schedules

Consider traffic X as an input of a problem whose solution is a liquid schedule . Assume a technique capable of generating
all possible teams of X. If X has a solution then a step A of the schedule will be found among all possible teams of X and

is a schedule on . Therefore the problem with an input X can be reduced into a smaller problem.
Let us give an overall view to the liquid schedule search algorithm. The algorithm recursively searches for a solution by
traversing a tree in depth-wise order (see Fig. 5). The root of the tree is the original traffic X. Associated to the traffic is the

collection of all possible steps of a liquid schedule . Successor nodes are formed by subtraffics ,

, . Each of these successor nodes has its own collection of all possible successive steps. As before, each

member of this collection will produce successor nodes at the next level of the tree.

Let us specify how to form the collection of all possible steps for the current node. The sub-traffic of the current node
comprises of the set of transfers not yet carried out. Clearly a possible step of liquid schedule shall be a subset of the current
sub-traffic node. Recall that for being liquid it is sufficient that all of the steps of a schedule be teams of the original traffic X.
Therefore the collection of all possible slots at each sub-traffic node is the set of all those teams of X consisting of not yet
carried out transfers and therefore included in the current sub-traffic , where the operator

associates with a traffic the set of its all teams.
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Let us show a method for reducing the search space. As a set of possible steps instead of we propose

the set of all teams of the current sub-traffic, i.e. . It can be shown that , and

therefore . It can be proven that this technique does not affect the solution space.

The presented strategy considerably reduces the search space, compared with a strategy where successor steps would
comprise those teams of the original traffic which do not contain already carried out transfers. By traversing the tree in depth-
wise order we cover the full solution space. A solution is found if the current node (sub-traffic) forms a single team. A node
presents a dead end if it’s not possible to create a team out of that sub-traffic (see Fig. 6).

If a solution exists for X, then the algorithm will find it. If the algorithm does not find a solution for X, and since we explored
the full solution space, we conclude that X does not have a liquid schedule.

Let us describe a further simple and efficient search space reducing technique. Let us define a simultaneous subset A of a
traffic X as full with respect to X if each transfer of is in congestion with a transfer of A. A team of X is called full team
if it is a full simultaneous subset of X. We intend to limit the search space when building a liquid schedule. Let us modify a
liquid schedule so as to convert one of its teams into a full team. Let X (a traffic) have a solution (a liquid schedule). Let A
be a step of . If A is not a full team of X, then, by moving the necessary transfers from other steps of , we can convert step
A to a full team. Evidently, the properties of liquidity (partitioning, simultaneousness and length) of will not be affected.
Therefore if X has a solution then it has also a solution when one of its steps is full, hence the choice of the teams in the
construction may be narrowed from the set of all teams to the set of full teams only.

By a choice of a full team A of a traffic X we are faced with the new smaller problem of searching a liquid schedule for a
traffic . The traffic may not have a solution, or it may not have even a team (Fig. 6). In these cases we have to
backtrack to X to evaluate other choices. Evaluation of all choices ultimately leads to a solution if it exists.

Fig. 4 shows a liquid schedule built as explained above. Let us denote the
steps in Fig. 4 as follows: , according to the

order given in Fig. 8. Traffic X is the union of the steps . The

schedule is constructed such that at any step i, the step is a full team

of the sub-traffic . The step being a team of the sub-traffic

incorporates therefore all bottlenecks of this sub-traffic

(shown in bold).

In order to be able to explore the full solution space for obtaining a liquid
schedule, we need to successively build all full teams. We designed a
procedure capable of generating (without repetitions) all successive full
teams for an arbitrary traffic. It first builds skeletons, an intermediate
collection of teams from a sub-traffic including only those transfers
which comprise bottlenecks. Then it extends each skeleton by applying
variations of all non-congesting transfers in order to build up all full
teams.

3. Throughput as a function of sub-topology

In order to evaluate the efficiency of the liquid scheduling technique we need to specify along an independent axis the
number of processing nodes as well as significant variations of their underlying network topologies. This section an
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approximate performance metric formed by a collection of different network topologies. The performance metric will allow
us to compare the throughput of traditional topology-unaware collective data exchange techniques with proposed liquid
schedules. To simplify the model let us limit the configuration to an identical number of receiving and transmitting
processors forming successions of node pairs. The applications perform all-to-all data exchanges over the allocated nodes
(each transmitting processor sends one packet to each receiving processor). Note that here we limit the performance metric
model only and for the presented above liquid scheduling technique all-to-all collective exchange is just a particular case.

Let us demonstrate how to create variations of processing node allocations by considering the specific network of the Swiss-
T1 cluster (called henceforth T1, see Fig. 7). The network of the T1 forms a K-ring [20] and has a static routing scheme. The
throughputs of all links are identical and are equal to 86MB/s. The cluster consists of 64 processors paired into 32 nodes [21],
[22].

Since the T1 cluster incorporates 32 nodes, there exist possible allocations of nodes to an application.

Considering only the number of nodes in front of each switch, there are only different processing node
allocations, since there are 8 switches having each n used nodes ( ). Each allocation may be represented by a vector

.

With a model incorporating the given network topology and routing tables, we can compute the liquid throughput of an all-
to-all traffic for any allocation. The full set of 390625 allocation vectors is given as input to the model and the liquid
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throughput is computed for each input vector. For the T1’s network, only 363 different values of liquid throughput are formed
and thus the set of 390625 is partitioned into 363 different subsets. Each of the obtained 363 key sub-topologies is
characterized by its liquid throughput and the number of allocated nodes.

For the purpose of enumerating the 363 sub-topologies we sort
these sub-topologies according to the number of nodes and within
the same number of nodes according to the value of the liquid
throughput. Fig. 8 demonstrates the liquid throughput of the
network together with the throughput of an imaginary full crossbar
network. The horizontal axis represents the collection of the 363
sub-topologies together with the number of contributing processing
nodes (in parentheses).

4. Results and conclusion

For an unknown network topology only two intuitively reasonable
schedules make sense, the round-robin and the random schedule.
Measurements of the round-robin schedule and of the random
schedule show a similar throughput. The round-robin schedule on a
T1 cluster is shown in Fig. 9. The amount of data transferred from
one processor to another processor is equal to 2MB and the transfer
block size is 520KB. The Fig. 9 presents the result of 4344

measurements of all-to-all nodes data exchanges. For each topology, 20 measurements were performed. The median of the
collected results is represented as a small black square. The continuous curve represents the liquid throughput. For many sub-
topologies, the measured round-robin throughput is only 50% of the liquid throughput.

Fig. 10 shows the measured aggregate throughput of an all-to-
all collective traffic executed on T1, optimized by applying our
liquid schedule based traffic partitioning technique. Each black
dot represents the median of 7 measurements. The horizontal
axis represents the 363 sub-topologies as well as the number of
contributing nodes. Processor to processor transfers have a size
of 5MB, transferred as a single message of 5MB. The measured
all-to-all aggregate throughputs (black dots) are close to the
theoretically computed liquid throughput (gray line). For many
sub-topologies, the proposed scheduling technique allows to
increase the aggregate throughput by at least a factor of two
compared with a simple round-robin or random schedule.

Thanks to the presented algorithms, we also strongly reduced
the search space of liquid schedules. The computation time of

a liquid schedule takes for more than 97% of the considered sub-topologies of the T1 cluster less than 1/10 of a second on a
single 500MHz Alpha processor.
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