
1

Abstract

We propose a method for the optimal scheduling of
collective data exchanges relying on the knowledge of the
underlying network topology. We introduce the concept of
liquid schedules. Liquid schedules ensure the maximal
utilization of a network’s bottleneck links and offer an
aggregate throughput as high as the flow capacity of a
liquid in a network of pipes. The collective communication
throughput offered by liquid schedules in highly loaded
networks may be several times higher than the throughput
of traditional topology-unaware scheduling techniques
such as round-robin or random schedules. To create a
liquid schedule we need to find the smallest partition of a
set of transfers into subsets of mutually non-congesting
transfers. For network topologies (switches,
communication links) having equilibrated throughput
capabilities, the number of combinations of non-
overlapping subsets of mutually non-congesting transfers
grows exponentially with the number of transfers. We
propose several methods to reduce the search space
without affecting the solution space. On a real 32 node
computer cluster, the measured liquid throughputs
scheduled according to our method are very close to the
theoretical liquid throughputs.

Keywords: Optimal network utilization, collective data
exchange, liquid schedules, network topology, topology-
aware scheduling.

1. Introduction

The interconnection topology is one of the key factors of a
computing cluster. It determines the performance of the
communications, which are often a limiting factor of
parallel applications [1], [2], [3], [4]. Depending on the
transfer block size, there are two opposite factors (among
others) influencing the aggregate throughput. Due to
communication protocol overhead, point to point
throughput may decrease with the decrease of the packet
size. However, smaller messages allow a more progressive
utilization of network links. Intuitively, the data flow
becomes liquid when the packet size tends to zero [5], [6].
In this paper we consider collective data exchanges

between nodes where packet sizes are relatively large, i.e.
the network latency is much smaller than the transfer time.
The aggregate throughput of a collective data exchange
depends on the underlying network topology and on the
number of contributing processing nodes. The total amount
of data together with the longest transfer time across the
most loaded links (bottlenecks) gives an estimation of the
aggregate throughput. We define this estimation as the
liquid throughput of the network. It corresponds to the flow
capacity of a non-compressible fluid in a network of pipes
[6]. Due to transfers of data packets, congestions may occur
and the aggregate throughput of a collective data exchange
may be lower than the liquid throughput. The rate of
congestions of a given data exchange may vary according
to the chosen sequence of transfers.

The present contribution presents a scheduling technique
for obtaining the liquid throughput. We limit ourselves to
fixed packet sizes and neglect network latencies. Switches
are assumed to be full cross-bar, also with negligible
latencies.

Previous research efforts were focused on the optimization
and scheduling of collective communications over
wavelength division multiplexing optical networks [7] as
well as of communications over satellite-switch time
division multiplexing networks [8].

Unlike flow control based congestion avoidance
mechanisms [9] [10], we establish schedules for the data
transfers without trying to regulate the sending processors’
data rate. We specifically address the problem of reaching
the flow capacity of a fluid in a network by trying to
optimally schedule the set of transfers of a collective data
exchange.

There are numerous applications requiring highly efficient
network resources: parallel acquisition of multiple video
streams each one forwarded to a set of target nodes [11],
[12], voice-over-data traffic switching [13], [14] and high
energy physics data acquisition and transmission from a
large number of detectors to a cluster of processing nodes
for filtering and event assembling [15], [16].

Network Topology Aware Scheduling of Collective Data Exchanges

Emin Gabrielyan, Roger D. Hersch
École Polytechnique Fédérale de Lausanne, Switzerland

{Emin.Gabrielyan,RD.Hersch}@epfl.ch

2

For example, consider the all-to-all collective data
exchange shown in Fig. 1. There are 5 transmitting
processors (T1,... T5), each of them sending a packet to
each of the receiving processors (R1... R5). The network
consists of 12 links. Links l11 and l12 are the most loaded
links, since each of them will be used by 6 transfers. The
most loaded links are the bottlenecks of the collective data
exchange. They have the longest active time. In the best
case, the duration of a collective data exchange is as long as
the active time of the bottleneck links.

A round-robin schedule is carried out in 5 phases: (1)
{T1gR1, T2gR2 ... T5gR5}, (2) {T1gR2, T2gR3 ...
T5gR1}, etc. The round-robin schedule’s throughput is
however lower than the liquid throughput, since bottleneck
links l11 and l12 are idle in phase 1 (Fig. 2). Phases 3 and 4
are carried out in two steps, since they contain congesting
transfers.

Fig. 3 shows that a schedule achieving the liquid
throughput for the considered collective data exchange
exists.

Section 2 shows how to describe the liquid throughput as a
function of the number of contributing processing nodes
and their underlying network topologies. The construction
of liquid schedules is presented in section 3. In section 4,
we present measurements for the considered sub-topologies
and in section 5 we draw the conclusions.

2. Throughput as a function of sub-topology

Let us introduce a few test topologies for which liquid
schedules will be computed.

In order to plot the throughput of collective data exchanges
as a function of the network topology, we specify along an
independent axis the number of contributing processing
nodes as well as significant variations of their underlying
network topologies. For the sake of simplicity, each node
incorporates a transmitting and a receiving processor. The
applications perform all-to-all data exchanges over the
allocated nodes (each transmitting processor sends one
packet to each receiving processor).

Let us create variations of processing node allocations on
the Swiss-T1 cluster (called henceforth T1, see Fig. 4). The
network of the T1 forms a K-ring [17] and has a static
routing scheme. The throughputs of all links are identical,

{l1, l6}, {l1, l7}, {l1, l8}, {l1, l12, l9}, {l1, l12, l10},

{l2, l6}, {l2, l7}, {l2, l8}, {l2, l12, l9}, {l2, l12, l10},

{l3, l6}, {l3, l7}, {l3, l8}, {l3, l12, l9}, {l3, l12, l10},

{l4, l11, l6}, {l4, l11, l7}, {l4, l11, l8}, {l4, l9}, {l4, l10},

{l5, l11, l6}, {l5, l11, l7}, {l5, l11, l8}, {l5, l9}, {l5, l10}

l1 l2 l3 l4 l5

l6 l7 l8 l9 l10

l11

l12

Fig. 1. Example of a data exchange composed of 25 trans-
fers

T1 T2 T3 T4 T5

R1 R3R2 R4 R5

phase 1 phase 2 phase 3.1

phase 3.2 phase 4.1 phase 4.2

phase 5
Fig. 2. Round-robin schedule of

transfers (7 steps).

Fig. 3. An optimal schedule (6 steps).

step 1 step 2 step 3

step 4 step 5 step 6

3

equal to 86MB/s. The cluster consists of 64 processors
paired into 32 nodes [18].

Since there may be between 0 and 4 allocated nodes in front

of each of 8 switches, we have possible
processing node allocations. With the given network
topology and routing tables, we can compute for each
combination of node allocation the liquid throughput of the
all-to-all traffic.

Because of various symmetries within the network, many of
these node allocations yield an identical liquid throughput.
We enumerated 363 different node allocations correspond-
ing each one to a different underlying network sub-topolo-
gy. Each of these sub-topologies is characterized by its
liquid throughput and the number of allocated nodes (see
Fig. 5). Depending on the sub-topology, the liquid through-
put for a given number of nodes may considerably vary.

These 363 topologies are placed on one axis, sorted first by
the number of nodes and then according to their liquid
throughput. Fig. 6 shows the predicted liquid throughput
values together with the measured throughput of a round-
robin schedule.

For many sub-topologies, the theoretical liquid throughput
is twice as large as the round-robin throughput.

-

- Processor

} Node

1

2

3

4

5

6

7

8

Fig. 4. Architecture of the T1 cluster computer.

1 2 3 4 5 6 7 8
1 O P 2 P 4 P 8 P
2 P O P 7 P 3 P 5
3 2 P O P 4 P 8 P
4 P 7 P O P 7 P 3
5 4 P 4 P O P 6 P
6 P 3 P 7 P O P 1
7 8 P 8 P 6 P O P
8 P 5 P 3 P 1 P O

Routing Table

Full Crossbar
Switch

5
8

390625=

0

200

400

600

800

1000

1200

1400

1600

1800

0 4 8 12 16 20 24 28 32
Number of contributing nodes

Li
qu

id
 th

ro
ug

hp
ut

 (
M

B
/s

)

Upp
er

 b
ou

nd

Lo
wer

 b
ou

nd

Fig 5. Liquid throughput in function of the number
of nodes with variations according to sub-
topologies.

0
200
400
600
800

1000
1200
1400
1600
1800

0
 0

0
64

 0
8

10
0

 1
0

12
1

 1
1

14
4

 1
2

16
9

 1
3

19
6

 1
4

22
5

 1
5

22
5

 1
5

25
6

 1
6

28
9

 1
7

32
4

 1
8

36
1

 1
9

40
0

 2
0

44
1

 2
1

48
4

 2
2

57
6

 2
4

62
5

 2
5

90
0

 3
0

Number of transfers and number of
contributing nodes for the 363 sub-topologies

T
hr

ou
gh

pu
t (

M
B

/s
)

theoretical liquid measured round-robin

Fig. 6. Theoretical liquid throughput and measured round-
robin schedule throughput for 363 network sub-
topologies.

4

3. Liquid schedules

This section presents a method for building liquid
schedules on any topology. As in many computer cluster
networks, we assume a static routing scheme. The
presented method is valid for any combination of
transmitting and receiving processors performing any type
of collective exchange (not limited to all-to-all exchanges).
We neglect network latencies and assume a constant packet
size for all data exchanges. A sending processor may
transfer a packet to a given receiving processor not more
than once.

Let us introduce a formal model of a collective data
exchange.

DEFINITIONS. A transfer is a set of links (i.e. the links
forming the path from a sending processor to a receiving
processor). A traffic is a set of transfers (i.e. the transfers
forming the collective exchange, see Fig. 1). A link l is
utilized by a transfer x if . A link l is utilized by a
traffic X if l is utilized by a transfer of X. Two transfers of a
traffic X congest if they use a common link. A sub-traffic of
X (a subset of X) is simultaneous if it forms a collection of
non-congesting transfers.

A simultaneous subset of a traffic is processed in the time
frame of a single transfer. The load of a link l in the traffic
X is the number of transfers in X using l. The maximally
loaded links are called bottlenecks. The duration of a
traffic X is the load of its bottlenecks. The size of the traffic

 is the number of its transfers. The liquid throughput
of a traffic X is the ratio multiplied by the
single link throughput.

For example, the traffic X shown in Fig. 1 has a number of
transfers and the duration of the traffic is

. Therefore the aggregate liquid throughput is
the ratio of a single link throughput, i.e.

, assuming a single
link throughput of 100MB/s.

3.1. Partitioning

A partition of X is a disjoint collection of non-empty
subsets of X whose union is X [19]. A schedule of a
traffic X is a collection of simultaneous sub-traffics of X
partitioning the traffic X. A step of a schedule is an
element of the schedule . The length of a schedule
gives the number of steps in . A schedule of a traffic is
optimal if the traffic does not have any shorter schedule. If

the length of a schedule is equal to the duration of the
traffic, then the schedule is liquid. A liquid schedule is
optimal, but the inverse is not always true, meaning that a
traffic may not have a liquid schedule. Fig. 7 shows a liquid
schedule for the collective traffic shown in Fig 1.

The duration of a traffic X is the load of its bottlenecks. If a
schedule is liquid, then each of its steps must use all
bottlenecks. Inversely, if all steps of a schedule use all
bottlenecks, the schedule is liquid.

The necessary and sufficient condition for the liquidity of a
schedule is that all bottlenecks be used by each step of the
schedule. Since a simultaneous sub-traffic of X is defined
as a team of X, if it uses all bottlenecks of X, an equivalent
condition for the liquidity of a schedule on X is that each
step of be a team of X.

Our strategy for finding a liquid schedule will therefore rely
on searching for simultaneous sub-traffics using all
bottlenecks, i.e. teams of a traffic. Hence, we need to
partition a traffic by collections of teams (whenever
possible).

Let us show that by removing an element (step) from a
liquid schedule, we form a new liquid schedule on the
remaining traffic. Note that the remaining traffic may have
additional bottlenecks. For example, in Fig. 7, from step 3
on, links l3 and l8 appear as additional bottlenecks.
Emerging additional bottlenecks allow us to reduce the
search space when creating a liquid schedule.

l x∈

Λ X()

X()
X() Λ X()⁄

X() 25=
Λ X() 6=

25 6⁄
25 6⁄() 100× MB s⁄ 416.67MB s⁄=

α

α
α # α()

α

{ }
{ }

{ }{ }
{ }{ }{l1, l7},

{l2, l8},
{l3, l12, l9},
{l5, l11, l6}

{l1, l12, l9},
{l2, l7},
{l3, l8},

{l4, l11, l6},
{l5, l10}

{l1, l12, l10},
{l2, l6},

{l4, l11, l7},
{l5, l9}

{l1, l8},
{l2, l12, l9},

 {l3, l6},
{l4, l10},

{l5, l11, l7}

{l1, l6},
{l2, l12, l10},

{l3, l7},
{l4, l11, l8}

{l3, l12, l10},
{l4, l9},

{l5, l11, l8}

Fig. 7. A liquid schedule for the collective traffic shown in Fig.
1. Bold links in a step indicate bottlenecks in the reduced
traffic, i.e. the original traffic minus the transfers of the
preceding steps.

step 1 step 2 step 3

step 4 step 5 step 6

α
α

5

THEOREM 1. Let be a liquid schedule on X and A be a
step of . Then is a liquid schedule on .

PROOF. Clearly A is a team of X. Remove the team A from
X so as to form a new traffic . The duration of the
new traffic is the load of the bottlenecks in .
Bottlenecks of include the bottlenecks of X. The load
of a bottleneck of X is decreased by one in the new traffic

 and therefore the duration of is the duration of
X decreased by one, i.e. . The
schedule without the element A is a schedule for
with the previous length decreased by one. Therefore the
new schedule has as many steps as the duration of
the new traffic . Hence is a liquid schedule
on .

In other words, if the traffic has a liquid schedule, then a
schedule reduced by one team is a liquid schedule on the
reduced traffic. The repeated application of Theorem 1
implies that any non-empty subset of a liquid schedule is a
liquid schedule on the correspondingly reduced traffic.

3.2. Construction

THEOREM 2. If, by traversing each team A of a traffic X
none of the sub-traffics has a liquid schedule, then
the traffic X does not have a liquid schedule either.

PROOF. Let us suppose that X has a liquid schedule .
Then a step A of shall be a team of X. Further, according
to Theorem 1 the schedule shall be a liquid
schedule for . Therefore for at least one team A of X
the sub-traffic has a liquid schedule. This proves the
theorem by contraposition.

Theorem 2 implies that if X has a liquid schedule at least
one team A of X will be found, such that the sub-traffic

 has a liquid schedule . Obviously will be
a liquid schedule for X.

Let us give an overall view to the liquid schedule search
algorithm. The algorithm recursively searches for a
solution by traversing a tree in depth-wise order (Fig. 8).
The root of the tree is the original traffic X. Associated to
the traffic X is the collection of all possible steps of a liquid
schedule . Successor nodes are formed by

subtraffics , , . Each of these

successor nodes has its own collection of all possible steps.
As before, each member of this collection will produce
successor nodes at the next level of the tree.

Let us discuss how to build the collection of all possible
steps for the current node. For being liquid, it is sufficient
that all the steps of a schedule be teams of the original
traffic X. A possible step at each sub-traffic is any team of
X formed by not yet carried out transfers, i.e. each team A
of the original traffic X included in the current sub-traffic

, i.e. , the operator

associating with a traffic the set of all its teams.

We would like to reduce the search space. Instead of
forming the set of possible steps by using teams of the
original traffic , we propose to

form the set of all possible steps at the current node using
all teams of the current sub-traffic, i.e. . It can

be shown that the number of teams of the current subtraffic

α
α α A{ }– X A–

X A–
X A– X A–

X A–

X A– X A–
Λ X A–() Λ X() 1–=

α X A–

α A{ }–
X A– α A{ }–

X A–

X A–

α
α

α A{ }–
X A–

X A–

X A– β β A{ }∪

A1 A2 … An, , ,{ }

X A1– X A2– … X An–

Fig. 8. Liquid schedule search tree. The symbol “F ”
points to all possible steps for the current reduced
traffic.

X F A1, A2, A3, ...

X1 = X A1 F A1,1, A1,2, A1,3, ...

X1,1 = X1 A1,1 F A1,1,1, A1,1,2, A1,1,3, ...

X1,2 = X1 A1,2 F A1,2,1, A1,2,2, A1,2,3, ...

X1,3 = X1 A1,3 F A1,3,1, A1,3,2, A1,3,3, ...

X2 = X A2 F A2,1, A2,2, A2,3, ...

X2,1 = X2 A2,1 F A2,1,1, A2,1,2, A2,1,3, ...

X2,2 = X2 A2,2 F A2,2,1, A2,2,2, A2,2,3, ...

X3 = X A3 F A3,1, A3,2, A3,3, ...

X3,1 = X3 A3,1 F A3,1,1, A3,1,2, A3,2,3, ...

Xreduced A ℑ X()∈ A Xreduced⊂{ } ℑ

A ℑ X()∈ A Xreduced⊂{ }

ℑ Xreduced()

6

 is smaller or equal to the number of teams of

the original traffic whose transfers belong to the current
subtraffic, i.e.

.

Therefore less possible teams need to be considered when
building the schedule and the solution space is not affected,
since theorem 2 is valid at any level of the search tree.

By traversing the tree in depth-wise order, we cover the full
solution space. A solution is found when the current node
(sub-traffic) forms a single team. The path from the root to
that leaf node forms the set of teams yielding the liquid
schedule. A node presents a dead end if it is not possible to
create a team out of that sub-traffic. In that case we have to
backtrack to evaluate other choices. Evaluation of all
choices ultimately leads to a solution if it exists.

If a solution exists for X, then the algorithm will find it. If
the algorithm does not find a solution for X, and since we
explored the full solution space, we conclude that X does
not have a liquid schedule.

Let us describe a further simple and efficient search space
reducing technique.

DEFINITIONS. A simultaneous subset A of a traffic X is full
with respect to X if each transfer of is in congestion
with a transfer of A. A team of X is called full team if it is a
full simultaneous subset of X.

Let us modify a liquid schedule so as to convert one of its
teams into a full team. Let a traffic X have a liquid schedule

. Let A be a step of . If A is not a full team of X, then,
by moving the necessary transfers from other steps of ,
we can convert step A to a full team. Evidently, the

properties of liquidity (partitioning, simultaneousness and
length) of will not be affected. Therefore if X has a
solution then it has also a solution when one of its steps is
full, hence the choice of the teams in the construction may
be narrowed from the set of all teams to the set of full teams
only. Fig. 7 shows a liquid schedule constructed with full
teams.

In order to be able to explore the full solution space for
obtaining a liquid schedule, we need to successively build
all full teams. We designed a procedure capable of
generating (without repetitions) all full teams of an
arbitrary traffic. It first builds skeletons, an intermediate
collection of teams from a sub-traffic including only those
transfers which comprise bottlenecks. Then it expands each
skeleton by applying variations of all non-congesting
transfers in order to build up all full teams.

As briefly described in the annex, the problem of creating a
liquid schedule seems to be a more constrained problem
than the general graph coloring problem.

4. Results

Let us compare the predicted theoretical values of the liquid
throughputs with the measurements of the actual data
exchanges carried out according to the liquid schedules we
have found.

Fig. 9 shows the measured aggregate throughput of an all-
to-all collective data exchange executed on a T1 computer
cluster, optimized by applying our liquid schedule based
traffic partitioning technique. Each black dot represents the
median of 7 measurements. The horizontal axis represents
the 363 sub-topologies as well as the number of
contributing nodes. Processor to processor transfers have a

ℑ Xreduced()

ℑ Xreduced()() ≤ # A ℑ X()∈ A Xreduced⊂{ }()

X A–

α α
α

α

0
200
400
600
800

1000

1200
1400
1600
1800
2000

0 6 8 9 9 10 11 11 12 12 12 13 13 14 14 14 15 15 15 16 16 17 17 17 18 18 19 19 19 20 20 21 21 22 22 23 24 25 26 27 30

Number of contributing nodes for the 363 sub-topologies

A
ll-

to
-a

ll
th

ro
ug

hp
ut

 (
M

B
/s

)

Fig. 9. Predicted liquid throughput and measured throughput according to the computed liquid schedule.

measurements on T1 according to the computed liquid schedule
liquid throughput

7

size of 5MB, transferred as a single message of 5MB. The
measured all-to-all aggregate throughputs (black dots) are
close to the theoretically computed liquid throughput (gray
line). For many sub-topologies, the proposed scheduling
technique allows to increase the aggregate throughput by a
factor of two compared with a simple round-robin schedule
(Fig. 6).

Thanks to the presented search space reduction algorithms,
the computation time of a liquid schedule takes for more
than 97% of the considered sub-topologies of the T1 cluster
less than 1/10 of a second on a single Compaq 500MHz
Alpha processor.

5. Conclusion

We propose a method for scheduling collective data
exchanges in order to obtain an aggregate throughput equal
to the network’s liquid throughput. This is achieved by
building at each step of the schedule mutually non-
congesting sets of transfers using all bottleneck links.
Exploration of the full solution space yields a liquid
schedule if it exists. The proposed search space reduction
techniques make the approach practical for networks
having in the order of ten interconnected crossbar switches.

On the Swiss T1 cluster computer, the proposed scheduling
technique allows for many sub-topologies to increase the
collective data exchange throughput by a factor of two.

In the future, we intend to explore how to extend the
presented scheduling technique in order to dynamically
reschedule collective data exchanges when the set of
planned exchanges evolves over time.

Annex

The search for a liquid schedule requires to partition the
traffic into a set of non-overlapping mutually non-
congesting transfers. The problem can also be formulated
as a graph coloring problem [20], [21]. Vertices of the
graph are formed by transfers. Edges between vertices
represent congestions between transfers.

Fig. 10 shows the graph whose vertices are to be colored

for the collective data exchange of Fig. 1. Vertex

corresponds to a transfer from an emitting processor n to a

receiving processor m. For example vertex represents

x
1,1

x2,1

x
3,1 x

4,1
x5,1

x
1,2

x2,2

x3,2 x
4,2

x
1,3

x2,3
x
3,3 x4,3

x
1,4

x
2,4

x
3,4 x

4,4
x5,4

x
1,5

x4,5
x5,5

Fig. 10. Graph corresponding to the data exchange shown in Fig. 1. The 25 verti-
ces of the graph represent the transfers. The edges represent congestion
relations between transfers, i.e. each edge represents one or more com-
munication links shared by two transfers.

These bold edges
represent all conges-
tions due to bottle-
neck link l11

These bold edges
represent all conges-
tions due to bottle-
neck link l12

xn m,

x4 1,

8

the transfer T4gR1={l4, l11, l6}. The bold edges of the
graph show congestions of transfers due to specific
bottleneck links.

Whenever a liquid schedule exists, an optimal solution of
the graph coloring problem is a liquid schedule. The
chromatic number of the graph’s optimal coloring is the
length of the liquid schedule. Vertices having the same
color represent a step of the liquid schedule.

The graph to be colored is characterised by the high density
of its edges. We can label each edge of the graph by the
link(s) causing the congestion. An all-to-all data exchange
on the Swiss T1 cluster with 32 transmitting and 32
receiving processors forms a graph with
vertices and 48704 edges. The approach we propose allows
to compute in advance the chromatic number of the graph’s
optimal coloring (length of the liquid schedule).
Furthermore, we further reduce the problem by first trying
to “color” vertices having edges representing all bottleneck
links (creation of teams). Then we work on the reduced
graph, formed by the original graph minus the colored
vertices (forming teams on sub-traffics). This suggests that
our problem is a more constrained problem than the general
graph coloring problem. It remains to be checked how our
solution compares with solutions to variants of the graph
coloring problem.

References

[1] H. Sayoud, K. Takahashi, B. Vaillant, “Designing commu-
nication network topologies using steady-state genetic algo-
rithms”, IEEE Communications Letters, Vol. 5, No. 3,
March 2001, 113-115.

[2] Pangfeng Liu, Jan-Jan Wu, Yi-Fang Lin, Shih-Hsien Yeh,
“A simple incremental network topology for wormhole
switch-based networks”, Proc. 15th International Parallel
and Distributed Processing Symposium, 2001, 6-12.

[3] P.K.K. Loh, Wen Jing Hsu, Cai Wentong, N. Sriskanthan,
“How network topology affects dynamic loading balanc-
ing”, IEEE Parallel & Distributed Technology: Systems &
Applications, Vol. 4, No. 3, 25-35.

[4] V. Puente, C. Izu, J. A. Gregorio, R. Beivide, J. M. Prellezo,
F. Vallejo, “Improving parallel system performance by
changing the arrangement of the network links”, Proc. of the
International Conference on Supercomputing, May 2000,
44-53.

[5] M. Naghshineh, R. Guerin, “Fixed versus variable packet
sizes in fast packet-switched networks”, Proc. Twelfth
Annual Joint Conference of the IEEE Computer and Com-
munications Societies INFOCOM '93., Networking: Foun-
dation for the Future, IEEE Press, Vol. 1, 1993, 217-226.

[6] Benjamin Melamed, Khosrow Sohraby, Yorai Wardi,
“Measurement-Based Hybrid Fluid-Flow Models for Fast

Multi-Scale Simulation”, DARPA/NMS BAA 00-18
AGREEMENT No. F30602-00-2-0556, http://
www.darpa.mil/ito/research/nms/meetings/nms2001apr/
Rutgers-SD.pdf

[7] J.-C. Bermond, L. Gargano, S. Perennes, A. A. Rescigno,
and U. Vaccaro, “Efficient collective communication in
optical networks”, Proc. of ICALP'96. Lecture Notes in
Computer Science, 574-585, 1996.

[8] R. Jain, G. Sasaki, “Scheduling packet transfers in a class of
TDM hierarchical switching systems”, IEEE International
Conference on Communications ICC '91, Vol. 3, 1991,
1559-1563.

[9] Dah-Ming Chiu, Raj Jain, “Analysis of the increase and
decrease algorithms for congestion avoidance in computer
networks”, Computer Networks and ISDN Systems, 1989,
Vol. 17, 1-14.

[10] H. Ozbay, S. Kalyanaraman, A. Iftar, “On rate-based con-
gestion control in high-speed networks: Design of an H-
infinity based flow controller for single bottleneck”, Proc. of
the American Control Conference, June 1998, 2376-2380.

[11] S.-H.G. Chan, “Operation and cost optimization of a distrib-
uted server architecture for on-demand video services”,
IEEE Communications Letters, Vol. 5, No. 9, Sept. 2001,
384-386.

[12] Dinkar Sitaram, Asit Dan, Multimedia Servers, Morgan
Kaufmann Publishers, San Francisco California, ISBN 1-
55860-430-8, 2000, 69-73.

[13] H.323 Standards, http://www.openh323.org/standards.html
[14] D.A. Fritz, D.W. Moy, R.A. Nichols, “Modeling and simu-

lation of Advanced EHF efficiency enhancements”, Proc. of
Military Communications Conference, IEEE MILCOM
1999, Vol. 1, 354-358.

[15] ATLAS Collaboration, CERN, Technical Progress Report,
http://press.web.cern.ch/Atlas/GROUPS/DAQTRIG/TPR/
PDF_FILES/TPR.bk.pdf

[16] Large Hadron Collider, Computer Grid project, CERN,
20.09.2001, http://press.web.cern.ch/Press/Releases01/
PR10.01EGoaheadGrid.html

[17] P. Kuonen, “The K-Ring: a versatile model for the design of
MIMD computer topology”, Proc. of the High-Performance
Computing Conference (HPC'99), San Diego, USA, April
1999, 381-385.

[18] Pierre Kuonen, Ralf Gruber, “Parallel computer architec-
tures for commodity computing and the Swiss-T1 machine”,
EPFL Supercomputing Review, Nov 99, pp. 3-11, http://
sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-
page3.html

[19] Paul R. Halmos, Naive Set Theory, Springer-Verlag New
York Inc, ISBN 0-387-90092-6, 1974, 26-29.

[20] G. Campers and O. Henkes and J. P. Leclerq “Graph Color-
ing Heuristics: A Survey, Some New Propositions and
Computational Experiences on Random and ‘{L}eighton's’
Graphs” Proc. Operational Research, 917-932, 1988.

[21] A. Hertz and D. de Werra “Using Tabu Search Techniques
for Graph Coloring” in Computing(39) 345-351, 1987.

32 32× 1024=

