
0-7803-7661-7/03/$17.00©2003 IEEE.

Abstract

We propose a method for the optimal scheduling of
collective data exchanges relying on the knowledge of the
underlying network topology. We introduce the concept of
liquid schedules. Liquid schedules ensure the maximal
utilization of a network’s bottleneck links and offer an
aggregate throughput as high as the flow capacity of a
liquid in a network of pipes. The collective communication
throughput offered by liquid schedules in highly loaded
networks may be several times higher than the throughput
of topology-unaware techniques. To create a liquid
schedule we need to find the smallest partition of all
transfers into subsets of mutually non-congesting transfers.
The number of combinations of non-overlapping subsets of
mutually non-congesting transfers grows exponentially
with the number of transfers. We propose several methods
to reduce the search space without affecting the solution
space. On a real 32 node computer cluster, the measured
throughputs of data exchanges scheduled according to our
method are very close to the theoretical liquid throughputs.

Keywords: Optimal network utilization, collective data
exchange, liquid schedules, network topology, topology-
aware scheduling.

1. Introduction

Interconnection topology is one of the key elements
determining the global communication throughput. In high-
speed networks such as those used in cluster computing [1],
[2] and in optical communication networks [3], the network
is often formed by a set of full crossbar switches (called
optical switches in optical networks). CDMA spread
spectrum wireless networks [4] also can be viewed as
interconnection topologies whose links represent
orthogonal frequency spectra.

Full crossbar switches allow to dynamically route packets
from their input ports to their output ports. The crossbar
switches we consider are cut-through switches with full

connectivity allowing simultaneous transfers from
any input port to any output port.

In the present contribution, we deal with the problem of
collective communications through networks made of cut-
through switches. We assume that end nodes do not
perform store and forward operations. We also assume that
the collective communication pattern is known in advance.

The aggregate throughput of a collective data exchange
depends on the underlying network topology and on the
number of receiving and emitting nodes (end nodes). The
total amount of data together with the longest transfer time
across the most loaded links gives an estimation of the
aggregate throughput. We define this estimation as the
liquid throughput of the network. It corresponds to the flow
capacity of a non-compressible fluid in a network of pipes
[5]. In most networks such as wormhole, cut-through,
wavelength division and spread spectrum wireless
networks, during a single message transmission, the
corresponding link resources (communication circuits,
wavelengths and frequency spectra) are kept occupied,
causing therefore congestions between concurrent
messages sharing a common link resource. Therefore, the
aggregate throughput of a collective data exchange may be
lower than the liquid throughput. The rate of congestions of
a given data exchange may considerably vary according to
the order in which the transfers are carried out.

This paper presents an algorithm proposing a schedule of
transfers achieving the liquid throughput whenever such a
schedule exists (henceforth called liquid schedule). The
present approach assumes fixed packet sizes and neglects
network latencies. These assumptions are acceptable in low
latency networks (e.g. Myrinet) or for networks
transmitting long messages (e.g. TDMA/CDMA networks).

We measured the performances of liquid schedules
obtained by our scheduling algorithms on a set of real
network topologies consisting of cut-through full cross-bar
switches and obtained results close to the liquid
throughputs.

In the context of wavelength routing in all-optical
networks, it was shown that the computation of an optimal
routing scheme can be formulated as a graph-coloring
problem and that for general types of networks, the
problem is NP-hard [6]. However, greedy algorithms exist
which provide sub-optimal solutions in polynomial time.

Network Topology Aware Scheduling of
Collective Communications

Emin Gabrielyan, Roger D. Hersch
{Emin.Gabrielyan,RD.Hersch}@epfl.ch

École Polytechnique Fédérale de Lausanne, CH-1015 Switzerland

k k×

There has been work on theoretical considerations about
the required number of wavelengths and the complexity of
finding a solution according to the network topology [7],
[8]. Specific classes of topologies were also analysed in the
context of satellite-switch time division multiplexing
networks [9].

Unlike flow control based congestion avoidance
mechanisms [10] [11], we establish schedules for the data
transfers without trying to regulate the sending processors’
data rate. We specifically address the problem of reaching
the flow capacity of a fluid in a network by optimally
scheduling the set of transfers of a collective data exchange.

There are numerous applications requiring highly efficient
network resources: parallel acquisition and distribution of
multiple video streams [12], [13]; switching of
simultaneous voice communication sessions [14], [15]; and
high energy physics data acquisition and transmission from
a large number of detectors to a cluster of processing nodes
for data filtering and event assembling [16].

The solution we propose may also be helpful to schedule
collective communications in switched optical networks
with wavelength conversion [7], [8]. It may allow within
single hop all-optical networks to compute for a given
network and routing scheme, both the minimal number of
wavelengths to be assigned to individual links and a
schedule of a given collective data exchange.

1.1. The scheduling problem

For example, consider the all-to-all collective data
exchange shown in Fig. 1.

There are 5 transmitting processors (T1,... T5), each of
them sending a packet to each of the receiving processors
(R1... R5). The network consists of 12 links. Links l11 and
l12 are the most loaded links, since each of them will be

used by 6 transfers. The most loaded links are the
bottlenecks of the collective data exchange. They have the
longest active time. In the best case, the duration of a
collective data exchange is as long as the active time of the
bottleneck links.

A round-robin schedule is carried out in 5 phases: (1)
{T1!R1, T2!R2 ... T5!R5}, (2) {T1!R2, T2!R3 ...
T5!R1}, etc. The round-robin schedule’s throughput is
lower than the liquid throughput, because bottleneck links
l11 and l12 are idle in phase 1 (Fig. 2). Phases 3 and 4 need
to be carried out in two time frames, since they contain
congesting transfers.

Fig. 3 shows that a schedule achieving the liquid
throughput for the considered collective data exchange
exists.

Section 2 introduces a testbed consisting of 363 different
network sub-topologies and represents the liquid
throughput as a function of the number of contributing
processing nodes and their underlying network topologies.
The algorithms for the construction of liquid schedules are
presented in section 3. In section 4, we compare for many
different sub-topologies the theoretical values of liquid
throughputs with the throughputs measured for collective
communications scheduled according to our method. In
section 5 we draw the conclusions.

{l1, l6}, {l1, l7}, {l1, l8}, {l1, l12, l9}, {l1, l12, l10},

{l2, l6}, {l2, l7}, {l2, l8}, {l2, l12, l9}, {l2, l12, l10},

{l3, l6}, {l3, l7}, {l3, l8}, {l3, l12, l9}, {l3, l12, l10},

{l4, l11, l6}, {l4, l11, l7}, {l4, l11, l8}, {l4, l9}, {l4, l10},

{l5, l11, l6}, {l5, l11, l7}, {l5, l11, l8}, {l5, l9}, {l5, l10}
}}

Fig. 1. Example of a collective data exchange composed of
25 transfers.

l11

l12

l1

l10

l2 l3 l4 l5

l6 l7 l8 l9

R1 R3R2 R4 R5

T1 T2 T3 T4 T5

phase 1 phase 2 phase 3.1

phase 3.2 phase 4.1 phase 4.2

ph
as

e
5

Fig. 2. Round-robin sched-
ule (7 time frames).

time frame 2 time frame 2 time frame 2

time frame 2 time frame 2 time frame 2

Fig. 3. An optimal schedule (6 time frames).

2. Throughput as a function of sub-topology

We would like to compare theoretically expected aggregate
throughputs with measured throughputs. For benchmarking
purposes we need to consider a large variety of network
topologies.

Let us form as many distinct network topologies as possible
from the set of all sub-topologies of a Swiss-T1 parallel
computer cluster (called henceforth T1, see Fig. 4). The
network of the T1 forms a K-ring [17] and has a static
routing scheme. The throughputs of all links are identical
and equal to 86MB/s. The cluster consists of 64 processors
paired into 32 nodes [18]. For the sake of simplicity, we
assume that each node incorporates one transmitting and
one receiving processor (Fig. 4).

Since there may be between 0 and 4 allocated nodes in front

of each of 8 switches, we have possible
computing node allocations (i.e. 390625 possible sub-
topologies). Knowing the routing information, we can
compute the liquid throughput of each sub-topology for a
collective all-to-all communication pattern.

Because of symmetries, many of these sub-topologies yield
an identical liquid throughput. We extract a set of 363 dif-
ferent sub-topologies, which represent all possible liquid
throughput values. Fig. 5. shows these 363 sub-topologies,

each one being characterized by the number of contributing
nodes and by its liquid throughput. Depending on the sub-
topology, the liquid throughput for a given number of nodes
may considerably vary.

These 363 sub-topologies may be placed on one axis, sorted
first by the number of nodes and then according to their liq-
uid throughput. For each sub-topology, Fig. 6 shows the the-
oretical liquid throughput and the throughput measured with
a topology-unaware round-robin schedule.

For many sub-topologies, the theoretical liquid throughput
is twice as large as the round-robin throughput. This clearly
shows that topology-unaware scheduling techniques do not
utilize efficiently the potential throughput capabilities
offered by the communication network.

Fig. 4. Architecture of the T1 cluster computer.

}

1

2

3

4

5

6

7

8

Transmissions from
switch i to switch j are
routed through the
switch with the number
located in the table’s
ith raw and jth column.
Symbol “!” indicates a
direct link between two
switches.

Full Cross-
bar Switch

Node

-

1 2 3 4 5 6 7 8

1 " ! 2 ! 4 ! 8 !

2 ! " ! 7 ! 3 ! 5
3 2 ! " ! 4 ! 8 !

4 ! 7 ! " ! 7 ! 3
5 4 ! 4 ! " ! 6 !

6 ! 3 ! 7 ! " ! 1
7 8 ! 8 ! 6 ! " !

8 ! 5 ! 3 ! 1 ! "

Routing Table

5
8

390625=

0

200

400

600

800

1000

1200

1400

1600

1800

0 4 8 12 16 20 24 28 32

Number of contributing nodes
Li

qu
id

th
ro

ug
hp

ut
(M

B
/s

)

U
pp

er
bo

un
d

Lo
w

er
bo

un
d

Fig 5. Each of 363 sub-topologies is characterized
by its liquid throughput and the number of
contributing nodes.

0
200
400
600
800

1000
1200
1400
1600
1800

0
00

64
08

10
0

10
12

1
11

14
4

12
16

9
13

19
6

14
22

5
15

22
5

15
25

6
16

28
9

17
32

4
18

36
1

19
40

0
20

44
1

21
48

4
22

57
6

24
62

5
25

90
0

30

T
hr

ou
gh

pu
t(

M
B

/s
)

theoretical liquid measured round-robin

Fig. 6. Theoretical liquid throughput and measured
round-robin schedule throughput for 363 net-
work sub-topologies.

nodes

transfers

3. Liquid schedules

This section presents a general method for building on
irregular topologies liquid schedules for any collective
communication pattern. We neglect network latencies,
consider a constant packet size and assume a static routing
scheme.

The model of a collective data exchange is introduced by
the following formal definitions.

DEFINITIONS. A transfer is a set of links (i.e. the links
forming the path from a sending processor to a receiving
processor). A traffic is a set of transfers (i.e. the transfers
forming the collective exchange, see Fig. 1). A link l is
utilized by a transfer x if . A link l is utilized by a
traffic X if l is utilized by a transfer of X. Two transfers of a
traffic X congest if they use a common link. A sub-traffic of
X (a subset of X) is simultaneous if it consists of non-
congesting transfers.

A simultaneous subset of a traffic is processed in the time
frame of a single transfer. The load of a link l in the traffic
X is the number of transfers in X using l. The maximally
loaded links are called bottlenecks. The duration of a
traffic X is the load of its bottlenecks. The size of the traffic

is the number of its transfers. The liquid throughput

of a traffic X is the ratio multiplied by the
single link throughput.

For example, the traffic X shown in Fig. 1 has a number of
transfers and the duration of the traffic is

. Therefore the aggregate liquid throughput is

the ratio of a single link throughput, i.e.

,
assuming a single link throughput of 100MB/s.

3.1. Partitioning

A partition of X is a disjoint collection of non-empty
subsets of X whose union is X [19]. A schedule of a
traffic X is a collection of simultaneous sub-traffics of X
partitioning the traffic X. A time frame of a schedule is
an element of the schedule (i.e. is a simultaneity). The

length of a schedule gives the number of time frames
in . A schedule of a traffic is optimal if the traffic does
not have any shorter schedule. If the length of a schedule is
equal to the duration of the traffic, then the schedule is

liquid. A liquid schedule is optimal, but the inverse is not
always true, meaning that a traffic may not have a liquid
schedule. Fig. 7 shows a liquid schedule for the collective
traffic shown in Fig 1.

In the annex, the problem of finding an optimal schedule is
formulated as the problem of coloring a conflict graph [6].

The duration of a traffic X is the load of its bottlenecks. If a
schedule is liquid, then each of its time frames must use all
bottlenecks. Inversely, if all time frames of a schedule use
all bottlenecks, the schedule is liquid. Let us define a team
of a traffic X as a simultaneous subset of X using all its
bottlenecks. Therefore the necessary and sufficient
condition for the liquidity of a schedule on X is that each
time frame of be a team of X.

Our strategy for finding a liquid schedule therefore relies
on searching for teams of a traffic. Hence, we need to
partition the traffic into a set of teams forming the sequence
of time frames.

The traffic can be recursively partitioned by an algorithm
traversing the search tree in a depth-wise order (Fig. 8). The
root of the tree is the original traffic X. Associated to the
traffic X is the collection of all possible teams for the first
time frame . The choices of candidate

teams yield respectively the remaining sub-

traffics . Each of these sub-traffics has
its own collection of candidate teams for the next time

l x∈

Λ X()

X()
X() Λ X()⁄

X() 25=

Λ X() 6=

25 6⁄
25 6⁄() 100× MB s⁄ 416.67MB s⁄=

α

α
α

α()
α

{ }
{ }

{ }{ }
{ }{ }

{l1, l7},

{l2, l8},

{l3, l12, l9},

{l5, l11, l6}

{l1, l12, l9},

{l2, l7},
{l3, l8},

{l4, l11, l6},

{l5, l10}

{l1, l12, l10},

{l2, l6},

{l4, l11, l7},

{l5, l9}

{l1, l8},

{l2, l12, l9},

{l3, l6},

{l4, l10},

{l5, l11, l7}

{l1, l6},

{l2, l12, l10},

{l3, l7},

{l4, l11, l8}

{l3, l12, l10},

{l4, l9},

{l5, l11, l8}

Fig. 7. A liquid schedule for the collective traffic shown in
Fig. 1. Bold links in a time frame indicate bottle-
necks in the reduced traffic.

time frame 1 time frame 2 time frame 3

time frame 4 time frame 5 time frame 6

α
α

A1 A2 … An, , ,{ }

A1 A2 …, ,
X A1– X A2– …, ,

frame. As before, members of this collection produce
successor sub-traffics at the next level of the tree (Fig. 8).

A possible time frame for each sub-traffic is any team

of X formed by not yet carried out transfers
, where operator associates to a

traffic the set of all its teams.

3.2. Reducing the search space

We would like to reduce the search space. For this purpose
we introduce two theorems proving that for computing
successive time frames, instead of forming teams from the
original traffic, we can form teams from the reduced traffic.

Let us show that by removing a time frame (i.e. a team)
from a liquid schedule, we form a new liquid schedule on
the remaining traffic. Note that the remaining traffic may
have additional bottlenecks. For example, in Fig. 7, from
time frame 3 on, links l3 and l8 appear as additional

bottlenecks. Emerging additional bottlenecks allow us to
reduce the search space when creating a liquid schedule.

THEOREM 1. Let be a liquid schedule on X and A be a

time frame of . Then is a liquid schedule on
.

PROOF. Clearly A is a team of X. Remove the team A from
X so as to form a new traffic . The duration of the
new traffic is the load of the bottlenecks in .
Bottlenecks of include the bottlenecks of X. The load
of a bottleneck of X is decreased by one in the new traffic

and therefore the duration of is the duration of
X decreased by one, i.e. . The
schedule without the element A is a schedule for
with the previous length decreased by one. Therefore the
new schedule has as many time frames as the

duration of the new traffic . Hence is a
liquid schedule on .

In other words, if the traffic has a liquid schedule, then a
schedule reduced by one team is a liquid schedule on the
reduced traffic. The repeated application of Theorem 1
implies that any non-empty subset of a liquid schedule is a
liquid schedule on the correspondingly reduced traffic.

THEOREM 2. If, by traversing each team A of a traffic X

none of the sub-traffics has a liquid schedule, then
the traffic X does not have a liquid schedule either.

PROOF. Let us suppose that X has a liquid schedule . Then
a time frame A of shall be a team of X. Further,
according to Theorem 1 the schedule shall be a

liquid schedule for . Therefore for at least one team A

of X the sub-traffic has a liquid schedule. This
proves the theorem by contraposition.

Theorem 2 implies that if X has a liquid schedule at least
one team A of X will be found, such that the sub-traffic

has a liquid schedule . Obviously will be
a liquid schedule for X.

Therefore, instead of forming the set of possible time
frames by considering teams of the original traffic included
in the current sub-traffic , i.e. ,

we propose to form the set of all possible time frames at the
current node using all teams of the current sub-traffic, i.e.

. Since the teams of the current sub-traffic

together with the bottlenecks of the original traffic X must
also use the additional bottlenecks of , the number of

teams of the current subtraffic is smaller or equal

Fig. 8. Liquid schedule search tree. The symbol “"”
points to all possible time frames for the current
reduced traffic.

X " A1, A2, A3, ...

X1 = X A1 " A1,1, A1,2, A1,3, ...

X1,1 = X1 A1,1 " A1,1,1, A1,1,2, A1,1,3, ...

X1,2 = X1 A1,2 " A1,2,1, A1,2,2, A1,2,3, ...

X1,3 = X1 A1,3 " A1,3,1, A1,3,2, A1,3,3, ...

X2 = X A2 " A2,1, A2,2, A2,3, ...

X2,1 = X2 A2,1 " A2,1,1, A2,1,2, A2,1,3, ...

X2,2 = X2 A2,2 " A2,2,1, A2,2,2, A2,2,3, ...

X3 = X A3 " A3,1, A3,2, A3,3, ...

X3,1 = X3 A3,1 " A3,1,1, A3,1,2, A3,2,3, ...

Xi,j a sub-traffic at
node i,j of the tree

Ai,j,k a candidate team
at node i,j

Xsub

A ℑ X()∈ A Xsub⊂{ } ℑ

α
α α A{ }–

X A–

X A–
X A– X A–

X A–

X A– X A–
Λ X A–() Λ X() 1–=

α X A–

α A{ }–

X A– α A{ }–
X A–

X A–

α
α

α A{ }–

X A–

X A–

X A– β β A{ }∪

Xsub A ℑ X()∈ A Xsub⊂{ }

ℑ Xsub() Xsub

Xsub

ℑ Xsub()

to the number of teams of the original traffic whose
transfers belong to the current subtraffic, i.e.

.

Therefore less possible teams need to be considered when
building the schedule. The solution space is not affected,
since theorem 2 is valid at any level of the search tree.

By traversing the tree in depth-wise order, we cover the full
solution space. A solution is found when the current node
(sub-traffic) forms a single team. The path from the root to
that leaf node forms the set of teams yielding the liquid
schedule. A node is a dead end if it is not possible to create
a team out of that sub-traffic. In that case we have to
backtrack to evaluate other choices. Evaluation of all
choices ultimately leads to a solution if it exists.

If a solution for X (i.e. a liquid schedule on X) exists, then
the algorithm will find it. If the algorithm does not find a
solution for X, and since we explored the full solution
space, we conclude that X does not have a liquid schedule.

Let us describe a further simple and efficient search space
reducing technique.

DEFINITIONS. A simultaneous subset A of a traffic X is full
with respect to X if each transfer of is in congestion
with a transfer of A. A team of X is called full team if it is a
full simultaneous subset of X.

Let us modify a liquid schedule so as to convert one of its
teams into a full team. Let a traffic X have a liquid schedule

. Let A be a time frame of . If A is not a full team of X,
then, by moving the necessary transfers from other time
frames of , we can convert the team A to a full team.
Evidently, the properties of liquidity (partitioning,
simultaneousness and length) of will not be affected.
Therefore if X has a solution then it has also a solution
when one of its time frames is full, hence the choice of the
teams in the construction may be narrowed from the set of
all teams to the set of full teams only. Fig. 7 shows a liquid
schedule constructed with full teams.

In each step of the liquid schedule search tree (Fig. 8), we
need to traverse the set of all full teams of the current sub-
traffic.

For this purpose, we partition the collection of all full teams
into two sub-collections, one consisting of full teams
including a given transfer and the other one consisting of
full teams excluding that transfer. At the next step, each of
these two sub-collections is again partitioned to include,
respectively exclude another selected transfer. By
recursively applying this approach we steadily increase the
quantity of sub-collections and decrease their sizes. At any
stage, each sub-collection is characterised by the history of
previously selected transfers. Nodes which do not represent

full teams are eliminated. Ultimately, each leaf node of the
partitioning process represents one single full team. All
histories of selected transfers recursively obtained by
traversing the partitioning tree lead to the enumeration of

all possible full teams1.

In the annex we compare our liquid schedule construction
algorithm with a heuristic solution for coloring the conflict
graph.

4. Results

In this section, we present the measured throughput values
for collective communications carried out on a real network
according to the liquid schedules computed with our
algorithms. We then compare the measured throughput
values with the theoretical liquid throughput values.

Fig. 9 shows the measured aggregate throughputs of
collective data exchanges performed according to the
computed liquid schedules on the T1 cluster. Each black
dot represents the median of 7 measurements. The
horizontal axis represents the 363 sub-topologies as well as
the number of contributing nodes.

Processor to processor transfers have a size of 5MB,
transferred as a single message of 5MB. The measured all-
to-all aggregate throughputs (black dots) are close to the
theoretically computed liquid throughput (gray line). For
many sub-topologies, the proposed scheduling technique
allows to increase the aggregate throughput by a factor of
two, compared with the topology-unaware round-robin
schedule (Fig. 6).

ℑ Xsub()() ≤ # A ℑ X()∈ A Xsub⊂{ }()

X A–

α α

α

α

1. The detailed algorithm, together with further search
space reduction techniques will be presented in a sub-
sequent publication.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 8 10 12 13 14 15 16 17 18 19 21 22 24 27

Number of contributing nodes for the 363 sub-topologies

A
ll-

to
-a

ll
th

ro
ug

hp
ut

(M
B

/s
)

Fig. 9. Predicted liquid throughput and measured through-
put according to the computed liquid schedule.

measurements on T1
according to the com-
puted liquid schedule

liquid throughput

Thanks to the presented search space reduction algorithms,
the computation time of a liquid schedule takes for more
than 97% of the considered sub-topologies of the T1 cluster
less than 1/10 of a second on a single Compaq 500MHz
Alpha processor.

For applications having relatively long communication
patterns such as exchanges of continuous media streams,
the gain in the utilization of network resources may be
significant compared with the resources required to
compute a liquid schedule.

5. Conclusions

We propose a method for scheduling collective data
exchanges in order to obtain an aggregate throughput equal
to the network’s liquid throughput. This is achieved by
building at each time frame of the schedule mutually non-
congesting sets of transfers using all bottleneck links.
Exploration of the full solution space yields a liquid
schedule if it exists. The proposed search space reduction
techniques make the approach practical for networks
having in the order of ten interconnected crossbar switches.

Experiments carried out on the Swiss T1 cluster computer,
show that for most sub-topologies the proposed scheduling
technique allows to increase the collective data exchange
throughput by a factor between 1.5 and 2.

As an alternative to the search for the liquid schedule, we
can color the conflict graph associated to the set of
collective transfers by applying a greedy algorithm (see
Annex). Slightly sub-optimal scheduling solutions may be
obtained without much computation effort. In a concrete
application one may choose to carry out simultaneously the
search for a liquid schedule and the coloring of the conflict
graph. In the case that no liquid schedule is found after a
certain limit of time, the sub optimal solution offered by the
greedy graph coloring algorithm may be adopted.

In the future, we intend to explore how to extend the
presented scheduling techniques in order to dynamically
reschedule collective data exchanges when the set of
planned exchanges evolves over time.

Annex

The search for a liquid schedule requires to partition the
traffic into sets of mutually non-congesting transfers. The
problem can be formulated as the problem of coloring the
conflict graph [6]. Vertices of the conflict graph are formed
by transfers. Edges between vertices represent congestions
between transfers.

Fig. 10 shows the graph whose vertices are to be colored

for the collective data exchange of Fig. 1. Vertex

corresponds to a transfer from an emitting processor n to a

receiving processor m. For example vertex represents

the transfer T4!R1={l4, l11, l6}. The bold edges of the
graph show congestions of transfers due to specific
bottleneck links.

Whenever a liquid schedule exists, an optimal solution of
the graph coloring problem is a liquid schedule. The
chromatic number of the graph’s optimal coloring is the
length of the liquid schedule. Vertices having the same
color represent a time frame of the liquid schedule.

The graph to be colored is characterised by the relatively
low density of its edges. We can label each edge of the
graph by the link(s) causing the congestion. An all-to-all
data exchange on the Swiss T1 cluster with 32 transmitting
and 32 receiving processors forms a graph with

vertices and 48704 edges.

We compared our method of finding a liquid schedule with
the results obtained by applying a greedy high-speed graph
coloring algorithm Dsatur [20], which carries out the
following operations:

1. Arrange the vertices by decreasing order of degrees.
2. Color a vertex of maximal degree with color 1.
3. Choose a vertex with a maximal saturation degree (defined

as the number of different colours to which it is adjacent).
If there is an equality, priority is given to the vertex having
the maximal degree in the uncoloured subgraph.

xn m,

x4 1,

x
1,1

x
2,1

x
3,1 x

4,1
x
5,1

x
1,2

x
2,2

x
3,2 x

4,2

x
1,3

x
2,3

x
3,3 x

4,3

x
1,4

x
2,4

x
3,4 x

4,4
x
5,4

x
1,5

x
4,5

x
5,5

Fig. 10. Graph corresponding to the data exchange shown in
Fig. 1. The 25 vertices of the graph represent the trans-
fers. The edges represent congestion relations between
transfers, i.e. each edge represents one or more com-
munication links shared by two transfers.

B
old

edges
representallcongestions

due
to

bottleneck
link

l11
and

bottleneck
link

l12

32 32× 1024=

4. Color the chosen vertex with the least possible (lowest
numbered) color.

5. If all the vertices are colored, stop. Otherwise, return to 3.

Fig. 11 shows the loss of performance on the T1 sub-
topologies due to the additional unnecessary colours
induced by the greedy graph coloring algorithm, compared
with the liquid schedule algorithm.

For 74% of the topologies there is no loss of performance.
For 18% of the topologies, the performance loss is below
10% and for 8% of the topologies, the loss of performance
is between 10% and 20%.

The computation time of the greedy algorithm is
polynomial and compares therefore favourably with the
algorithm searching for the liquid schedule.

References

[1] N.J. Boden, et al., “Myrinet - A gigabit per second local area
network,” IEEE Micro, pp. 29-36, February 1995.

[2] J. Duato, A. Robles, F. Silla, R. Beivide, “A Comparison of
Router Architectures for Virtual Cut-Through and Worm-
hole Switching in a NOW Environment”, ACM Journal of
Parallel and Distributed Computing, February 2001, Vol.
61, Issue 2, 224-253.

[3] Thomas E. Stern, Krishna Bala, Multiwavelength Optical
Networks: A Layered Approach, Addison-Wesley, ISBN:
020130967X, May 1999

[4] Roberto Battiti, Alan A. Bertossi, Maurizzio A. Bonuccelli,
“Assigning Codes in Wireless Networks: Bounds and Scal-
ing Properties.”, ACM/Baltzer Wireless Networks, Vol. 5,
1999, 195-209.

[5] Benjamin Melamed, Khosrow Sohraby, Yorai Wardi, “Mea-
surement-Based Hybrid Fluid-Flow Models for Fast Multi-
Scale Simulation”, DARPA/NMS BAA 00-18 AGREE-

MENT No. F30602-00-2-0556, http://www.darpa.mil/ito/
research/nms/meetings/nms2001apr/Rutgers-SD.pdf, April
2001.

[6] B. Beauquier, J.C. Bermond, L. Gargano, P. Hell, S.
Pérennes, U. Vaccaro, “Graph Problems Arising from Wave-
length-Routing in All-Optical Networks”, 2nd IEEE Work-
shop on Optics and Computer Science (WOCS, part of IPPS
'97), IEEE Press, April 1997.

[7] J.-C. Bermond, L. Gargano, S. Perennes, A. A. Rescigno,
and U. Vaccaro, “Efficient collective communication in
optical networks”, Proc. of ICALP'96. Lecture Notes in
Computer Science, 1996, 574-585.

[8] I. Caragiannis and Ch. Kaklamanis and P. Persiano, “Wave-
length Routing in All-Optical Tree Networks: A Survey”,
Bulletin of the European Association for Theoretical Com-
puter Science, 2002, Vol. 76, 104-112.

[9] R. Jain, G. Sasaki, “Scheduling packet transfers in a class of
TDM hierarchical switching systems”, IEEE International
Conference on Communications ICC '91, Vol. 3, 1991,
1559-1563.

[10] Dah-Ming Chiu, Raj Jain, “Analysis of the increase and
decrease algorithms for congestion avoidance in computer
networks”, Computer Networks and ISDN Systems, 1989,
Vol. 17, 1-14.

[11] H. Ozbay, S. Kalyanaraman, A. Iftar, “On rate-based con-
gestion control in high-speed networks: Design of an H-
infinity based flow controller for single bottleneck”, Proc. of
the American Control Conference, June 1998, 2376-2380.

[12] S.-H.G. Chan, “Operation and cost optimization of a distrib-
uted server architecture for on-demand video services”,
IEEE Communications Letters, Vol. 5, No. 9, Sept. 2001,
384-386.

[13] Dinkar Sitaram, Asit Dan, Multimedia Servers, Morgan
Kaufmann Publishers, San Francisco California, ISBN 1-
55860-430-8, 2000, 69-73.

[14] H.323 Standards, http://www.openh323.org/standards.html

[15] D.A. Fritz, D.W. Moy, R.A. Nichols, “Modeling and simula-
tion of Advanced EHF efficiency enhancements”, Proc. of
Military Communications Conference, IEEE MILCOM
1999, Vol. 1, 354-358.

[16] Large Hadron Collider, Computer Grid project, CERN,
20.09.2001, http://press.web.cern.ch/Press/Releases01/
PR10.01EGoaheadGrid.html

[17] P. Kuonen, “The K-Ring: a versatile model for the design of
MIMD computer topology”, Proc. of the High-Performance
Computing Conference (HPC'99), San Diego, USA, April
1999, 381-385.

[18] Pierre Kuonen, Ralf Gruber, “Parallel computer architec-
tures for commodity computing and the Swiss-T1 machine”,
EPFL Supercomputing Review, Nov 99, pp. 3-11, http://
sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-
page3.html

[19] Paul R. Halmos, Naive Set Theory, Springer-Verlag New
York Inc, ISBN 0-387-90092-6, 1974, 26-29.

[20] Daniel Brelaz, “New Methods to Color the Vertices of a
Graph”, CACM(22), 1979, 251-256.

Loss of performance due to suboptimal scheduling

0

2

4

6

8

10

12

14

16

18

20

1 64 10
0

12
1

14
4

16
9

19
6

22
5

22
5

25
6

28
9

32
4

36
1

40
0

44
1

48
4

57
6

67
6

96
1

number of transfers for 363 sub-topologies

lo
ss

in
pe

rf
or

m
an

ce
(%

)

Fig. 11. Loss in performance induced by schedules com-
puted with the Dsatur heuristic algorithm.

