
Abstract

We propose a method for the optimal scheduling of collective data exchanges relying on the knowledge of the
underlying network topology. We introduce the concept of liquid schedules. Liquid schedules ensure the maximal
utilization of a network’s bottleneck links and offer an aggregate throughput as high as the flow capacity of a liquid in
a network of pipes. The collective communication throughput offered by liquid schedules in highly loaded networks
may be several times higher in comparison with the throughput of traditional topology-unaware techniques such as
round-robin or random schedules. This paper presents an efficient technique for building of liquid schedules. To
create a liquid schedule we need to find the smallest partition of a set of transfers into subsets of mutually non-
congesting transfers. Increase of the traffic size results an exponential explosion of the possible combinations of non-
overlapping subsets of mutually non-congesting transfers. By first limiting the search space for transfers using
bottleneck links, we strongly reduce the search space without affecting the solution space. Measured liquid
throughputs on a real computer cluster are very close to the theoretical predictions.

Keywords: Optimal network utilization, collective data exchange, liquid schedules, network topology, topology-aware
scheduling.

1. Introduction

The interconnection topology is one of the key factors influencing the performance of parallel
applications [1], [2], [3], [4]. The aggregate throughput is, among other factors, influenced by the
transfer block size. Due to protocol overhead, point to point communication throughput tends to
decrease with the decrease of the message size. However, smaller messages allow a more
progressive utilization of network links and reduce network congestions. Intuitively, the data flow
becomes liquid when the packet size tends to zero [5], [6], [7], [8]. The aggregate throughput of a
collective data exchange depends on the application’s underlying network topology. The amount
of data that has to pass across the most loaded links gives the utilization time of the most loaded
links. The total amount of data divided by the utilization time of the most loaded links gives an
estimation of the liquid throughput of the network for the considered collective data exchange.
The liquid throughput corresponds to the flow capacity of a non-compressible fluid in a network
of pipes [6]. Since data streams are broken into packets, congestions may occur. Therefore the
aggregate throughput of a collective data exchange may be lower than its liquid throughput. The
rate of congestions for a given data exchange depends on the sequence of transfers forming the
data exchange (i.e. schedule). Previous research efforts were focused on the optimization and
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scheduling of collective communications over wavelength division multiplexing optical networks
[9] as well as of communications over satellite-switch time division multiplexing networks [10]. 

Unlike flow control based congestion avoidance mechanisms [11] [12], we establish schedules for
the data transfers without trying to regulate the sending processors’ data rate. We specifically
address the problem of reaching the flow capacity of a fluid in a network by trying to optimally
schedule the set of transfers of a collective data exchange.

For example, consider the all-to-all collective data exchange shown in Fig. 1. There are 5
transmitting processors (T1,... T5), each of them sending a packet to each of the receiving
processors (R1... R5). The network consists of 12 links. Links l11 and l12 are the most loaded links,
since each of them will be used by 6 transfers. The most loaded links are the bottlenecks of the
collective data exchange. They have the longest active time. In the best case, the duration of a
collective data exchange is as long as the active time of the bottleneck links, i.e. the collective data
exchange reaches its liquid throughput. A round-robin schedule is carried out within 5 logical
phases: (1) {T1 R1, T2 R2 ... T5 R5}, (2) {T1 R2, T2 R3 ... T5 R1}, etc. The round-
robin schedule’s throughput is however lower than the liquid throughput, since bottleneck links l11
and l12 are idle in step 1 (Fig. 1a). Phases 3 and 4 are carried out at lower rate, since they contain
congesting transfers.

{l1, l6}, {l1, l7}, {l1, l8}, {l1, l12, l9}, {l1, l12, l10},

{l2, l6}, {l2, l7}, {l2, l8}, {l2, l12, l9}, {l2, l12, l10},

{l3, l6}, {l3, l7}, {l3, l8}, {l3, l12, l9}, {l3, l12, l10},

{l4, l11, l6}, {l4, l11, l7}, {l4, l11, l8}, {l4, l9}, {l4, l10},

{l5, l11, l6}, {l5, l11, l7}, {l5, l11, l8}, {l5, l9}, {l5, l10}

}}

l1 l2 l3 l4 l5

l6 l7 l8 l9 l10

l11

l12

T1 T2 T3 T4 T5

R1 R2 R3 R4 R5

Fig. 1. Example of a data exchange composed of 25 
transfers



Fig. 2 shows that a schedule achieving the liquid throughput for the considered collective data
exchange exists.

The method we propose allows to compute optimal schedules for complex network topologies and
considerably increases collective data exchange throughputs compared with traditional topology-
unaware techniques such as round-robin, random or asynchronous transfer schedules.

Let us introduce the definitions that are required for computing optimal schedules. A single
“point-to-point” transfer is represented by the set of communication links forming the network
path between a transmitting and a receiving processor according to a given static routing scheme.

A transfer is a set of links (i.e. the path between a sending processor and a receiving processor). A
traffic is a set of transfers (i.e. the collective data exchange). Fig. 1 shows the traffic for an all-to-
all data exchange. The all-to-all data exchange is just a particular case of a traffic. Any collective
exchange comprising transfers between a set of emitting and a set of receiving processors is a
traffic1. A link l is utilized by a transfer x if . A link l is utilized by a traffic X if l is utilized by
a transfer of X. Two transfers are in congestion if they share a common link. If they don’t use a

1. A processor may in the general case be at the same time an emitting and a receiving unit.

Fig. 1a. Round-robin schedule of transfers.

step 1 step 2 step 3.1 step 3.2

step 4.1 step 4.2 step 5

Fig. 2. An optimal schedule.
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common link they are simultaneous. We limit ourselves to data exchanges consisting of identical
packet sizes. The optimal scheduling of a traffic with variable packet size is a subject for further
research.

A simultaneity of a traffic X is a subset of X consisting of mutually non-congesting transfers. A
transfer is in congestion with a simultaneity if the transfer is in congestion with at least one
element of the simultaneity. A simultaneity of a traffic is full if all transfers in the complement of
the simultaneity in the traffic are in congestion with the simultaneity. A simultaneity of a traffic is
processed in the timeframe of a single transfer. , the load of link l in the traffic X is the

number of transfers in X using l, i.e. . The duration  of a traffic X

is the maximal value of the load among all links involved in the traffic. The links having maximal
load values are called bottlenecks. The liquid throughput of a traffic X is the ratio 
multiplied by the single link throughput, where  is the number of transfers in the traffic X.
For example, the traffic X shown in Fig. 1 has a number of transfers  and the duration
of the traffic is . Therefore the aggregate liquid throughput is the ratio  of a single
link throughput, i.e. , assuming a single link throughput of
100 MB/s.

DEFINITIONS. Let us define a simultaneity of X as a team of X if it uses all bottlenecks of X (note
that a traffic may not have a team, see Fig. 5). A team of X is full if it is a full simultaneity of X.
Let  and  be respectively the sets of all full simultaneities and all full teams of X.

To form liquid schedules we try to schedule transfers of the data exchange in such a way that all
bottleneck links are always kept busy. Therefore we can search for a liquid schedule by trying to
assemble together non-overlapping teams carrying out all transfers of the given traffic. To cover
the whole solution space we need a means of generating all possible teams of a given traffic. This
leads to an exponential complexity. It is therefore important that the team traversing technique be
efficient and that each configuration is evaluated once and only once, without repetitions.

In sections 2 and 3, we present techniques for the construction of full simultaneities and full teams.
In section 4 we show how to build a liquid schedule and prove that we find solution whenever it
exists. Predicted and measured liquid throughputs on a real network are given in section 5. Section
6 draws the conclusions.

2. Obtaining full simultaneities

The construction of liquid schedules requires the ability of traversing the set of all full teams of an
arbitrary traffic. To limit redundant search steps, each full team should be constructed once and
only once. Let us show how to efficiently traverse the solution space. We first optimize the
retrieval of all simultaneities. We then use that algorithm to retrieve all full teams.

Let us now find the set of all full simultaneities  of a traffic X by traversing a recursive tree.

λ l X,( )

λ l X,( )
1 if l x∈
0 if l x∉⎩

⎨
⎧

x X∈
∑= Λ X( )

# X( ) Λ X( )⁄
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# X( ) 25=
Λ X( ) 6= 25 6⁄

25 6⁄( ) 100× MB s⁄ 416.67MB s⁄=

ℜ X( ) ℑ X( )

ℜ X( )



Recall that a traffic X is formed by a set of transfers. Any mutually non-congesting combination of
transfers is a simultaneity. A full simultaneity is a combination of non-congesting transfers taken
from X, such that X doesn’t contain any other non-congesting transfer with that simultaneity.

Let us categorize full simultaneities according to the presence or absence of a given transfer x. A
full simultaneity is x-positive if it contains transfer x. If it does not contain transfer x, it is x-
negative. This allows us to partition the set of full simultaneities  into two subsets: an x-
positive and x-negative subset of .

An x-positive full simultaneity may not contain transfers congesting with x, therefore any x-
positive full simultaneity consists of the transfer x and some transfers of the traffic X non-
congesting with x. 

DEFINITION. A Category of full simultaneities of X is an ordered triplet (excluder, depot, includer),
where the includer is a simultaneity of X (not necessarily full) and the transfers of X non-
congesting with the includer are either in the depot or in the excluder.

We say that a full simultaneity is covered by a category R, if the full simultaneity contains all the
transfers of the category’s includer and does not contain any transfer of the category’s excluder.
Consequently, any full simultaneity covered by a category is the category’s includer together with
some transfers taken from the category’s depot. The collection of all full simultaneities of
X covered by a category R is defined as the coverage of R. We denote the coverage of R as .

The category  is a prim-category since it covers all full simultaneities of X, i.e.
.

By taking an arbitrary transfer x from the depot of a category R we partition the coverage of R into
x-positive and x-negative subsets. The x-positive and x-negative subsets of a coverage of R
respectively are coverages of two categories derived from R: a positive sub-category and a
negative sub-category of R.

The positive sub-category  is formed from the category R by adding transfer x to its includer,

and removing from its depot and excluder1 all transfers congesting with x. The negative sub-
category  is formed from the category R by moving transfer x from its depot to its excluder
(see Fig. 3).

1. Since transfers congesting with x can not be in a full simultaneity covered by , we may safely remove 
them from the excluder.

ℜ X( )
ℜ X( )

φ R( )

∅ X ∅, ,( )
φ ∅ X ∅, ,( ) ℜ X( )=

R+x

R+x

R x–



The coverage of R is partitioned by the coverages of its sub-categories  and , i.e. the

coverage of a category is the union of coverages of its sub-categories: ,

where the coverages of the sub-categories have no common transfers, .

The replacement of a category R by its two sub-categories  and  is defined as a binary
fission of a category.

A singular category is a category that covers only one full simultaneity. That full simultaneity is
equal to the includer of the singular category. The depot and excluder of a singular category are
empty.

We apply the binary fission to the prim-category and split it into two categories. Then, we apply
the fission to each of these categories. Repeated fission increases the number of categories and
narrows the coverage of each category. Finally, the fission will lead to singular categories only, i.e.
categories whose coverage consists of a single full simultaneity. Since at each stage we have been
partitioning the set of full simultaneities, at the final stage we know that each full simultaneity is
covered by one and only one singular category.

The algorithm carries out recursively the fission of categories and yields all full simultaneities
without repetitions.

There is a further optimization to be considered. Full simultaneities covered by a category have no
transfer from the category’s excluder. Therefore each full simultaneity covered by a category must
contain a congesting transfer for each member of the excluder. Since we keep in the excluder
transfers which do not congest with the includer, congesting transfers must be taken from the
depot. A category whose depot doesn’t have a congesting transfer for at least one of the excluder’s
transfers is blank. The coverage of a blank category is empty and there is therefore no need to
pursue its fission.

excluder

depot

includer{ }

excluder

depot

includer{ } excluder

depot

includer{ }
Fig. 3. Fission of a category into two sub-categories

R=
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- transfer x
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- transfers non-congesting with x

R+x R x–
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φ R+x( ) φ R x–( )∩ ∅=

R+x R x–



Let a category within X be idle if its includer and its depot together don’t use all bottlenecks of X. 
The coverage of an idle category does therefore not contain a team.

An algorithm that is carrying out successive fissions, starting from the prim-ancestor and 
contiguously removing all the blank and idle categories ultimately leads to all full teams.

3. Speeding up full team formation

This section presents a further method for speeding up the search for all full teams  of an 
arbitrary traffic X.

Let us consider from the original traffic X only those transfers that use bottlenecks of X and call 
this set of transfers skeleton of X. We denote the skeleton of X as . Obviously, . 

Considering the skeleton of a traffic X as another traffic, the bottlenecks of the skeleton of a traffic 
are the same as the bottlenecks of the traffic. Consequently, a team of a skeleton is also a team of 
the original traffic.

Let us obtain all full teams of the traffic’s skeleton by applying the fission algorithm eliminating 
the idle categories.

Then, a full team of the original traffic may be obtained by adding a combination of non-
congesting transfers to a team of the traffic’s skeleton.

We therefore obtain the set of a traffic’s full teams , by carrying out the following steps:
1. Obtain the set of the skeleton’s full teams  by applying the fission algorithm.
2. Create for each skeleton’s full team a category by

2.1. initializing the includer with the transfers of the skeleton’s full team,
2.3. initializing the excluder as empty,
2.2. and putting into the depot all transfers of X non-congesting with the includer.

3. Apply the fission to each category, discarding the check for idle categories, since the 
includer is already a team, i.e. it uses all bottlenecks.

By first applying the fission to the skeleton and then expanding the skeleton’s full teams to the 
traffic’s full teams, we strongly reduce the required processing time and at the same time we 
obtain all full teams of the original traffic without repetitions.

ℑ X( )

ς X( ) ς X( ) X⊂

ℑ X( )
ℑ ς X( )( )



Let us experimentally measure the reduction in search space according to the different search 
space reduction methods we propose. We consider 31 different traffics within the T1 32 node 
cluster computer (Fig. 7). The search space is given by the number of nodes that are being 
explored within the recursion tree. Fig. 4 shows the obtained search space reductions compared 
with the same algorithm without taking into account idle and blank categories and retrieving first 
for skeleton full teams. The skeleton algorithm reduces on average the search space to 12.48%. 
Full teams are therefore computed 8 times faster than without search space reduction techniques. 
Note that all presented algorithms are smart enough to avoid repetitions of full simultaneities.

4. Liquid schedules

Recall that a partition of X is a disjoint collection of non-empty subsets of X whose union is X [13]
[14]. A schedule  of a traffic X is a collection of simultaneities of X partitioning the traffic X. A
step of a schedule  is an element of the schedule . , the length of a schedule , is the
number of steps in . A schedule of a traffic is optimal if the traffic does not have any shorter
schedule. If the length of a schedule is equal to the duration of the traffic then the schedule is
liquid. A liquid schedule is optimal, but the inverse is not always true, meaning that a traffic may
not have a liquid schedule. The Fig. 5. demonstrates a traffic, which does not have a team and
therefore may not have a liquid schedule. Fig. 6 shows a liquid schedule for the collective traffic
shown in Fig 1.
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The duration of a traffic X is the load of its bottlenecks. If a schedule is liquid, then each of its
timeframes must use all bottlenecks. Inversely, if all steps of a schedule use all bottlenecks, the
schedule is liquid.

The necessary and sufficient condition for the liquidity of a schedule is that all bottlenecks be used
by each step of the schedule. Since a simultaneity of X is defined as a team of X, if it uses all
bottlenecks of X, an equivalent condition for the liquidity of a schedule  on X is that each step of

 be a team of X.

4.1. Liquid schedule naive search algorithm

l1

l2

l3

l4

l5

l6

l7

l8

l9

{l1, l7, l8, l6},

{l2, l8, l9, l4},

{l3, l9, l7, l5}
{ }

Fig. 5. No team and no liquid schedule

{ }
{ }

{ }{ }
{ }{ }{l1, l7},

{l2, l8},
{l3, l12, l9},
{l5, l11, l6}

{l1, l12, l9},
{l2, l7},
{l3, l8},

{l4, l11, l6},
{l5, l10}

{l1, l12, l10},
{l2, l6},
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{l3, l7},
{l4, l11, l8}

{l3, l12, l10},
{l4, l9},

{l5, l11, l8}

Fig. 6. A liquid schedule of the collective traffic shown in Fig. 1. 
The comas separating elements of the schedule are 
omitted.
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Let us propose a naive liquid schedule construction technique. Consider all possible teams of the 
original traffic X. Take one of them (for example A1) and consider it as the first step of the liquid 
schedule. Remove the team A1 from the traffic and look at the reduced traffic. The choice for the 
second step is limited by only those teams of the original traffic X, which are included in the re-
duced traffic . Take a candidate for the second step from the current choice (for example 
A1,1). Remove from the traffic the team A1,1 as well. Similarly the choice for the third step is limited 
by only those teams of the original traffic X, which are included in the reduced traffic 

, etc.

The algorithm recursively search a liquid schedule in the depth-wise order. A node in the search 
tree represents a dead end if there are no choice for the successive step, i.e. no team of the original 
traffic may be formed from the reduced traffic (i.e. not yet carried out transfers). At the dead end 
nodes the algorithm backtracks one or more steps back and analyses other possibilities. The algo-
rithm stops at the node whose reduced traffic is a team of the original traffic. The collection of all 
teams on the path from the root to that terminal node is a liquid schedule.

4.2. Speeding up the search of a liquid schedule

Let’s analyse the liquid schedule shown in Fig. 6. Remove from the traffic a few steps of the sched-
ule and look at the reduced traffic.

Load of bottlenecks decreases in the reduced traffic. However the reduced traffic may contain ad-
ditional bottlenecks. More steps of a liquid schedule are carried out more additional bottlenecks ap-
pears in the reduced traffic (not yet carried out transfers).

The construction strategy of a liquid schedule presented in the subsection 4.1. form a choice of can-
didates to the successive step from all teams of the original traffic X included in the reduced traffic.

However note, that the steps of the liquid schedule, are not only teams for the original traffic, but 
they are also teams of the corresponding reduced traffics. We are going to prove that this property 
of steps is a necessary and sufficient condition of the liquidity of a schedule. Note that this properly 
is valid independently from the order of steps.

Therefore a step which is a team of the original traffic (uses the bottlenecks of the original traffic) 
but does not use the additional bottlenecks of the reduced traffic (isn’t a team of the reduced traffic) 
may not lead to a liquid schedule. Such a choice ultimately brings to a dead end and algorithm shall 
backtrack for evaluating other choices.

Since the set of bottlenecks in the reduced traffic is larger than the set of bottlenecks of the original 
traffic, the number of teams of the original traffic is much fewer than the number of teams of the 
original traffic (included in the reduced traffic). Therefore by limiting our choice at each step by 
the set of teams of the reduced traffic we considerably reduce the search space without affecting the 
solution space.

X A1–

X A1– A1 1,–



DISCUSSION. Suppose A is a timeframe of a liquid schedule  on a traffic X. Therefore A is a team
of . Remove the team A from X so as to form a new traffic . The duration of the new traffic

 is the load of the bottlenecks in . The bottlenecks of X are also the bottlenecks of
. The load of a bottleneck of X decreases by one in the new traffic  (note that the new

traffic  may have additional bottlenecks). The schedule  shortened by one element A is a
schedule for . The new schedule  has as many timeframes as the duration of the
corresponding new traffic . Therefore, if  is a liquid schedule on X then for any of its step
A the schedule  is a liquid schedule on . 

Consider traffic X as a problem whose solution is a liquid schedule . The technique presented in
section 3, is capable of generating the set of all teams of X. If X has a solution  then a timeframe
A of the schedule  is a member of the set of all teams of X and  is a schedule on .
Therefore the problem X can be reduced into smaller problems. Examine each possible team A of
X and search inductively (e.g. recursively) a solution for . If a solution exists for X, then this
method will find it. If the method does not find a solution for X, then, since we explored the full
solution space, we conclude that X does not have a liquid schedule.

We limit at each iteration our choice to the collection of only those teams of the original traffic
which are also teams of the current reduced sub-traffic (having an expanded number of
bottlenecks). By doing so, we considerably reduce the search space without affecting the solution
space.

By limiting the choice of the next step only by full teams of the reduced traffic we again reduce the 
search space of the construction algorithm. Let us show that here the solution space is not affected 
as well. Let us modify a liquid schedule so as to convert one of its teams into a full team. Let X (a 
traffic) have a solution  (a liquid schedule). Let A be a timeframe of . If A is not a full team of 
X, then, by moving the necessary transfers from other timeframes of , we can convert timeframe 
A to a full team. Evidently, the properties of liquidity (partitioning, simultaneousness and length) 
of  will not be affected. Therefore if X has a solution then it has also a solution when the team of 
one of its steps is full, hence the choice of the teams in the construction may be narrowed from the 
set of all teams to the set of full teams only.

By a choice of a full team A of a traffic X we are faced with the new smaller problem of searching
a liquid schedule for a traffic . The traffic  may not have a solution, or it may not have
even a team. In these cases we have to backtrack to evaluate other choices. Evaluation of all
choices ultimately leads to a solution if it exists.

Fig. 6 shows a liquid schedule built as explained above. Each its successive step being a team of
the reduced traffic incorporates all bottlenecks of that reduced traffic (shown in bold).

Thanks to the presented chain of optimizations, for more than 90 percent of our testbed topologies 
(see Section 5) the search of liquid schedules took less than one tenth of a second on a single 
500MHz processor. For 8 topologies out of 363 solution was not found within 24 hours.
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5. Testbed and measurements

In this section we present a testbed consisting of test traffics for different topologies.
Measurements of collective communications throughputs will help us to validate the efficiency of
our scheduling strategy.

As basic network topology for our testbed, we use the Swiss-T1 cluster (called henceforth T1, see
Fig. 7). The network of the T1 forms a K-ring [15] and has a static routing scheme. The
throughputs of all links are identical and are equal to 86MB/s. The cluster consists of 64
processors successively paired into 32 nodes [16], [17].

The test traffics are selected from different configurations of all-to-all collective data exchanges
between a set of emitting and receiving processors, where each emitting processor sends one
packet to each receiving processor. Within each node, one processor is an emitting and the other
processor is a receiving unit. Therefore any given allocation of nodes gives us an equal number of
emitting and receiving processors.

-  

-  Processor
} Node

1

2

3

4

5

6

7

8

Fig. 7. Architecture of the T1 cluster computer.
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6 3 7 1
7 8 8 6
8 5 3 1
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Since the T1 cluster incorporates 32 nodes, there ex-

ist  possible allocations of
nodes to an application. Considering only the
number of nodes in front of each switch, there are

only  different node allocations, since
there are 8 switches having each n used nodes
( ). Because of symmetries within the net-
work, many of these topologies are identical. To
limit our choice to really different topologies, we’ve
computed the liquid throughputs for each of 390625
topologies, taking in account the network’s real
routing tables. This resulted in only 363 different
liquid throughput values. Accordingly, we have
formed a test-bed consisting of 363 really different
topologies. Each of them is characterized by its liq-
uid throughput and the number of allocated nodes
(see Fig. 8)1.

We have sorted these 363 traffics and placed
them along an axis. They are sorted first by the
number of nodes and then according to the
value of the liquid throughput. Fig. 9 shows the
liquid throughput values together with the
measured throughput of a round-robin
schedule.

For each measurement the amount of data
transferred from a transmitting processor to a
receiving processor is equal to 2MB. For each
topology, 20 measurements were made. The
black dots represent the median of the

collected results. Measured throughput of the round-robin schedule is far below the network’s
potential liquid throughput. Throughputs of collective exchanges carried out according to a
random schedule do not perform better.

1.The figure demonstrates that depending on the sub-topology, the liquid throughput for a given number of nodes may
considerably vary.
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We have measured the throughput computed
with our liquid scheduling technique, for the
363 data exchanges on the T1 cluster. Fig. 10
shows the measured throughput compared with
the theoretical liquid throughputs.

Each black dot represents the median of 7
measurements. Processor to processor transfers
have a size of 5MB. The measured throughputs
are close to the theoretically computed liquid
throughput. For many sub-topologies, the
proposed scheduling technique allows to
increase the aggregate throughput by a factor
of two compared with a simple, topology un-

aware scheduling technique.

Thanks to the presented algorithms which strongly reduces the search space of liquid schedules,
the computation time of a liquid schedule takes for more than 97% of the considered sub-
topologies of the T1 cluster less than 1/10 of a second on a single 500MHz Alpha processor.

6. Conclusion

We propose a method for liquid scheduling of collective communication relying on the knowledge
of the underlying network topology. Collective communications relying on the liquid schedules
may be carried out several times faster compared with topology-unaware schedules.

Many applications such as parallel acquisition of multiple video streams, high energy physics
detector data acquisition and voice-over-data traffic switching may be covered by this model. Our
method may be applied to applications requiring high network efficiency, such as video or voice
traffic management, high energy physics data acquisition and event assembling.

Liquid schedule search technique relies on retrieval of different configurations of non-congesting
transfers. We have proposed a chain of techniques speeding up the formation of all possible
configurations of mutually non-congesting transfers. We have shown that liquid schedules may be
formed by assembling together only those configurations of non-congesting transfers which uses
all bottlenecks of the traffic. The consideration of different combinations of non-overlapping
subsets of non-congesting transfers leads to an exponential explosion of configurations. We have
proposed a technique that at each step limit the choice by non-congesting configurations utilizing
incrementing number of bottlenecks. We have proven that these technique does not affect to the
solution space and will find a liquid schedule whenever it exists. Thanks to the presented search
optimizations the computation time of a liquid schedule takes for the majority of test topologies
fractions of a second on a single processor.
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At the present we consider only static routing scheme. Dynamic routing could possibly be also
combined in the algorithms.

Fixed packet size transfers are considered. In the streaming applications in general we deal with
fixed packet size traffics.

The network latency are neglected in comparison with the transfer times.

Annex A.

One would think that the traffic-set model may not represent a collective exchange where a
sending processor may transfer a packet to a given receiving processor more than once, however
such a collective exchange may be easily converted into an equivalent problem so as to be
represented by the traffic-set model. For example, suppose that a collective exchange of Fig. 1 in
addition to all 25 transfers, performs once more the transfer {l1, l6} (i.e. T1 R1). Clearly this 26-
transfer-traffic may not be directly represented as a set of transfers. However, Fig. 11 shows that
we may easily add to the topology of Fig. 1 two additional virtual links l13 and l14 and distinguish
two identical transfers and therefore represent the 26-transfer-traffic through the set-traffic model.

Annex B.

Let us consider the transfers of a collective data exchange as the vertices of a graph and signify
congestion between two transfers by an edge in the graph between the corresponding two vertices.
Fig. 12 shows a graph corresponding to the collective data exchange shown in the Fig. 1. Vertex

 corresponds to transfer from emitting processor n to receiving processor m. For example the

l1
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l2 l3 l4 l5
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Fig. 11. Multiple transfers through same paths 
(modification of the topology of Fig.1)

xn m,



vertex  represents the transfer {l4, l11, l6}. The bold edges of graph show congestions of
transfers in bottleneck links.

Liquid schedule search problem can be represented by graph colouring problem [Ref]. Whenever
a liquid schedule exist an optimal solution of the graph colouring problem is a liquid schedule.
The chromatic number of the graph’s optimal colouring is the length of the liquid schedule. The
vertices having the same colour together represent a step of a liquid schedule.

The graphs corresponding to collective data exchanges usually is characterised by a high density
of edges (see Fig. 13). An all-to-all data exchange on the Swiss T1 cluster with 32 transmitting and
32 receiving processors forms a graph with 48704 edges. In our approach we use additional
problem specific information that allows us to compute in advance the chromatic number of the
optimal solution (duration of the traffic). Further during the search we consider only those
configurations, where for each colour the corresponding vertices together use all bottlenecks.
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Fig. 12. Graph corresponding to the data exchange shown in the 
Fig. 1. The 25 vertices of the graph represent the transfers 
and the edges represent congestion relation between trans-
fers.



However we haven’t analysed the efficiency of our technique compared with different graph
colouring algorithms. This analysis is the subject of our further research.
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