
Abstract

We introduce the theory of liquid schedules, a method for the optimal scheduling of collective data exchanges relying
on the knowledge of the underlying network topology and routing scheme. Liquid schedules ensure the maximal
utilization of network’s bottlenecks and offers an aggregate throughput as high as the flow capacity of a liquid in a
network of pipes. The limiting factors of liquid schedules’ current theory are equality of packet sizes, ignoring of
network delays and predictability of the traffic. In spite of limitations of the current theory the liquid schedules may be
used in many contiguous data flow processing applications such as parallel acquisition of multiple video streams,
high energy physics detector-data acquisition and event assembling, voice-over-data traffic switching, etc. The
collective data flow processing throughput assured by liquid schedules in highly loaded complex networks may be
multiple times higher in comparison with the throughput of traditional topology-unaware techniques such as round-
robin, random or fully asynchronous transfer schemes. The measurements of the theoretically computed liquid
schedules applied to the real low-latency network have given results very close to the theoretical predictions. On a 32
node (64 processor) low latency K-ring cluster we’ve doubled the aggregate throughput compared with the traditional
exchange technologies. This paper presents the theoretical basis of the liquid schedules and an efficient technique for
the construction of liquid schedules.

Keywords: Liquid schedules, optimal network utilization, traffic scheduling, all-to-all communications, collective
operations, network topology, topology-aware scheduling.

1. Introduction

The interconnection topology is one of the key - and often limiting - factors of parallel
applications [1], [2], [3], [4]. Depending on the transfer block size, there are two opposite factors
(among others) influencing the aggregate throughput. Due to the message overhead,
communication cost increases with the decrease of the message size. However, smaller messages
allow a more progressive utilization of network links. Intuitively, the data flow becomes liquid
when the packet size tends to zero [5], [6] (see also [7], [8]). The aggregate throughput of a
collective data exchange depends on the application’s underlying network topology. The total
amount of data together with the longest transfer time across the most loaded links or bottlenecks,
gives an estimation of the aggregate throughput. This estimation will be defined here as the liquid
throughput of the network. It corresponds to the flow capacity of a non-compressible fluid in a
network of pipes [6]. Due to the packeted behaviour of data transfers, congestions may occur in
the network and thus the aggregate throughput of a collective data exchange may be lower than the
liquid throughput. The rate of congestions for a given data exchange may vary depending on how
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the sequence of transfers forming the data exchange is scheduled by the application. Similar
problems have been shaped in one-to-all and all-to-all communications over satellite-switch/TDM
networks [9] and wavelength division multiplexing optical networks [10]. However, besides a few
relatively similar problems, we haven’t found research on this topic. Unlike flow control based
congestion avoidance mechanisms [15], [16] we schedule the traffic without trying to regulate the
sending processors’ data rate.

For example consider an all-to-all collective data exchange represented by Fig. 1. Suppose the
throughput of links is 100 MB/s. There are 5 transmitting processors (T1,... T5), each of them
sending a packet to each of the receiving processors (R1... R5). One may easily compute that the
liquid throughput of this data exchange is 416.67 MB/s (for details see the end of this section). A
round-robin schedule consists of five logical steps: (1) {T1 R1,T2 R2...T5 R5}, (2)
{T1 R2,T2 R3...T5 R1}, etc. Intuitively the round-robin schedule shall provide the best
performance, however one may compute that its throughput (357.14 MB/s) is lower than the liquid
throughput, due to the non-optimal utilization of the bottlenecks l11 and l12. Nevertheless Fig. 9
shows that there exists a schedule achieving the liquid throughput of the data exchange. Our
theory applied to much more complex topologies computes optimal traffic schedules considerably
increasing collective data exchange throughputs relatively to the traditional topology-unaware
techniques such as round-robin, random or fully asynchronous transfer modes. On the Swiss-Tx
supercomputer [11], [12], a 32 node K-ring [13] cluster, we’ve doubled the aggregate throughput
by applying the presented scheduling technique. Thanks to the presented theory, for most of the
underlying topologies (allocations of computing nodes), the computational time required to find
an optimal schedule had taken less than 1/10 of a second (the presentation of performance
measurements is given in another paper).

This section introduces the traffic-set model
which underlies the proposed theory of optimal
scheduling. In the traffic-set model a single point-
to-point transfer is represented by the set of
communication links forming the network path
between a transmitting and a receiving processor
according to the static routing scheme. Let’s give
a few introducing definitions.

A transfer is a set of links (i.e. the path from a
sending processor to a receiving processor). A
traffic is a set of transfers. Fig. 1 shows the traffic
for the all-to-all exchange. Note that the all-to-all
exchange in a network for our model is just a
particular case of a traffic. A link l is utilized by a
transfer x if . A link l is utilized by a traffic X
if l is utilized by a transfer of X. Two transfers are
in congestion if they utilize a common link
otherwise they are simultaneous. We see,
therefore, that this model is limited by the
representation of the data exchanges consisting of

{l1, l6}, {l1, l7}, {l1, l8}, {l1, l12, l9}, {l1, l12, l10},

{l2, l6}, {l2, l7}, {l2, l8}, {l2, l12, l9}, {l2, l12, l10},

{l3, l6}, {l3, l7}, {l3, l8}, {l3, l12, l9}, {l3, l12, l10},

{l4, l11, l6}, {l4, l11, l7}, {l4, l11, l8}, {l4, l9}, {l4, l10},

{l5, l11, l6}, {l5, l11, l7}, {l5, l11, l8}, {l5, l9}, {l5, l10}

}}

l1 l2 l3 l4 l5

l6 l7 l8 l9 l10

l11

l12

T1 T2 T3 T4 T5

R1 R2 R3 R4 R5

Fig. 2. All-to-all traffic. The links are unidirec-
tional. Nevertheless each of the pairs of 
links (l1,l6)...(l11,l12) and each of the pairs 
of processors (T1,R1)...(T5,R5) may be 
considered respectively as single bidirec-
tional link and single physical processor.

l x∈



identical size packets. The optimal scheduling of a traffic of variable size packets is a subject of
another research.

One would think that the traffic-set model may not represent a collective exchange where a
sending processor may transfer a packet to a given receiving processor more than once, however
such a collective exchange may be easily converted into an equivalent problem so as to be
represented by the traffic-set model. For example, suppose that a collective exchange of Fig. 1 in
addition to all 25 transfers, performs once more the transfer {l1, l6} (i.e. T1 R2). Clearly this 26-
transfer-traffic may not be directly represented as a set of transfers. However, Fig. 2 shows that we
may easily add to the topology of Fig. 1 two additional virtual links l13 and l14 and distinguish two
identical transfers and therefore represent the 26-transfer-traffic through the set-traffic model.

Many contiguous data flow processing applications such as parallel acquisition of multiple video
streams, high energy physics detector-data acquisition and event assembling, voice-over-data
traffic switching, etc. may be covered by this model. Note that the limitation on the equality of
packet sizes obviously doesn’t limit applications by equal bandwidth cross-streams.

Simultaneity is a subset of X formed from a
collection of mutually non-congesting i.e.
simultaneous transfers. A transfer is in
congestion with a simultaneity if the transfer is
in congestion with an element of the
simultaneity. A simultaneity of a traffic is full if
all transfers in the complement of the
simultaneity in the traffic are in congestion with
the simultaneity (see section 2). A simultaneity
of a traffic is processed in the timeframe of a
single transfer. , the load of link l in the
traffic X is the number of transfers in X using l,

i.e.  (see Fig. 5 and

Fig. 6). The duration  of a traffic X is the
maximal value of the load among all links
involved in the traffic. The links having
maximal load values are called bottlenecks. The
liquid throughput of a traffic X is the ratio

 multiplied by a single link throughput, where  is the number of transfers in the
traffic X. For example, the traffic X shown in Fig. 1 has a number of transfers  and the
duration of the traffic is . Therefore the aggregate liquid throughput is the ratio 
of a single link throughput, i.e. , supposing a single link throughput of 100
MB/s.

DEFINITIONS. Let us define a simultaneity of X as a team of X if it uses all bottlenecks of X (note
that a traffic may not have a team, see Fig. 8). A team of X is full if it is a full simultaneity of X

l1

l13 l14

l2 l3 l4 l5

l6 l7 l8 l9 l10

l11

l12

{l13, l1, l6}, {l14, l1, l6}, {l13, l1, l7},

{l13, l1, l8}, {l13, l1, l12, l9}, {l13, l1, l12, l10},

{l2, l6}, {l2, l7}, {l2, l8}, {l2, l12, l9}, {l2, l12, l10},

{l3, l6}, {l3, l7}, {l3, l8}, {l3, l12, l9}, {l3, l12, l10},

{l4, l11, l6}, {l4, l11, l7}, {l4, l11, l8}, {l4, l9}, {l4, l10},

{l5, l11, l6}, {l5, l11, l7}, {l5, l11, l8}, {l5, l9}, {l5, l10}

}}

Fig. 2. Multiple transfers through same paths 
(modification of the topology of Fig.1)
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(see section 3). Let  and  be respectively the sets of all full simultaneities and all full
teams of X. Let  be the operator forming the set of all bottlenecks of X i.e.

.

In sections 2 and 3 we present techniques for the construction of full simultaneities and full teams
of a traffic, respectively, and prove the coverage of the whole solution space. Based on the
achievements of the previous sections we’ll conclude this paper in section 4 by presenting a liquid
schedule searching technique that will be proven to be successful whenever a solution exists. 

2. Full simultaneities

The construction of the liquid schedules discussed in the section 4 is based on the ability to
construct the set of all full teams of an arbitrary traffic. To limit redundant search steps, each full
team should be efficiently built once and only once. This section shows how to build the whole set
of full simultaneities of a traffic by traversing each full simultaneity one by one along a recursive
tree.

The building of the set of full simultaneities  is based on its successive partitioning. For an
orbitrary transfer x of X any full simultaneity - i.e. any member of  - may either contain or
do not contain x. This characterisation naturally partitions  into two subcollections, x-
positive and x-negative. Let us take x-positive subset of . Toward an orbitrary transfer y of X
the x-positive subset of  may be further partitioned into two smaller subsets - x-positive, y-
positive and x-positive, y-negative.

At each stage of the partitioning process a subcollection of  is represented by the positive
and negative sets of transfers, respectively called here as inner and outer. A pair of an inner and an
outer we define as a collector.

DEFINITION. Collector of full simultaneities of X is an ordered pair (outer, inner) if the inner is a
simultaneity of X and the outer consists of some of simultaneous with the inner transfers of X. A
collector may be also represented as an ordered triplet (outer, depot, inner) where the depot
contains all remaining in X simultaneous with the inner transfers not contained in the outer.

The triplet representation of collectors formally does not involve additional information, although
it will be used in the further context. A collector of full simultaneities of X may be referred to in
short as a collector within X. The outer, depot and inner of a collector R may be denoted as ,

 and  respectively.

Let’s demonstrate a collectors on an example. Consider an eight-transfer-traffic on a network
consisting of two switches, 4 sending and 2 receiving processors as it’s shown in Fig. 3. Let us
introduce the following graphical notation for the 8-transfer-traffic { , , , , ,

ℜ X( ) ℑ X( )
σ X( )

l x
x X∈
∪∈ λ l X,( ) Λ X( )=

⎩ ⎭
⎨ ⎬
⎧ ⎫

ℜ X( )
ℜ X( )

ℜ X( )
ℜ X( )

ℜ X( )

ℜ X( )

R 1–[ ]

R 0[ ] R +1[ ]



, , }. Accordingly the triplet ({ , }, { }, { }) is an example of a collector
within this traffic.

A collector R is completed if its outer and its depot are empty i.e.
 and . The inner of a completed collector within X

is a full simultaneity of X. For example the triplet ( , , { , }) is
a completed collector within the eight-transfer-traffic and accordingly the
set { , } is a full simultaneity of this traffic. Further, we may
represent simultaneities compactly through a single shaped graphical
symbol so as  is a synonym for { , }.

A heir of a collector within X is any full simultaneity of X which includes
the inner of the collector and does not contain any element of the outer.
Considering the traffic of the Fig. 3 the full simultaneity  is the heirs
of the collector ({ }, { , }, { }), but  isn’t. Completed
collector have one heir, its inner, so that the sole heir of the following

completed collector ( , , { , }) is . Any full simultaneity of X is a heir of the prim-
collector . The prim-collector of the eight-transfer-traffic is ( , { , , , ,

, , , }, ).

The collection of all heirs of a collector is the progeny of the collector. For example, the progeny
of the collector ({ }, { , }, { }) is { , }. By definition the operator  applied
to a collector R forms its progeny . The progeny of the prim-collector within X is the set of
all full simultaneities of X, .

Consequently to the definition, the progeny of a collector R within X is the collection of all those
full simultaneities of X that may be built up from the inner by the elements of the depot. The depot

{ }{l1, l5, l6}, {l1, l5, l7},

{l2, l5, l6}, {l2, l5, l7},

{l3, l6}, {l3, l7},

{l4, l6}, {l4, l7},

Fig. 3. A traffic on a 
simple network

l1 l2 l3 l4

l5
l6 l7

R 1–[ ] ∅= R 0[ ] ∅=

∅ ∅

∅ ∅
∅ X ∅, ,( ) ∅

∅

outer depot inner{ }

outer depot inner{ } outer depot inner{ }
Fig. 100. Fission of an collector. The transfers congest-

ing with the selected black transfer of the depot
are colored in gray.

φ
φ R( )

φ ∅ X ∅, ,( ) ℜ X( )=



of a collector shall be in congestion with each element of outer, otherwise the collector is barren
and may not have an heir (the proof is straight forward). This is an example of a barren collector
({       }, { }, ) within the eight-transfer-traffic. Precisely a

collector R is barren if .

Let R be a collector within X. Let a be an element of the depot. An R-heir may either contain a or
not. All R-heirs containing a together form the progeny of a collector (1) having the inner of R
enlarged by a and having the depot and the outer of R diminished by each congesting with a
transfer. Further, all R-heirs non-containing a together form the progeny of a collector (2) obtained
from R by moving the element a from the depot to the outer. Let us define  and  as the

operators forming from R the two sub-collectors, such that the progeny of  is the set of all

R-heirs containing a and the progeny of  is the set of all R-heirs non-containing a, i.e.

 and .

DEFINITION. Formally the operators  and  from a collector to a collector are defined as 

follows: ,  and 

; ,  and 

; where .

For an example let the collector R in the above definition be the prim-collector of the eight-
transfer-traffic and let the transfer a, an element of the prim-collector’s depot, be . Then

= ({ }, { , }, { }) and = ({ }, { , , , , , ,

}, { }). The following partitioning properties about the operators  and  are true:

 and .

DEFINITIONS. Let  be a set of collectors within X. The operator  applied to  removes from 
all barren elements. The binary fission operation  applied to  splits each collector of  having
a non empty depot into two sub-collectors using the operators  and  with an arbitrarily

chosen element a from the collector’s depot. Note that the fission operation  has an uncertainty
property, since the assertion  does not imply that . An assertion about the
fission operation  may be true only if it is true for all possible outcomes.

Let us demonstrate the operator  and the fission operation  on an example. The operator 
applied to the following set of collectors {( , , {  }), ({  }, , { }),
({ }, { }, { })} forms the following set {( , , {  }), ({ }, { },
{ })}. The fission operation  applied on the last set of collectors forms {( , , {

}), ( , , {  }), ({  }, , { })}. We’ve omitted in these examples the
separating comas in the sets of transfers.

∅
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The progeny of a collection of collectors is the union of the progenies of its members. A collection
of collectors within a traffic is dividing if the corresponding collection of the progenies of its
members partitions the set of all full simultaneities of the traffic. Consequently but particularly,
the progeny of a dividing collection is the set of all full simultaneities of a traffic. Clearly, the
singleton of the prim-collector is a dividing collection. The operation  applied to a dividing
collection  does not affect the dividing property of . Further, the fission operation  applied
to a collection  reduces the depot of each non-completed collector in  at least by one element,
which from follows that at some point a finite composition 
forms a collection of completed collectors each containing as an inner a full simultaneity of X. The

equation  is the key point to the building of all full

disjoint subsets of X one by one without repetition. The implementations of the operator  and the
fission operation  do not require any additional techniques and have a low cost functionality.

ρ°Ψ( )

ω ω Ψ
ω ω

ρ°Ψ°ρ°Ψ°…ρ°Ψ ∅ X ∅, ,( ){ }

ℜ X( ) R +1[ ]{ }
R ρ°Ψ°…ρ°Ψ ∅ X ∅, ,( ){ }∈

∪=

ρ
Ψ



Fig. 4 shows the concluded reproduction tree of the eight-transfer-traffic’s prim-collector’s
singleton leading to the formation of ten complete collectors representing all ten full
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Fig. 4. Reproduction tree of the prim-collector. The signs ‘ ’ and ‘ ’ signify completed and 
barren collectors respectively.



simultaneities: , , , , , , , , , . (The parentheses of
triplets and the comas are omitted in the figure).

3. Full Teams

Let a collector within X be viscid if its inner and its depot together 
don’t use all bottlenecks of X. A viscid collector may not have a 
team in its progeny (the proof is straight forward). Precisely a 
collector R within a traffic X is viscid if 

.

Let  be an operator that removes from a collection of collectors
all viscid members. Reproduction of the initial singleton

 through the operation  forms developing
collections of collectors . The progeny of the collection 
consists of full simultaneities of X and narrows from generation to
generation, although it always envelopes all full teams of X and
ultimately leads to  (the proof is straight forward). A finite
composition  contains one
and only one corresponding collector for each full team of X.

Formally this technique, represented by the equation

, is sufficient for the construction of all full teams.

Referring this equation as on the first approximation bellow we present an efficient construction.

Let the skeleton of a traffic X be the smallest subset of X using all
bottlenecks of X. Let the skeleton of a team of X be the smallest subset
of the team using all the bottlenecks of X. Let the operator  be the
skeleton of the traffic X, and the two operand operator  be the
skeleton of A, a team of X. For an example consider a ten-transfer-traffic
shown on the Fig. 5. Similarly to what we’ve done in the previous
section, let us represent this ten-transfer-traffic as a set of graphically
denoted transfers { , , , , , , , , ,

}. Fig. 6. shows in bold the three bottlenecks of the network in the example. The transfers
 and  of the ten-transfer-traffic are not using the bottlenecks and therefore the skeleton of

this ten-transfer-traffic is the following eight-transfer-traffic { , , , , , ,
, }. For example ,  and  are teams of the ten-transfer-traffic. Their

corresponding skeletons respectively are ,  and .

{ }{l1, l6}, {l1, l5, l7}, {l1, l5, l8},

{l2, l6}, {l2, l5, l7}, {l2, l5, l8},

{l3, l7}, {l3, l8},

{l4, l7}, {l4, l8},

Fig. 5. A traffic on a simple 
network
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χ X( ) R +1[ ]{ }
R τ°ρ°Ψ°…°τ°ρ°Ψ ∅ X ∅, ,( ){ }∈

∪=

Fig. 6. The load of links of 
the traffic of Fig. 5.
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Consider a traffic X. A full team of the traffic’s skeleton is a skeleton of the traffic’s (full) team and
a skeleton of traffic’s (full) team is a full team of traffic’s skeleton (the proof is out of scope of this
paper). In other words,  and

. Since each full team of X is a simultaneity built up
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Fig. 7. Two phase reproduction leading to 8 full teams. The signs ‘ ’, ‘ ’ and ‘ ’ signify completed barren and 
viscid collectors respectively.

A ℑ°ς X( )∈( )∀ B ℑ X( )∈( )∃, A ς B X,( )=
B ℑ X( )∈( )∀ A ℑ°ς X( )∈( )∃, A ς B X,( )=



on a full team of  an efficient building of full teams may be implemented in two phases.
Initially we build all full teams of the skeleton of X using the above presented approximation

. Further, the idea is to build up all variations of

bodies on each skeleton. For each full team A of  we build a collector within X whose
progeny consists of all those full teams of X whose skeleton is A. By doing so we form a collection
of collectors whose reproduction with the operator  ultimately leads to the set of all full teams
of X, i.e.

 

Fig. 7 demonstrates the evolution of the two phase reproduction. First phase propagates the prim-
collector of the skeleton of the original traffic by means of binary fission. The first phase is
concluded by a set of completed collectors each representing a full team of the traffic’s skeleton
and therefore a skeleton of some teams of the traffic. Second phase evolves each skeleton building
up collection of traffic’s full teams.

4. Liquid schedules

Recall that a partition of X is a disjoint collection of non-
empty subsets of X whose union is X [14] [17]. A schedule

 of a traffic X is a collection of simultaneities of X
partitioning the traffic X. A timeframe of a schedule  is an
element of . , the length of a schedule , is the
number of timeframes in . A schedule of a traffic is
optimal if the traffic does not have any shorter schedule. If
the length of a schedule is equal to the duration of the traffic
then the schedule is liquid. A liquid schedule is optimal, but
the inverse is not always true, meaning that a traffic may
not have a liquid schedule. The Fig. 8. demonstrates a
traffic, which does not have a team and therefore may not
have a liquid schedule. Fig. 9 shows a liquid schedule of the
collective traffic shown in Fig 1.

The duration of a traffic X is the load of its bottlenecks.
Consider l as one of the bottlenecks of X. The load of l is
the number of transfers in X using l. Now let  be a

schedule on X. By definition  is a collection of simultaneities of X, partitioning X. Since 
partitions X, a transfer of X (and particularly a transfer using l) shall be found in one and only one
of the timeframes of . Since a timeframe of  is simultaneous it may contain only one or no
transfer using l. Therefore if the length of  is equal to the number of transfers in X using the
bottleneck l, then each timeframe of  shall contain a transfer using l. Inversely, if each timeframe
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of  has a transfer using l, then the length of  shall be equal to the number of transfers using l.
Hence if a schedule is liquid then each of its timeframes uses all bottlenecks, and if all timeframes
of a schedule use all bottlenecks then the schedule is liquid.

In other words, we derived an equivalent
condition for the liquidity of a schedule.
The necessary and sufficient condition for
the liquidity of a schedule is that all
bottlenecks be used by each timeframe of
the schedule. Recall that we’ve defined a
simultaneity of X as a team of X if it uses
all bottlenecks of X. Consequently, an
equivalent condition for the liquidity of a
schedule  on X is that each timeframe of

 be a team of X.

Our goal is to design an algorithm that may
partition a traffic so as to form a liquid schedule (whenever possible). 

DISCUSSION. Suppose A is a timeframe of a liquid schedule  on a traffic X. Therefore A is a team
of . Remove the team A from X so as to form a new traffic . The duration of the new traffic

 is the load of the bottlenecks in . The bottlenecks of X are also the bottlenecks of
. The load of a bottleneck of X decreases by one in the new traffic  (note that the new

traffic  may have additional bottlenecks). The schedule  shortened by one element A is a
schedule for . The new schedule  has as many timeframes as the duration of the
corresponding new traffic . A chain of interesting properties are successively derived
(whose formal proof is out of scope of this paper): If  is a liquid schedule on X then for any
timeframe A of  the schedule  is a liquid schedule on . Further, any non-empty
subset  of a liquid schedule is liquid. Consequently, the necessary and sufficient condition of
liquidity of a schedule  is that for any non-empty subset  of  each timeframe of  use all

bottlenecks of  (note that (1)  i.e. the bottlenecks of  form

larger set than bottlenecks of ).

If the traffic has a liquid schedule, then, according to the above discussion, a schedule reduced by
one team is a liquid schedule on the shortened traffic. This is the key point in searching for a liquid
schedule. Consider traffic X as a problem whose solution is a liquid schedule . Assume a
technique capable of generating the set of all teams of X. If X has a solution  then a timeframe
A of the schedule  is a member of the set of all teams of X and  is a schedule on .
Therefore the problem X can be reduced into smaller problems. Examine each possible team A of
X and search inductively (e.g. recursively) a solution for . If a solution exists for X, then this

α α
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Fig. 9. A liquid schedule of the collective traffic shown in Fig. 1. 
The comas separating elements of the schedule are 
omitted.
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method will find it. If the method does not find a solution for X, then, since we explored the full
solution space, we conclude that X does not have a liquid schedule.

We limit at each iteration our choice to the collection of only those teams of the original traffic
which are also teams of the current reduced sub-traffic (having an expanded number of
bottlenecks, see the equation (1) above). By doing so, we considerably reduce the search space
without affecting the solution space.

We intend to limit the search space when building a liquid schedule. Let us modify a liquid
schedule so as to convert one of its teams into a full team. Let X (a traffic) have a solution  (a
liquid schedule). Let A be a timeframe of . If A is not a full team of X, then, by moving the
necessary transfers from other timeframes of , we can convert timeframe A to a full team.
Evidently, the properties of liquidity (partitioning, simultaneousness and length) of  will not be
affected. Therefore if X has a solution then it has also a solution when one of its timeframes is full,
hence the choice of the teams in the construction may be narrowed from the set of all teams to the
set of full teams only.

By a choice of a full team A of a traffic X we are faced with the new smaller problem of searching
a liquid schedule for a traffic . The traffic  may not have a solution, or it may not have
even a team. In these cases we have to backtrack to evaluate other choices. Evaluation of all
choices ultimately leads to a solution if it exists.

Fig. 9 shows a liquid schedule built as explained above. Let us denote the timeframes in Fig. 9 as
follows:  (according to the order given in Fig. 9.) Traffic X is the union of

the timeframes . The schedule is constructed such that at any step i, the timeframe 

is a full team of the sub-traffic . The timeframe  being a team of the sub-traffic

 incorporates therefore all bottlenecks of this sub-traffic (shown in bold).
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