
1

Abstract

We propose a method for the optimal scheduling of
collective data exchanges relying on the knowledge of
the underlying network topology. We introduce the
concept of liquid schedules. Liquid schedules ensure
the maximal utilization of a network’s bottleneck links
and offer an aggregate throughput as high as the flow
capacity of a liquid in a network of pipes. The
collective communication throughput offered by
liquid schedules in highly loaded networks may be
several times higher than the throughput of topology-
unaware techniques. To create a liquid schedule we
need to find the smallest partition of all transfers into
subsets of mutually non-congesting transfers. The
number of combinations of non-overlapping subsets
of mutually non-congesting transfers grows
exponentially with the number of transfers. We
propose several methods to reduce the search space
without affecting the solution space. On a real 32
node computer cluster, the measured throughputs of
data exchanges scheduled according to our method
are very close to the theoretical liquid throughputs.

Keywords: Optimal network utilization, collective
data exchange, liquid schedules, network topology,
topology-aware scheduling.

1. Introduction

Interconnection topology is one of the key elements
determining the global communication throughput. In
high-speed networks such as those used in cluster
computing [Boden95], [Duato01] and in optical
communication networks [Stern99], the network is
often formed by a set of full crossbar switches (called
optical switches in optical networks). CDMA spread
spectrum wireless networks [Battiti99] also can be
viewed as interconnection topologies whose links
represent orthogonal frequency spectra.

Full crossbar switches allow to dynamically route
packets from their input ports to their output ports.
The crossbar switches we consider are cut-through
switches with full connectivity allowing
simultaneous transfers from any input port to any
output port.

In the present contribution, we deal with the problem
of collective communications through networks made
of cut-through switches. We assume that end nodes do
not perform store and forward operations. We also
assume that the collective communication pattern is
known in advance.

The aggregate throughput of a collective data
exchange depends on the underlying network
topology and on the number of receiving and emitting
nodes (end nodes). The total amount of data together
with the longest transfer time across the most loaded
links gives an estimation of the aggregate throughput.
We define this estimation as the liquid throughput of
the network. It corresponds to the flow capacity of a
non-compressible fluid in a network of pipes
[Melamed01]. In most networks such as wormhole,
cut-through, wavelength division and spread
spectrum wireless networks, during a single message
transmission, the corresponding link resources
(communication circuits, wavelengths and frequency
spectra) are kept occupied, causing therefore
congestions between concurrent messages sharing a
common link resource. Therefore, the aggregate
throughput of a collective data exchange may be
lower than the liquid throughput. The rate of
congestions of a given data exchange may
considerably vary according to the order in which the
transfers are carried out.

This paper presents an algorithm proposing a
schedule of transfers achieving the liquid throughput
whenever such a schedule exists (henceforth called
liquid schedule). The present approach assumes fixed
packet sizes and neglects network latencies. These
assumptions are acceptable in low latency networks
(e.g. Myrinet) or for networks transmitting long
messages (e.g. TDMA/CDMA networks).

We measured the performances of liquid schedules
obtained by our scheduling algorithms on a set of real
network topologies consisting of cut-through full
cross-bar switches and obtained results close to the
liquid throughputs.

In the context of wavelength routing in all-optical
networks, it was shown that the computation of an
optimal routing scheme can be formulated as a graph-

Network Topology Aware Scheduling of Collective Communications

Emin Gabrielyan, Roger D. Hersch
École Polytechnique Fédérale de Lausanne, Switzerland

{Emin.Gabrielyan,RD.Hersch}@epfl.ch

k k×

2

coloring problem and that for general types of
networks, the problem is NP-hard [Beauquier97].
However, greedy algorithms exist which provide sub-
optimal solutions in polynomial time. There has been
work on theoretical considerations about the required
number of wavelengths and the complexity of finding
a solution according to the network topology
[Bermond96], [Caragiannis02]. Specific classes of
topologies were also analysed in the context of
satellite-switch time division multiplexing networks
[Jain91].

Unlike flow control based congestion avoidance
mechanisms [Chiu89] [Ozbay98], we establish
schedules for the data transfers without trying to
regulate the sending processors’ data rate. We
specifically address the problem of reaching the flow
capacity of a fluid in a network by optimally
scheduling the set of transfers of a collective data
exchange.

There are numerous applications requiring highly
efficient network resources: parallel acquisition and
distribution of multiple video streams [Chan01],
[Sitaram00]; switching of simultaneous voice
communication sessions [H.323], [Fritz99]; and high
energy physics data acquisition and transmission from
a large number of detectors to a cluster of processing
nodes for data filtering and event assembling
[CERN01].

The solution we propose may also be helpful to
schedule collective communications in switched
optical networks with wavelength conversion
[Bermond96], [Caragiannis02]. It may allow within
single hop all-optical networks to compute for a given
network and routing scheme, both the minimal
number of wavelengths to be assigned to individual
links and a schedule of a given collective data
exchange.

1.1. The scheduling problem

For example, consider the all-to-all collective data
exchange shown in Fig. 1. There are 5 transmitting
processors (T1,... T5), each of them sending a packet
to each of the receiving processors (R1... R5). The
network consists of 12 links. Links l11 and l12 are the
most loaded links, since each of them will be used by
6 transfers. The most loaded links are the bottlenecks
of the collective data exchange. They have the longest
active time. In the best case, the duration of a
collective data exchange is as long as the active time
of the bottleneck links.

A round-robin schedule is carried out in 5 phases: (1)
{T1!R1, T2!R2 ... T5!R5}, (2) {T1!R2, T2!R3
... T5!R1}, etc. The round-robin schedule’s

throughput is lower than the liquid throughput,
because bottleneck links l11 and l12 are idle in phase 1
(Fig. 2). Phases 3 and 4 need to be carried out in two
time frames, since they contain congesting transfers.

Fig. 3 shows that a schedule achieving the liquid
throughput for the considered collective data
exchange exists.

Section 2 introduces a testbed consisting of 363
different network sub-topologies and represents the
liquid throughput as a function of the number of
contributing processing nodes and their underlying
network topologies. The algorithms for the
construction of liquid schedules are presented in
section 3. In section 4, we compare for many different
sub-topologies the theoretical values of liquid
throughputs with the throughputs measured for
collective communications scheduled according to
our method. In section 5 we draw the conclusions.

{l1, l6}, {l1, l7}, {l1, l8}, {l1, l12, l9}, {l1, l12, l10},

{l2, l6}, {l2, l7}, {l2, l8}, {l2, l12, l9}, {l2, l12, l10},

{l3, l6}, {l3, l7}, {l3, l8}, {l3, l12, l9}, {l3, l12, l10},

{l4, l11, l6}, {l4, l11, l7}, {l4, l11, l8}, {l4, l9}, {l4, l10},

{l5, l11, l6}, {l5, l11, l7}, {l5, l11, l8}, {l5, l9}, {l5, l10}

}}

l1 l2 l3 l4 l5

l6 l7 l8 l9 l10

l11

l12

Fig. 1. Example of a data exchange composed of 25 trans-
fers

T1 T2 T3 T4 T5

R1 R3R2 R4 R5

phase 1 phase 2 phase 3.1

phase 3.2 phase 4.1 phase 4.2

phase 5

Fig. 2. Round-robin schedule of
transfers (7 time frames).

3

2. Throughput as a function of sub-
topology

We would like to compare theoretically expected
aggregate throughputs with measured throughputs.
For benchmarking purposes we need to consider a
large variety of network topologies.

Let us form as many distinct network topologies as
possible from the set of all sub-topologies of a Swiss-

T1 parallel computer cluster (called henceforth T1,
see Fig. 4). The network of the T1 forms a K-ring
[Kuonen99] and has a static routing scheme. The
throughputs of all links are identical and equal to
86MB/s. The cluster consists of 64 processors paired
into 32 nodes [Gruber99]. For the sake of simplicity,
we assume that each node incorporates one
transmitting and one receiving processor (Fig. 4).

Since there may be between 0 and 4 allocated nodes

in front of each of 8 switches, we have
possible computing node allocations (i.e. 390625
possible sub-topologies). Knowing the routing
information, we can compute the liquid throughput of
each sub-topology for a collective all-to-all
communication pattern.

Because of symmetries, many of these sub-topologies
yield an identical liquid throughput. We extract a set of
363 different sub-topologies, which represent all pos-
sible liquid throughput values. Fig. 5. shows these 363
sub-topologies, each one being characterized by the
number of contributing nodes and by its liquid
throughput. Depending on the sub-topology, the liquid
throughput for a given number of nodes may consider-
ably vary.

These 363 sub-topologies may be placed on one axis,
sorted first by the number of nodes and then according
to their liquid throughput. For each sub-topology, Fig.
6 shows the theoretical liquid throughput and the
throughput measured with a topology-unaware round-
robin schedule.

For many sub-topologies, the theoretical liquid
throughput is twice as large as the round-robin

Fig. 3. An optimal schedule (6 time frames).

time frame 1 time frame 2 time frame 3

time frame 4 time frame 5 time frame 6

1 2 3 4 5 6 7 8
1 ! " 2 " 4 " 8 "

2 " ! " 7 " 3 " 5
3 2 " ! " 4 " 8 "

4 " 7 " ! " 7 " 3
5 4 " 4 " ! " 6 "

6 " 3 " 7 " ! " 1
7 8 " 8 " 6 " ! "

8 " 5 " 3 " 1 " !

Routing Table

Fig. 4. Architecture of the T1 cluster computer.

-

} Node

Full Crossbar
Switch

1

2

3

4

5

6

7

8

58 390625=

0

200

400

600

800

1000

1200

1400

1600

1800

0 4 8 12 16 20 24 28 32
Number of contributing nodes

Li
qu

id
 th

ro
ug

hp
ut

 (M
B/

s)

Upp
er

bo
un

d

Lo
wer

bo
un

d

Fig 5. Each of 363 sub-topologies is characterized
by its liquid throughput and the number of
contributing nodes.

4

throughput. This clearly shows that topology-unaware
scheduling techniques do not utilize efficiently the
potential throughput capabilities offered by the
communication network.

3. Liquid schedules

This section presents a general method for building
on irregular topologies liquid schedules for any
collective communication pattern. We neglect
network latencies, consider a constant packet size and
assume a static routing scheme.

The model of a collective data exchange is introduced
by the following formal definitions.

DEFINITIONS. A transfer is a set of links (i.e. the links
forming the path from a sending processor to a
receiving processor). A traffic is a set of transfers (i.e.
the transfers forming the collective exchange, see Fig.
1). A link l is utilized by a transfer x if . A link l
is utilized by a traffic X if l is utilized by a transfer of
X. Two transfers of a traffic X congest if they use a
common link. A sub-traffic of X (a subset of X) is
simultaneous if it consists of non-congesting
transfers.

A simultaneous subset of a traffic is processed in the
time frame of a single transfer. The load of a link l in
the traffic X is the number of transfers in X using l.
The maximally loaded links are called bottlenecks.
The duration of a traffic X is the load of its
bottlenecks. The size of the traffic is the
number of its transfers. The liquid throughput of a
traffic X is the ratio multiplied by the
single link throughput.

For example, the traffic X shown in Fig. 1 has a
number of transfers and the duration of
the traffic is . Therefore the aggregate
liquid throughput is the ratio of a single link
throughput, i.e.

,
assuming a single link throughput of 100MB/s.

3.1. Partitioning

A partition of X is a disjoint collection of non-empty
subsets of X whose union is X [Halmos74]. A
schedule of a traffic X is a collection of
simultaneous sub-traffics of X partitioning the traffic
X. A time frame of a schedule is an element of the
schedule (i.e. is a simultaneity). The length
of a schedule gives the number of time frames in .
A schedule of a traffic is optimal if the traffic does not
have any shorter schedule. If the length of a schedule
is equal to the duration of the traffic, then the
schedule is liquid. A liquid schedule is optimal, but
the inverse is not always true, meaning that a traffic
may not have a liquid schedule. Fig. 7 shows a liquid
schedule for the collective traffic shown in Fig 1.

In the annex, the problem of finding an optimal
schedule is formulated as the problem of coloring a
conflict graph [Beauquier97].

The duration of a traffic X is the load of its
bottlenecks. If a schedule is liquid, then each of its
time frames must use all bottlenecks. Inversely, if all
time frames of a schedule use all bottlenecks, the
schedule is liquid. Let us define a team of a traffic X
as a simultaneous subset of X using all its bottlenecks.

Therefore the necessary and sufficient condition for
the liquidity of a schedule on X is that each time
frame of be a team of X.

0
200
400
600
800

1000
1200
1400
1600
1800

0
 0

0
64

 0
8

10
0

 1
0

12
1

 1
1

14
4

 1
2

16
9

 1
3

19
6

 1
4

22
5

 1
5

22
5

 1
5

25
6

 1
6

28
9

 1
7

32
4

 1
8

36
1

 1
9

40
0

 2
0

44
1

 2
1

48
4

 2
2

57
6

 2
4

62
5

 2
5

90
0

 3
0

Th
ro

ug
hp

ut
 (M

B/
s)

theoretical liquid measured round-robin

Fig. 6. Theoretical liquid throughput and measured
round-robin schedule throughput for 363 net-
work sub-topologies.

nodes

transfers

l x∈

Λ X()
X()

X() Λ X()⁄

X() 25=
Λ X() 6=

25 6⁄

25 6⁄() 100× MB s⁄ 416.67MB s⁄=

α

α
α # α()

α

{ }
{ }

{ }{ }
{ }{ }{l1, l7},

{l2, l8},
{l3, l12, l9},
{l5, l11, l6}

{l1, l12, l9},
{l2, l7},
{l3, l8},

{l4, l11, l6},
{l5, l10}

{l1, l12, l10},
{l2, l6},

{l4, l11, l7},
{l5, l9}

{l1, l8},
{l2, l12, l9},

 {l3, l6},
{l4, l10},

{l5, l11, l7}

{l1, l6},
{l2, l12, l10},

{l3, l7},
{l4, l11, l8}

{l3, l12, l10},
{l4, l9},

{l5, l11, l8}

Fig. 7. A liquid schedule for the collective traffic shown in
Fig. 1. Bold links in a time frame indicate bottle-
necks in the reduced traffic.

time frame 1 time frame 2 time frame 3

time frame 4 time frame 5 time frame 6

α
α

5

Our strategy for finding a liquid schedule therefore
relies on searching for teams of a traffic. Hence, we
need to partition the traffic into a set of teams forming
the sequence of time frames.

The traffic can be recursively partitioned by an
algorithm traversing the search tree in a depth-wise
order (Fig. 8). The root of the tree is the original
traffic X. Associated to the traffic X is the collection
of all possible teams for the first time frame

. The choices of candidate teams

 yield respectively the remaining sub-
traffics . Each of these sub-traffics
has its own collection of candidate teams for the next
time frame. As before, members of this collection
produce successor sub-traffics at the next level of the
tree (Fig. 8).

A possible time frame for each sub-traffic is
any team of X formed by not yet carried out transfers

, where operator associates
to a traffic the set of all its teams.

3.2. Reducing the search space

We would like to reduce the search space. For this
purpose we introduce two theorems proving that for
computing successive time frames, instead of forming
teams from the original traffic, we can form teams
from the reduced traffic.

Let us show that by removing a time frame (i.e. a
team) from a liquid schedule, we form a new liquid
schedule on the remaining traffic. Note that the
remaining traffic may have additional bottlenecks.
For example, in Fig. 7, from time frame 3 on, links l3
and l8 appear as additional bottlenecks. Emerging
additional bottlenecks allow us to reduce the search
space when creating a liquid schedule.

THEOREM 1. Let be a liquid schedule on X and A be
a time frame of . Then is a liquid schedule
on .

PROOF. Clearly A is a team of X. Remove the team A
from X so as to form a new traffic . The
duration of the new traffic is the load of the
bottlenecks in . Bottlenecks of include
the bottlenecks of X. The load of a bottleneck of X is
decreased by one in the new traffic and
therefore the duration of is the duration of X
decreased by one, i.e. . The
schedule without the element A is a schedule for

 with the previous length decreased by one.
Therefore the new schedule has as many
time frames as the duration of the new traffic .
Hence is a liquid schedule on .

In other words, if the traffic has a liquid schedule,
then a schedule reduced by one team is a liquid
schedule on the reduced traffic. The repeated
application of Theorem 1 implies that any non-empty
subset of a liquid schedule is a liquid schedule on the
correspondingly reduced traffic.

THEOREM 2. If, by traversing each team A of a traffic
X none of the sub-traffics has a liquid schedule,
then the traffic X does not have a liquid schedule
either.

PROOF. Let us suppose that X has a liquid schedule .
Then a time frame A of shall be a team of X.
Further, according to Theorem 1 the schedule

 shall be a liquid schedule for .
Therefore for at least one team A of X the sub-traffic

 has a liquid schedule. This proves the theorem
by contraposition.Fig. 8. Liquid schedule search tree. The symbol “"”

points to all possible time frames for the current
reduced traffic.

X " A1, A2, A3, ...

X1 = X A1 " A1,1, A1,2, A1,3, ...

X1,1 = X1 A1,1 " A1,1,1, A1,1,2, A1,1,3, ...

X1,2 = X1 A1,2 " A1,2,1, A1,2,2, A1,2,3, ...

X1,3 = X1 A1,3 " A1,3,1, A1,3,2, A1,3,3, ...

X2 = X A2 " A2,1, A2,2, A2,3, ...

X2,1 = X2 A2,1 " A2,1,1, A2,1,2, A2,1,3, ...

X2,2 = X2 A2,2 " A2,2,1, A2,2,2, A2,2,3, ...

X3 = X A3 " A3,1, A3,2, A3,3, ...

X3,1 = X3 A3,1 " A3,1,1, A3,1,2, A3,2,3, ...

Xi,j a sub-traffic at
node i,j of the tree

Ai,j,k a candidate team
at node i,j

A1 A2 … An, , ,{ }

A1 A2 …, ,

X A1– X A2– …, ,

Xsub

A ℑ X()∈ A Xsub⊂{ } ℑ

α
α α A{ }–

X A–

X A–
X A–

X A– X A–

X A–
X A–
Λ X A–() Λ X() 1–=

α
X A–

α A{ }–
X A–

α A{ }– X A–

X A–

α
α

α A{ }– X A–

X A–

6

Theorem 2 implies that if X has a liquid schedule at
least one team A of X will be found, such that the sub-
traffic has a liquid schedule . Obviously

 will be a liquid schedule for X.

Therefore, instead of forming the set of possible time
frames by considering teams of the original traffic
included in the current sub-traffic , i.e.

, we propose to form the set of
all possible time frames at the current node using all
teams of the current sub-traffic, i.e. . Since

the teams of the current sub-traffic together
with the bottlenecks of the original traffic X must also
use the additional bottlenecks of , the number of

teams of the current subtraffic is smaller or
equal to the number of teams of the original traffic
whose transfers belong to the current subtraffic, i.e.

.
Therefore less possible teams need to be considered
when building the schedule. The solution space is not
affected, since theorem 2 is valid at any level of the
search tree.

By traversing the tree in depth-wise order, we cover
the full solution space. A solution is found when the
current node (sub-traffic) forms a single team. The
path from the root to that leaf node forms the set of
teams yielding the liquid schedule. A node is a dead
end if it is not possible to create a team out of that
sub-traffic. In that case we have to backtrack to
evaluate other choices. Evaluation of all choices
ultimately leads to a solution if it exists.

If a solution for X (i.e. a liquid schedule on X) exists,
then the algorithm will find it. If the algorithm does
not find a solution for X, and since we explored the
full solution space, we conclude that X does not have
a liquid schedule.

Let us describe a further simple and efficient search
space reducing technique.

DEFINITIONS. A simultaneous subset A of a traffic X is
full with respect to X if each transfer of is in
congestion with a transfer of A. A team of X is called
full team if it is a full simultaneous subset of X.

Let us modify a liquid schedule so as to convert one
of its teams into a full team. Let a traffic X have a
liquid schedule . Let A be a time frame of . If A is
not a full team of X, then, by moving the necessary
transfers from other time frames of , we can convert
the team A to a full team. Evidently, the properties of
liquidity (partitioning, simultaneousness and length)

of will not be affected. Therefore if X has a
solution then it has also a solution when one of its
time frames is full, hence the choice of the teams in
the construction may be narrowed from the set of all
teams to the set of full teams only. Fig. 7 shows a
liquid schedule constructed with full teams.

In each step of the liquid schedule search tree (Fig. 8),
we need to traverse the set of all full teams of the
current sub-traffic.

For this purpose, we partition the collection of all full
teams into two sub-collections, one consisting of full
teams including a given transfer and the other one
consisting of full teams excluding that transfer. At the
next step, each of these two sub-collections is again
partitioned to include, respectively exclude another
selected transfer. By recursively applying this
approach we steadily increase the quantity of sub-
collections and decrease their sizes. At any stage,
each sub-collection is characterised by the history of
previously selected transfers. Nodes which do not
represent full teams are eliminated. Ultimately, each
leaf node of the partitioning process represents one
single full team. All histories of selected transfers
recursively obtained by traversing the partitioning
tree lead to the enumeration of all possible full
teams1.

In the annex we compare our liquid schedule
construction algorithm with a heuristic solution for
coloring the conflict graph.

4. Results

In this section, we present the measured throughput
values for collective communications carried out on a
real network according to the liquid schedules
computed with our algorithms. We then compare the
measured throughput values with the theoretical
liquid throughput values.

Fig. 9 shows the measured aggregate throughputs of
collective data exchanges performed according to the
computed liquid schedules on the T1 cluster. Each
black dot represents the median of 7 measurements.
The horizontal axis represents the 363 sub-topologies
as well as the number of contributing nodes.
Processor to processor transfers have a size of 5MB,
transferred as a single message of 5MB. The
measured all-to-all aggregate throughputs (black
dots) are close to the theoretically computed liquid
throughput (gray line). For many sub-topologies, the

X A– β
β A{ }∪

Xsub

A ℑ X()∈ A Xsub⊂{ }

ℑ Xsub()

Xsub

Xsub

ℑ Xsub()

ℑ Xsub()() ≤ # A ℑ X()∈ A Xsub⊂{ }()

X A–

α α

α 1. The detailed algorithm, together with fur-
ther search space reduction techniques will
be presented in a subsequent publication.

α

7

proposed scheduling technique allows to increase the
aggregate throughput by a factor of two, compared
with the topology-unaware round-robin schedule
(Fig. 6).

Thanks to the presented search space reduction
algorithms, the computation time of a liquid schedule
takes for more than 97% of the considered sub-
topologies of the T1 cluster less than 1/10 of a second
on a single Compaq 500MHz Alpha processor.

For applications having relatively long
communication patterns such as exchanges of
continuous media streams, the gain in the utilization
of network resources may be significant compared
with the resources required to compute a liquid
schedule.

5. Conclusion

We propose a method for scheduling collective data
exchanges in order to obtain an aggregate throughput
equal to the network’s liquid throughput. This is
achieved by building at each time frame of the
schedule mutually non-congesting sets of transfers
using all bottleneck links. Exploration of the full
solution space yields a liquid schedule if it exists. The
proposed search space reduction techniques make the
approach practical for networks having in the order of
ten interconnected crossbar switches.

Experiments carried out on the Swiss T1 cluster
computer, show that for most sub-topologies the
proposed scheduling technique allows to increase the
collective data exchange throughput by a factor
between 1.5 and 2.

As an alternative to the search for the liquid schedule,
we can color the conflict graph associated to the set of

collective transfers by applying a greedy algorithm
(see Annex). Slightly sub-optimal scheduling
solutions may be obtained without much computation
effort. In a concrete application one may choose to
carry out simultaneously the search for a liquid
schedule and the coloring of the conflict graph. In the
case that no liquid schedule is found after a certain
limit of time, the sub optimal solution offered by the
greedy graph coloring algorithm may be adopted.

In the future, we intend to explore how to extend the
presented scheduling techniques in order to
dynamically reschedule collective data exchanges
when the set of planned exchanges evolves over time.

Annex

The search for a liquid schedule requires to partition
the traffic into sets of mutually non-congesting
transfers. The problem can be formulated as the
problem of coloring the conflict graph [Beauquier97].
Vertices of the conflict graph are formed by transfers.
Edges between vertices represent congestions
between transfers.

Fig. 10 shows the graph whose vertices are to be
colored for the collective data exchange of Fig. 1.
Vertex corresponds to a transfer from an

emitting processor n to a receiving processor m. For
example vertex represents the transfer

T4!R1={l4, l11, l6}. The bold edges of the graph
show congestions of transfers due to specific
bottleneck links.

Whenever a liquid schedule exists, an optimal
solution of the graph coloring problem is a liquid
schedule. The chromatic number of the graph’s
optimal coloring is the length of the liquid schedule.

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 6 8 9 9 10 11 11 12 12 12 13 13 14 14 14 15 15 15 16 16 17 17 17 18 18 19 19 19 20 20 21 21 22 22 23 24 25 26 27 30

Number of contributing nodes for the 363 sub-topologies

Al
l-t

o-
al

l t
hr

ou
gh

pu
t (

M
B/

s)

Fig. 9. Predicted liquid throughput and measured throughput according to the computed liquid schedule.

measurements on T1 according to the computed liquid schedule
liquid throughput

xn m,

x4 1,

8

Vertices having the same color represent a time frame
of the liquid schedule.

The graph to be colored is characterised by the
relatively low density of its edges. We can label each
edge of the graph by the link(s) causing the
congestion. An all-to-all data exchange on the Swiss
T1 cluster with 32 transmitting and 32 receiving
processors forms a graph with
vertices and 48704 edges.

We compared our method of finding a liquid schedule
with the results obtained by applying a greedy high-
speed graph coloring algorithm Dsatur [Brelaz79],
which carries out the following operations:

1. Arrange the vertices by decreasing order of
degrees.

2. Color a vertex of maximal degree with color 1.
3. Choose a vertex with a maximal saturation degree

(defined as the number of different colours to
which it is adjacent). If there is an equality,
priority is given to the vertex having the maximal
degree in the uncoloured subgraph.

4. Color the chosen vertex with the least possible
(lowest numbered) color.

5. If all the vertices are colored, stop. Otherwise,
return to 3.

Fig. 11 shows the loss of performance on the T1 sub-
topologies due to the additional unnecessary colours
induced by the greedy graph coloring algorithm,
compared with the liquid schedule algorithm.

For 74% of the topologies there is no loss of
performance. For 18% of the topologies, the
performance loss is below 10% and for 8% of the
topologies, the loss of performance is between 10%
and 20%.

32 32× 1024=

x1,1

x2,1
x3,1 x4,1

x5,1

x1,2

x2,2
x3,2 x4,2

x1,3

x2,3
x3,3 x4,3

x1,4

x2,4
x3,4 x4,4

x5,4

x1,5

x4,5
x5,5

Fig. 10. Graph corresponding to the data exchange shown in Fig. 1. The 25 verti-
ces of the graph represent the transfers. The edges represent congestion
relations between transfers, i.e. each edge represents one or more com-
munication links shared by two transfers.

These bold edges
represent all conges-
tions due to bottle-
neck link l11

These bold edges
represent all conges-
tions due to bottle-
neck link l12

Loss of performance due to suboptimal scheduling

0
2
4
6
8

10
12
14
16
18
20

1 64 10
0

12
1

14
4

16
9

19
6

22
5

22
5

25
6

28
9

32
4

36
1

40
0

44
1

48
4

57
6

67
6

96
1

number of transfers for 363 sub-topologies

lo
ss

 in
 p

er
fo

rm
an

ce
 (%

)

Fig. 11. Loss in performance induced by schedules com-
puted with the Dsatur heuristic algorithm.

9

The computation time of the greedy algorithm is
polynomial and compares therefore favourably with
the algorithm searching for the liquid schedule.

References

[Battiti99] Roberto Battiti, Alan A. Bertossi, Maurizzio A.
Bonuccelli, “Assigning Codes in Wireless Networks:
Bounds and Scaling Properties.”, ACM/Baltzer Wire-
less Networks, Vol. 5, 1999, 195-209.

[Beauquier97] B. Beauquier, J.C. Bermond, L. Gargano, P.
Hell, S. Pérennes, U. Vaccaro, “Graph Problems Aris-
ing from Wavelength-Routing in All-Optical Net-
works”, 2nd IEEE Workshop on Optics and Computer
Science (WOCS, part of IPPS '97), IEEE Press, April
1997.

[Bermond96] J.-C. Bermond, L. Gargano, S. Perennes, A.
A. Rescigno, and U. Vaccaro, “Efficient collective
communication in optical networks”, Proc. of
ICALP'96. Lecture Notes in Computer Science, 1996,
574-585.

[Boden95] N.J. Boden, et al., “Myrinet - A gigabit per sec-
ond local area network,” IEEE Micro, pp. 29-36, Feb-
ruary 1995.

[Brelaz79] Daniel Brelaz, “New Methods to Color the Ver-
tices of a Graph”, CACM(22), 1979, 251-256.

[Caragiannis02] I. Caragiannis and Ch. Kaklamanis and P.
Persiano, “Wavelength Routing in All-Optical Tree
Networks: A Survey”, Bulletin of the European Asso-
ciation for Theoretical Computer Science, 2002, Vol.
76, 104-112.

[CERN01] Large Hadron Collider, Computer Grid project,
CERN, 20.09.2001, http://press.web.cern.ch/Press/
Releases01/PR10.01EGoaheadGrid.html

[Chan01] S.-H.G. Chan, “Operation and cost optimization
of a distributed server architecture for on-demand
video services”, IEEE Communications Letters, Vol.
5, No. 9, Sept. 2001, 384-386.

[Chiu89] Dah-Ming Chiu, Raj Jain, “Analysis of the
increase and decrease algorithms for congestion
avoidance in computer networks”, Computer Net-
works and ISDN Systems, 1989, Vol. 17, 1-14.

[Duato01] J. Duato, A. Robles, F. Silla, R. Beivide, “A
Comparison of Router Architectures for Virtual Cut-
Through and Wormhole Switching in a NOW Envi-
ronment”, ACM Journal of Parallel and Distributed
Computing, February 2001, Vol. 61, Issue 2, 224-253.

[Fritz99] D.A. Fritz, D.W. Moy, R.A. Nichols, “Modeling
and simulation of Advanced EHF efficiency enhance-
ments”, Proc. of Military Communications Confer-
ence, IEEE MILCOM 1999, Vol. 1, 354-358.

[Gruber99] Pierre Kuonen, Ralf Gruber, “Parallel computer
architectures for commodity computing and the
Swiss-T1 machine”, EPFL Supercomputing Review,
Nov 99, pp. 3-11, http://sawww.epfl.ch/SIC/SA/publi-
cations/SCR99/scr11-page3.html

[H.323] H.323 Standards, http://www.openh323.org/stan-
dards.html

[Halmos74] Paul R. Halmos, Naive Set Theory, Springer-
Verlag New York Inc, ISBN 0-387-90092-6, 1974,
26-29.

[Jain91] R. Jain, G. Sasaki, “Scheduling packet transfers in
a class of TDM hierarchical switching systems”,
IEEE International Conference on Communications
ICC '91, Vol. 3, 1991, 1559-1563.

[Kuonen99] P. Kuonen, “The K-Ring: a versatile model for
the design of MIMD computer topology”, Proc. of the
High-Performance Computing Conference (HPC'99),
San Diego, USA, April 1999, 381-385.

[Melamed01] Benjamin Melamed, Khosrow Sohraby, Yorai
Wardi, “Measurement-Based Hybrid Fluid-Flow
Models for Fast Multi-Scale Simulation”, DARPA/
NMS BAA 00-18 AGREEMENT No. F30602-00-2-
0556, http://www.darpa.mil/ito/research/nms/meet-
ings/nms2001apr/Rutgers-SD.pdf, April 2001.

[Ozbay98] H. Ozbay, S. Kalyanaraman, A. Iftar, “On rate-
based congestion control in high-speed networks:
Design of an H-infinity based flow controller for sin-
gle bottleneck”, Proc. of the American Control Con-
ference, June 1998, 2376-2380.

[Sitaram00] Dinkar Sitaram, Asit Dan, Multimedia Servers,
Morgan Kaufmann Publishers, San Francisco Califor-
nia, ISBN 1-55860-430-8, 2000, 69-73.

[Stern99] Thomas E. Stern, Krishna Bala, Multiwavelength
Optical Networks: A Layered Approach, Addison-
Wesley, ISBN: 020130967X, May 1999

