
Abstract

The upper limit of the network’s capacity for a collective
communication is its liquid throughput related to the flow
capacity of a liquid in a network of pipes. However, in a
communication network the aggregate throughput of a
traffic carried out by straight-forward topology-unaware
techniques may be several times lower than the maximal
potential throughput of the network. In most of the cut-
through, wormhole and wavelength division optical
networks, the loss of performance is caused by congestions
between simultaneous transfers sharing a common link
resource. We propose to carry out the transfers of the
traffic according to special liquid schedules, which, relying
on the knowledge of the underlying network topology and
by ensuring successive utilization of bottleneck links,
obtain the network’s liquid throughput. To build a liquid
schedule we need to partition and distribute the traffic into
time-frames consisting of mutually non-congesting
transfers and also keeping the bottleneck links occupied all
the time. Time frames filled up until saturation by non-
congesting transfers lead to an exponential explosion of
many unsuccessful configurations, resulting in a very large
search space. In this paper we present an efficient
algorithm which non-redundantly traverses all possible
subsets of simultaneous transfers for time-frames and,
further on, a liquid schedule construction technique, which
efficiently reduces the search space without affecting the
solution space. There is a practical minority of collective
communications yielding no liquid throughput for any
resequencing of its transfers. The optimal or sub-optimal
schedules for such communications we propose to obtain
by applying one of the heuristic graph coloring algorithms.

Keywords: optimal network utilization, collective
communication, liquid schedules, network topology,
topology-aware scheduling.

1. Introduction

Collective multicast communications are of increasingly
high importance in multimedia scientific applications. The
aggregate throughput of a collective communication
pattern depends on the application’s underlying network
topology. The amount of data that has to pass across the
most loaded links of the network (bottleneck links) gives
the utilization time of the bottleneck links. The total size of
the traffic divided by the utilization time of the bottleneck
links gives an estimation of the liquid throughput
corresponding to the flow capacity of a non-compressible
fluid in a network of pipes [Melamed]. In the wormhole
electronic networks as well as in the WDM optical
networks not any combination of transfer requests may be
carried out simultaneously. For a physical network
modelled as an undirected graph
there is an objective to minimize the number T of timeslots
and/or wavelengths required to carry out the given set of
transfer requests. The proposed formulation is as follows:

Minimize:
Subject to:

Here denotes the routing, i.e. indicates if the

transfer (flit stream flow for wormhole switching or
lightpaths for optical networks) from source s to

destination d traverses the link e. indicates if the

transfer from source s to destination d is assigned to the
timeslot t.

It remains to express the partitioning constraint of the
schedule, i.e. each transfer of traffic must be assigned to
one and only one timeslot:

Network’s Liquid Throughput: Topology Aware Optimization of Collective
Communication

Emin Gabrielyan, Roger D Hersch
École Polytechnique Fédérale de Lausanne

{Emin.Gabrielyan,RD.Hersch}@epfl.ch

G V G() E G(),()=

T

At
s d, Re

s d,⋅
s d,
∑ 1≤ e E G()∈∀ t∀ 1…T{ }∈,

Fe
s d, 0 1,=

At
s d, 0 1,=

Re
sd

At
sd

The present problem is hard to solve. We will show that for
the sizes of practical interest the application of the exact
method MILP [CPLEX], [AMPL] (Mixed Integer Linear
Programming) to the problem leads to very long solution
times. Application of heuristic method of graph colouring
algorithms efficiently providing a suboptimal solution is
possible. However the suboptimal results of heuristic graph
coloring method, translated back to the original problem in
term of performance results to a loss of up to 18%. The
exact method proposed in this paper, is fast enough to
allow real time scheduling of an evolving over time
broadcast and multicast communication in congestion
sensible transmission networks. There are numerous
applications requiring highly efficient network resources:
parallel acquisition and distribution of multiple video
streams [Chan], [Sitaram]; switching of simultaneous voice
communication sessions [H323], [Fritz]; and high energy
physics data acquisition and transmission from a large
number of detectors to a cluster of processing nodes for
data filtering and event assembling [CERN].

 An applicaion of a particular interest is an optical
network capable of the lightpath assignment on demand.
Liquid scheduling is successfully tested on the cluster of
parallel supercomputer interconnected by a high
performance wormhole [Liu] switch fabric. A
communication intensive application well integrating with
the liquid schedules is a Striped File I/O1 for parallel
computation of out of core applications [Puente].

2. Applicable networks

This section introduces different types of electronic,
optical, wireless networks having in common the problem
of congestion avoidance in the traffic. Liquid scheduling of
collective broadcast and multicast communication is
applicable for each of these networks.

2.1. Cut-through switching

In many high performance multicomputer
communication networks links lying on the path of a
message are exclusively kept occupied during the
transmission of that message. Unlike packet switching (or
store-and-forward switching) with each network packet
being solely present at intermediate router [Ayad],

wormhole switching (or cut-through switching) transmits a
message as a worm propagating itself across intermediate
switches, i.e. a continuous stream of bits which make their
way through the fabric spanning multiple switches. In a
cut-through switching [Duato], [Shin], [Rexford],
[Colajanni] a message entering into a network is being
broken up into small parts of equal size (e.g. one 32-bit
word) called flits (standing from flow-control digit), which
are streamed across the network. All the flits of a packet
follow the same path. As soon as a switch on the path of a
message receives the head flit and processes the routing
header, it triggers the flow of flits to the corresponding
outgoing link. If the message encounters a busy outgoing
link, the wormhole switch stalls the message in the network
along the already established path until the link becomes
available2. Occupied channels are not released. A channel
is released only when the last tail flit of the message is
transmitted through it. Thus each link laying on the path of
the message is kept occupied during the whole
transmission time of a message.

Compared with store and forward switches, cut-through
switching considerably decreases the latency of message
transmission across multiple routers. Cut-through
switching makes the latency insensitive to the message
distance. Therefore, most contemporary research and
commercial multicomputer routers use some form of cut-
through switching (Myrinet, Quadrics, Tnet) [Boden].

Wormhole switching only pipelines message and thus
requires no more than a very small buffer. This makes
easier realization of a high performance switch on a single
chip considerably reducing the cost of a large scale
network [Yocum]. However, wormhole switching alone,
quickly saturates as load increases due to blocked message
paths. Congestions occurring due to simultaneous
transmission of messages sharing common network links
result in an aggregate data throughput lower than the liquid
throughput offered by the network.

For the same set of collective communications the rate
of network congestions may significantly vary depending
in which order individual communications are carried out.
Channel contentions can be avoided if the transfers are
scheduled so that no congesting messages are transmitted
at a time.

1.2. Lightpaths on demand

Lightpaths are end to end optical connections from a
source node to a destination node over a wavelength within
each intermediate link. Different lightpaths in a wavelength

1. Striped File I/O for parallel programs was our first applica-
tion which indicated the importance of the knowledge of the
underlaying network topology by the parallel application.

At
s d,

t 1=

T

∑ 1= s d,∀

2. If the message encounters a busy outgoing link virtual cut-
through (VCT) switching buffers the entire packet in the
router.

routing network can use the same wavelength as long as
they do not share any common links. Fig. 1 shows an
example of optical network.

OLT, Optical Line Terminal, multiplexes multiple wave-
lengths into a single fiber and demultiplexes a set of wave-
lengths on a single fiber into separate fibers; OADM is an
Optical Add/Drop Multiplexer; and OXC, Optical Cross-
connect, switches wavelengths from one port to another.

End nodes are IP routers and SONET terminals. The
network is designed to provide permanent lightpaths
between terminal nodes, e.g. between the node A and E.
Both OADMs and OXCs in the network may incorporate
wavelength conversion capabilities. OXCs that provides no
wavelength conversion features are called wavelength-
selective cross-connects (WSXC). In networks uniquely
based on WSXC optical switches, it is assumed that the
basic optical transmission channel remains on a fixed
wavelength from end to end (a condition called wavelength
continuity constraint) and therefore any lightpath must be
assigned the same wavelength on all the links it traverses
(two lightpaths traversing a common link must be assigned
different wavelengths [Ramaswami]). Assuming that the
OXCs of the example in the Fig. 1 do not carry out wave-
length conversion, the lightpath between the nodes A and E
uses one single wavelength all along its route and
therefore cannot be reused by another lightpath at any
link of the route1.

In most cases we are already given the routing, in which
case, we are concerned only with the Wavelength
Assignment (WA) problem. WA is a problem of optimal
design in the optical layer. There has been work on

theoretical considerations about the required number of
wavelengths and the complexity of finding a solution
according to the network topology [Bermond],
[Caragiannis].

Under wavelength continuity condition, when the
network is based on WSXC switches, the problem of
wavelength assignement to the set of lightpaths and the
problem of the timeslot assignemt to the set of
transmissions are very similar.

Additional interest for liquid scheduling is found in
optical transmission systems deploying the capability of
dynamic switching of lightpath circuits. The functionality
providing the ability to set up and take down lightpaths
across the network in a dynamic fashion is currently
evolving in the optical layer very fast [Stern]. An issue in
such a network providing lightpaths on demand is a fast
and efficient scheduling of multicast communications
within minimal number of timeframes.

1.3. Time division networks and spread spectrum
wireless networks (CDMA).

Satellite-switch time division multiplexing networks
[Jain] and CDMA spread spectrum wireless networks
[Battiti] also can be viewed as interconnection topologies.
The links of the interconnection topology reflecting
CDMA networks represent orthogonal frequency spectra.
Congestion occurs if there is a common frequency for two
simultaneous transmissions. The liquid throughput may be
obtained for a traffic over a CDMA wireless network by
applying our algorithms to the same radio-communication
traffic, but carried out over a virtual interconnection
topology reflecting the configuration of the wireless
network. The obtained distribution of radio transmissions
over successive time frames will yield the liquid
throughput of the wireless network.

We propose a dynamic scheduling of multicast
communications, where the application is capable of
determining its underlying topology and apply liquid
schedules to its data intensive collective communication
requests. Unlike flow control based congestion avoidance
mechanisms [Chiu], [Ozbay], [Loh] we establish schedules
for the data transfers without trying to regulate the sending
nodes’ data rate. Liquid schedules do not always exists, in
that cases we turn to optimal or sub-optimal solutions

SONET
Terminal

IP
Router

IP
Router

IP
Router

SONET
Terminal

A C

E

OLT

OADM

OXC

λ1

λ1

Fig. 1. Optical layer, wavelength-routing network.

B

D

λ1
λ1

1. In some cases, lightpaths may be converted from one wave-
length to another wavelength along their route. OXCs pro-
viding the wavelength conversion are called wavelength-
interchanging cross-connects (WIXC). WIXCs do both
space switching and wavelength conversion.

offered by one of efficient heuristic algorithms of the graph
colouring problem.

We integrated implementations of the presented
algorithm as a library with an MPI communication
intensive application running on a cut-through high
performance network. The obtained measurement results
are very close to the expected theoretical values.

2. Examples and demonstrations

The example of network topology shown in Fig. 2
consists of ten end nodes t1...t5, r1...r5 (henceforth called
processors), two wormhole cut-through switches sa, sb and
twelve unidirectional links lt1...lt5, lr1...lr5, lab, lba having
identical throughputs. In this example the processors t1...t5
only transmit data and r1...r5 only receive. It’s easy to
guess the routing, e.g. a message from t4 to r3 traverse
links lt4, lba and lr3, a message from t2 to r3 uses only links
lt2 and lr3, etc.

We denote transfers symbolically to mark out the
network links occupied by the transfer. For example the
transfer from t4 to r3 is symbolically represented as ,

the transfer from t1 to r2 as , etc. Extending the
graphical representation a set of transfers carried out

simultaneously we also denote symbolically, e.g.
corresponds to a traffic simultaneously transferring
messages from t4 to r3 and from t1 to r2.

Let each sending processor have a messages destined to
each receiving processor and let all messages have
identical sizes [Naghshineh]. Thus we have 25 transfers to
carry out. Each of the ten links lt1...lt5, lr1...lr5 carries 5
transfers and the two links lab, lba must carry 6 transfers
each. Therefore the links lab, lba are the network
bottlenecks and have the longest active time. If the duration
of whole collective communication is as long as the active
time of the bottleneck links, we say that the collective

communication reaches its liquid throughput. In that case
the bottleneck links are abviously kept busy all the time
along the duration of the communication traffic. Assuming
in this example a single link throughput 1 Gb/s, the liquid
throughput offered by the network is

. Under the identical
transfer size and link thoughput constraints (kept all along
this paper for the sake of simplicity) the liquid throughput
of a traffic X is the ratio multiplied by

single link throughput, where is the total number of

transfers and is the number of transfers carried by
one bottleneck link.

Now let us see if the order in which the transfers are
carried out in this wormhole network can have any impact
to the collective communication performance. A straight
forward schedule to carry out these 25 transfers is the
round-robin schedule, according to which at first each
transmitting processor sends the message to the receiving
processor staying in front, then to the receiving processor
staying in the next position, etc. (the order turns from the
last fifth processor to the first one). This round robin
schedule consists of 5 phases. The transfers of the first

 second and fifth phases of the
round-robin schedule may be carried out simultaneously,
but the third { , , , , } and

fourth { , , , , } phases contain
congesting transfers, e.g. at the third phase the transfer

 stays blocked until the transmission is
accomplished (or vice a versa). None of these two phases
can be carried out in less than two time-frames and
therefore the whole schedule lasts 7 time-frames, instead of
simingly 5. Consecutively the performance of our
collective communication carried out according to the
round-robin schedule corresponds to the throughput of

 messages per time-frame or

, which is less than
liquid throughput.

Nevertheless, the 25 transfers may be carried out within
6 time-frames. We call a liquid schedule the schedule
yielding the liquid throughput of the collective
communication. The following sequence of time-frames

{ , , , , , } is an
example of the liquid schedule for the 25-transfer
collective communication request.

3. Definitions

Fig. 2. Example of a network topology.

t1

r1

t2 t3 t4 t5

r2 r3 r4 r5

l ba

l ab

lt5lt3 l t4l t2

l t1

lr1

lr2 lr4 l r5l r3

sa sb

25 6⁄() 1× Gb/s 4.17 Gb/s=

X() Λ X()⁄
X()

Λ X()

25 7⁄ 3.57=
25 7⁄() 1× Gb/s 3.57 Gb/s=

The method we propose allows efficient construction of
liquid schedules for complex network topologies resulting
in considerable increase of collective data exchange
throughputs, compared with traditional topology-unaware
techniques such as round-robin or random schedules. This
section introduces the definitions that will be further used
in this paper for presentation of the underlying algorithms
of the construction method.

A single “point-to-point” transfer is represented by the
set of communication links forming the network path
between a transmitting and a receiving processor according
to a given routing. A transfer is a set of links (i.e. the path
between a sending processor and a receiving processor). A
traffic is a set of transfers (i.e. the collective data
exchange). Fig. 3 shows the traffic for a data exchange
carried out on a network topology shown in the Fig. 2. In
the figure the bottleneck links of the network are marked in
bold.

This half-all-to-all data exchange is a particular case of
a traffic, any collective exchange comprising of transfers
between possibly overlaping sets of sending and receiving
processors is a traffic. A link l is utilized by a transfer x if

. A link l is utilized by a traffic X if l is utilized by a
transfer of X. Two transfers are in congestion if they share a
common link. If they don’t use a common link they are
simultaneous. Note that we will be limiting ourselves to
data exchanges consisting of identical packet sizes.

A simultaneity of a traffic X is a subset of X consisting
of mutually non-congesting transfers. A transfer is in
congestion with a simultaneity if the transfer is in
congestion with at least one member of the simultaneity. A
simultaneity of a traffic is full if all transfers in the
complement of the simultaneity in the traffic are in
congestion with that simultaneity. A simultaneity of a
traffic is obviously can be carried out in one timeframe
required by a single transfer. , the load of link l in
the traffic X, is the number of transfers in X using link l.
Now comes the formal definition of already

introduced before. The duration of a traffic X is the
maximal value of the load among all links involved in the
traffic.

The links having maximal load values, i.e.
, are called bottlenecks. The liquid

throughput of a traffic X is the ratio

multiplied by the single link throughput, where is
the number of transfers in the traffic X.

Let us define a simultaneity of X as a team of X if it uses
all bottlenecks of X. A team of X is full if it is a full
simultaneity of X. Let and be respectively
the sets of all full simultaneities and all full teams of X.

In order to form liquid schedules, we try to schedule
transfers in such a way that all bottleneck links are always
kept busy. Therefore we search for a liquid schedule by try-
ing to assemble non-overlapping teams carrying out all
transfers of the given traffic (i.e. partitioning of the traffic
into teams [Halmos]). To cover the whole solution space we
need means of generating all possible teams of a given traf-
fic. This is an exponentially complex problem. It is there-
fore important that the team traversing technique be non-
redundant and efficient, i.e. each configuration is evaluated
once and only once, without repetitions.

4. Obtaining full simultaneities

The construction of liquid schedules requires the ability
of traversing the set of all full teams of an arbitrary traffic.
To limit redundant search steps, each full team should be
constructed once and only once. We first optimize the
retrieval of all simultaneities and then use that algorithm to
retrieve all full teams.

Recall that in a traffic X, any mutually non-congesting
combination of transfers is a simultaneity. A full
simultaneity is a combination of non-congesting transfers
taken from X, such that its complement in X contains only
transfers congesting with that simultaneity.

We can categorize full simultaneities according to the
presence or absence of a given transfer x. A full
simultaneity is x-positive if it contains transfer x. If it does
not contain transfer x, it is x-negative. Thus the set of full
simultaneities is partitioned into two non-
overlapping subsets: an x-positive and x-negative subset of

. For example, if y is another transfer, the set of x-
positive full simultaneities may be further partitioned into
y-positive and y-negative subsets. Repetition of this
concept allows us to design a recursive technique

{lt1, lr1}, {lt1, lr2}, {lt1, lr3}, {lt1, lab, lr4}, {lt1, lab, lr5},

{lt2, lr1}, {lt2, lr2}, {lt2, lr3}, {lt2, lab, lr4}, {lt2, lab, lr5},

{lt3, lr1}, {lt3, lr2}, {lt3, lr3}, {lt3, lab, lr4}, {lt3, lab, lr5},

{lt4, lba, lr1}, {lt4, lba, lr2}, {lt4, lba, lr3}, {lt4, lr4}, {lt4, lr5},

{lt5, lba, lr1}, {lt5, lba, lr2}, {lt5, lba, lr3}, {lt5, lr4}, {lt5, lr5}

}}
Fig. 3. Example of traffic composed of 25 transfers car-

ried out over a network shown on Fig. 2.

l x∈

λ l X,()

Λ X()
Λ X()

Λ X() max
l l·

l· x∈

∪⎝ ⎠
⎜ ⎟
⎛ ⎞

x X∈

∪∈

⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

λ l X,()=

λ l X,() Λ X()=
X() Λ X()⁄

X()

ℜ X() ℑ X()

ℜ X()

ℜ X()

traversing whole set of all full simultaneities one
by one without repetitions.

Let us define a category of full simultaneities of X as an
ordered triplet (excluder, depot, includer), where the
includer is a simultaneity of X (not necessarily full) and the
transfers of X non-congesting with the includer are either in
the depot or in the excluder.

We say that a full simultaneity is covered by a category
R, if the full simultaneity contains all the transfers of the
category’s includer and does not contain any transfer of the
category’s excluder. Consequently, any full simultaneity
covered by a category is the category’s includer together
with some transfers taken from the category’s depot. The
collection of all full simultaneities of X covered by a
category R is defined as the coverage of R. We denote the
coverage of R as .

The category is a prim-category since it
covers all full simultaneities of X, i.e.

.

By taking an arbitrary transfer x from the depot of a
category R, we partition the coverage of R into x-positive
and x-negative subsets. The x-positive and x-negative
subsets of a coverage of R respectively are coverages of
two categories derived from R: a positive sub-category and
a negative sub-category of R.

The positive sub-category is formed from the

category R by adding transfer x to its includer, and
removing from its depot and excluder1 all transfers
congesting with x. The negative sub-category is

formed from the category R by moving transfer x from its
depot to its excluder (see Fig. 4).

The coverage of R is partitioned by the coverages of its
sub-categories and , i.e. the coverage of a

category is the union of coverages of its sub-categories:

, where the coverages of

the sub-categories have no common transfers,
. The replacement of a

category R by its two sub-categories and is

defined as a binary fission of a category.

ℜ X()

φ R()

∅ X ∅, ,()

φ ∅ X ∅, ,() ℜ X()=

1. Since transfers congesting with x can not be in a full simulta-
neity covered by , we may safely remove them from
the excluder.

R+x

R+x

R x–

Fig. 4. Fission of a category into two sub-categories

R=

R x= R x=

- transfer x
- transfers congesting with x
- transfers non-congesting with x

{ }
excluder includer

depot

{ }
excluder includer

depot

{ }
excluder includer

depot

R+x R x–

φ R+x() φ R x–()∪ φ R()=

φ R+x() φ R x–()∩ ∅=

R+x R x–

A singular category is a category that covers only one
full simultaneity. That full simultaneity is equal to the
includer of the singular category. The depot and excluder
of a singular category are empty.

We apply the binary fission to the prim-category and
split it into two categories. Then, we apply the fission to
each of these categories. Repeated fission increases the
number of categories and narrows the coverage of each
category. Finally, the fission will lead to singular categories
only, i.e. categories whose coverage consists of a single full
simultaneity. Since at each stage we have been partitioning
the set of full simultaneities, at the final stage we know that
each full simultaneity is covered by one and only one
singular category.

The algorithm carries out recursively the fission of
categories and yields all full simultaneities without
repetitions.

There is a further optimization to be considered. Full
simultaneities covered by a category have no transfer from
the category’s excluder. Therefore each full simultaneity
covered by a category must contain a congesting transfer
for each member of the excluder. Since we keep in the
excluder transfers which do not congest with the includer,
congesting transfers must be taken from the depot. A
category whose depot doesn’t have a congesting transfer
for at least one of the excluder’s transfers is blank. The
coverage of a blank category is empty and there is
therefore no need to pursue its fission.

Let a category within X be idle if its includer and its
depot together don’t use all bottlenecks of X. The coverage
of an idle category does therefore not contain a team.

An algorithm that is carrying out successive fissions,
starting from the prim-ancestor and contiguously removing
all the blank and idle categories ultimately leads to all full
teams.

5. Speeding up full team formation

This section presents a further method for speeding up
the search for all full teams of an arbitrary traffic X.

Let us consider from the original traffic X only those
transfers that use bottlenecks of X and call this set of
transfers skeleton of X. We denote the skeleton of X as

. Obviously, .

Considering the skeleton of a traffic X as another traffic,
the bottlenecks of the skeleton of a traffic are the same as
the bottlenecks of the traffic. Consequently, a team of a
skeleton is also a team of the original traffic.

Let us obtain all full teams of the traffic’s skeleton by
applying the fission algorithm eliminating the idle
categories.

Then, a full team of the original traffic may be obtained
by adding a combination of non-congesting transfers to a
team of the traffic’s skeleton.

We therefore obtain the set of a traffic’s full teams
, by carrying out the following steps:

1. Obtain the set of the skeleton’s full teams
 by applying the fission algorithm.

2. Create for each skeleton’s full team a category by
2.1. initializing the includer with the transfers of

the skeleton’s full team,
2.3. initializing the excluder as empty,
2.2. and putting into the depot all transfers of X

non-congesting with the includer.
3. Apply the fission to each category, discarding the

check for idle categories, since the includer is
already a team, i.e. it uses all bottlenecks.

By first applying the fission to the skeleton and then
expanding the skeleton’s full teams to the traffic’s full
teams, we strongly reduce the required processing time and
at the same time we obtain all full teams of the original
traffic without repetitions.

ℑ X()

ς X() ς X() X⊂

ℑ X()

ℑ ς X()()

We measured the reduction in search space according to
the different search space reduction methods we propose.
We consider 31 different traffics within the T1 32 node
cluster computer (Fig. 8). The search space is given by the
number of nodes that are being explored within the
recursion tree. Fig. 5 shows the obtained search space
reductions compared with a naive algorithm that would
build full teams without any of the proposed optimizations.
The skeleton algorithm reduces on average the search
space to 12.48%, i.e. full teams are computed 8 times faster
than without search space reduction techniques. Note that
all presented algorithms, including the naive algorithm, are
smart enough to avoid repetitions of full simultaneities.

6. Liquid schedules

Having the capability of building full teams, let us now
show how to compute the liquid schedule of a data
exchange. A schedule of a traffic X is a collection of
simultaneities of X partitioning the traffic X. A step of a
schedule is an element of the schedule . , the

length of a schedule , is the number of steps in . A
schedule of a traffic is optimal if the traffic does not have
any shorter schedule. If the length of a schedule is equal to
the duration of the traffic then the schedule is liquid. A
liquid schedule is optimal, but the inverse is not always
true, meaning that a traffic may not have a liquid schedule.
Fig. 6. demonstrates a traffic that does not have a team and

therefore no liquid schedule. Fig. 7 shows a liquid schedule
for the collective traffic shown in Fig 1.

The duration of a traffic X is the load of its bottlenecks.
If a schedule is liquid, then each of its timeframes must use
all bottlenecks. Inversely, if all steps of a schedule use all
bottlenecks, the schedule is liquid.

4.
7 5.
5 7.
4

7.
9

8.
1

8.
3

9.
2

9.
3

9.
6

9.
9

10
.0

10
.1

10
.7

10
.8

10
.9

11
.3

12
.0

12
.2

12
.4

12
.6

12
.6

12
.7

13
.4

14
.0

14
.1

14
.4

14
.9

16
.5

17
.5 20
.0

20
.5

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

46
6.

6K
 (1

00
)

92
6.

2K
 (1

21
)

4.
2M

 (1
21

)
4.

2M
 (1

21
)

21
2K

 (1
00

)
4.

9M
 (1

21
)

4.
1M

 (1
21

)
9.

2M
 (1

21
)

69
3.

2K
 (1

00
)

14
.1

M
 (1

21
)

15
.2

M
 (1

21
)

75
3.

7K
 (1

00
)

68
2K

 (1
00

)
93

6K
 (1

00
)

1.
2M

 (1
00

)
88

.1
K

 (8
1)

95
K

 (8
1)

11
5.

9K
 (8

1)
10

.8
K

 (6
4)

1.
8M

 (1
00

)
16

2.
4K

 (8
1)

57
.6

K
 (8

1)
9.

2K
 (6

4)
13

6.
7K

 (8
1)

19
.8

K
 (6

4)
23

0.
4K

 (8
1)

1.
7K

 (4
9)

1.
4M

 (1
00

)
1.

1M
 (1

00
)

14
.2

M
 (1

21
)

20
.4

M
 (1

21
)

Number of possible full teams (and number of transfers) for 31 different traffics

Se
ar

ch
 sp

ac
e

re
du

ct
io

n
%

idle+skeleton+blank idle+blank blank

Fig. 5. Search space reducement

number of
full teams

number of
transfers

α

α α # α()
α α

l1

l2

l3

l4

l5

l6

l7

l8

l9

{l1, l7, l8, l6},

{l2, l8, l9, l4},

{l3, l9, l7, l5}
{ }

Fig. 6. This traffic has no team and no liq-
uid schedule.

The necessary and sufficient condition for the liquidity
of a schedule is that all bottlenecks be used by each step of
the schedule. Since a simultaneity of X is defined as a team
of X, if it uses all bottlenecks of X, an equivalent condition
for the liquidity of a schedule on X is that each step of

 be a team of X.

6.1. Liquid schedule naive search algorithm

Let us propose a naive liquid schedule construction tech-
nique. Consider all possible teams of the original traffic X.
Take one of them (for example A1) and consider it as the
first step of the liquid schedule. Remove the team A1 from
the traffic and look at the reduced traffic. The choice for the
second step is limited by only those teams of the original
traffic X, which are included in the reduced traffic .

Take a candidate for the second step from the current choice
(for example A1,1). Remove from the traffic the team A1,1 as
well. Similarly the choice for the third step is limited by
only those teams of the original traffic X, which are included
in the reduced traffic , etc.

The algorithm recursively search a liquid schedule in the
depth-wise order. A node in the search tree represents a
dead end if there are no choice for the successive step, i.e.
no team of the original traffic may be formed from the re-
duced traffic (i.e. not yet carried out transfers). At the dead
end nodes the algorithm backtracks one or more steps back
and analyses other possibilities. The algorithm stops at the
node whose reduced traffic is a team of the original traffic.
The collection of all teams on the path from the root to that
terminal node is a liquid schedule.

6.2. Speeding up the search of a liquid schedule

Let’s analyse the liquid schedule shown in Fig. 7. Re-
move from the traffic a few steps of the schedule and look
at the reduced traffic.

Load of bottlenecks decreases in the reduced traffic.
However the reduced traffic may contain additional bottle-
necks. More steps of a liquid schedule are carried out more
additional bottlenecks appears in the reduced traffic (not yet
carried out transfers).

The construction strategy of a liquid schedule presented
in the subsection 4.1. form a choice of candidates to the suc-
cessive step from all teams of the original traffic X included
in the reduced traffic.

However note, that the steps of the liquid schedule, are
not only teams for the original traffic, but they are also
teams of the corresponding reduced traffics. We are going
to prove that this property of steps is a necessary and suffi-
cient condition of the liquidity of a schedule. Note that this
properly is valid independently from the order of steps.

Therefore a step which is a team of the original traffic
(uses the bottlenecks of the original traffic) but does not use
the additional bottlenecks of the reduced traffic (isn’t a team
of the reduced traffic) may not lead to a liquid schedule.
Such a choice ultimately brings to a dead end and algorithm
shall backtrack for evaluating other choices.

Since the set of bottlenecks in the reduced traffic is larger
than the set of bottlenecks of the original traffic, the number
of teams of the original traffic is much fewer than the
number of teams of the original traffic (included in the re-
duced traffic). Therefore by limiting our choice at each step
by the set of teams of the reduced traffic we considerably re-
duce the search space without affecting the solution space.

DISCUSSION. Suppose A is a timeframe of a liquid
schedule on a traffic X. Therefore A is a team of .
Remove the team A from X so as to form a new traffic

. The duration of the new traffic is the load

of the bottlenecks in . The bottlenecks of X are also

the bottlenecks of . The load of a bottleneck of X

decreases by one in the new traffic (note that the

new traffic may have additional bottlenecks). The

schedule shortened by one element A is a schedule for

. The new schedule has as many

{ }
{ }

{ }{ }
{ }{ }{l1, l7},

{l2, l8},
{l3, l12, l9},
{l5, l11, l6}

{l1, l12, l9},
{l2, l7},
{l3, l8},

{l4, l11, l6},
{l5, l10}

{l1, l12, l10},
{l2, l6},

{l4, l11, l7},
{l5, l9}

{l1, l8},
{l2, l12, l9},

 {l3, l6},
{l4, l10},

{l5, l11, l7}

{l1, l6},
{l2, l12, l10},

{l3, l7},
{l4, l11, l8}

{l3, l12, l10},
{l4, l9},

{l5, l11, l8}

Fig. 7. A liquid schedule of the collective traffic shown in Fig. 2.

α
α

X A1–

X A1– A1 1,–
α α

X A– X A–
X A–

X A–
X A–

X A–
α

X A– α A{ }–

timeframes as the duration of the corresponding new traffic
. Therefore, if is a liquid schedule on X then for

any of its step A the schedule is a liquid

schedule on .

Consider traffic X as a problem whose solution is a
liquid schedule . The technique presented in section 3, is
capable of generating the set of all teams of X. If X has a
solution then a timeframe A of the schedule is a

member of the set of all teams of X and is a

schedule on . Therefore the problem X can be
reduced into smaller problems. Examine each possible
team A of X and search inductively (e.g. recursively) a
solution for . If a solution exists for X, then this
method will find it. If the method does not find a solution
for X, then, since we explored the full solution space, we
conclude that X does not have a liquid schedule.

We limit at each iteration our choice to the collection of
only those teams of the original traffic which are also teams
of the current reduced sub-traffic (having an expanded
number of bottlenecks). By doing so, we considerably
reduce the search space without affecting the solution
space.

By limiting the choice of the next step only by full teams
of the reduced traffic we again reduce the search space of
the construction algorithm. Let us show that here the solu-
tion space is not affected as well. Let us modify a liquid
schedule so as to convert one of its teams into a full team.
Let X (a traffic) have a solution (a liquid schedule). Let

A be a timeframe of . If A is not a full team of X, then, by
moving the necessary transfers from other timeframes of

, we can convert timeframe A to a full team. Evidently,
the properties of liquidity (partitioning, simultaneousness
and length) of will not be affected. Therefore if X has a
solution then it has also a solution when the team of one of
its steps is full, hence the choice of the teams in the con-
struction may be narrowed from the set of all teams to the
set of full teams only.

By a choice of a full team A of a traffic X we are faced
with the new smaller problem of searching a liquid
schedule for a traffic . The traffic may not
have a solution, or it may not have even a team. In these
cases we have to backtrack to evaluate other choices.

Evaluation of all choices ultimately leads to a solution if it
exists.

Fig. 7 shows a liquid schedule built as explained above.
Each its successive step being a team of the reduced traffic
incorporates all bottlenecks of that reduced traffic (shown
in bold).

Thanks to the presented chain of optimizations, for more
than 90 percent of our testbed topologies (see Section 5) the
search of liquid schedules took less than one tenth of a sec-
ond on a single 500MHz processor. For 8 topologies out of
363 solution was not found within 24 hours.

7. Testbed and measurements

In this section we present a testbed consisting of test
traffics for different topologies. Measurements of
collective data exchange throughputs will help us to
validate the efficiency of our scheduling strategy.

X A– α
α A{ }–

X A–

α

α α
α A{ }–

X A–

X A–

α
α

α

α

X A– X A–

As basic network topology for our testbed, we use the
Swiss-T1 cluster (called henceforth T1, see Fig. 8). The
network of the T1 forms a K-ring [Kuonen], [Sayoud] and
has a static routing scheme. The throughputs of all links are
identical and equal to 86MB/s. The cluster consists of 32
nodes, each one comprising 2 processors [SwissT1],
[Gruber].

The test traffics are selected from different
configurations of all-to-all collective data exchanges
between a set of emitting and receiving processors, where
each emitting processor sends one packet to each receiving
processor. Within each node, one processor is an emitting
and the other processor is a receiving unit. Therefore any
given allocation of nodes gives us an equal number of
emitting and receiving processors.

Since the T1 cluster incorporates 32 nodes, there exist

 possible allocations of nodes to an
application. Considering only the number of nodes in front

of each switch, there are only different
node allocations, since there are 8 switches having each n
used nodes (). Because of symmetries within the
network, many of these topologies are identical. To limit
our choice to really different topologies, we’ve computed
the liquid throughputs for each of 390625 topologies, taking
in account the network’s real routing tables. This resulted in
only 363 different liquid throughput values. Accordingly,

-

- Processor
} Node

1

2

3

4

5

6

7

8

Fig. 8. Architecture of the T1 cluster computer.

1 2 3 4 5 6 7 8
1 2 4 8
2 7 3 5
3 2 4 8
4 7 7 3
5 4 4 6
6 3 7 1
7 8 8 6
8 5 3 1

Routing Table

Full Crossbar
Switch

0

200

400

600

800

1000

1200

1400

1600

1800

0 4 8 12 16 20 24 28 32
Number of contributing nodes

Li
qu

id
 th

ro
ug

hp
ut

 (M
B

/s
)

Up
pe

r b
ou

nd

Lo
we

r b
ou

nd

Fig 9. Liquid throughput in relation to the number of
nodes with variations according to sub-topolo-
gies.

232 4294967296=

58 390625=

0 n 4≤ ≤

we have formed a test-bed consisting of 363 really different
topologies. Each topology is characterized by its liquid
throughput and the number of allocated nodes (see Fig. 9)1.

We have sorted these 363 traffics and placed them along

an axis. They are sorted first by the number of nodes and
then according to the value of the liquid throughput. Fig.
10 shows the liquid throughput values together with the
measured throughput of a round-robin schedule.

For each measurement, the amount of data transferred
from a transmitting processor to a receiving processor is
equal to 2MB. For each topology, 20 measurements were
made. The black dots represent the median of the collected
results. Measured throughputs of the round-robin schedule
are far below the network’s potential liquid throughput.
Throughputs of collective exchanges carried out according
to a random schedule do not perform better.

We measured the throughput computed with our liquid

scheduling technique, for the 363 data exchanges on the T1
cluster. Fig. 11 shows the measured throughput compared
with the theoretical liquid throughputs.

Each black dot represents the median of 7
measurements. Processor to processor transfers have a size
of 5MB. The measured throughputs are close to the
theoretically computed liquid throughput. For many sub-
topologies, the proposed scheduling technique allows to
increase the aggregate throughput by a factor of two
compared with a simple, topology un-aware scheduling
technique.

Thanks to the proposed liquid schedule search space
reduction techniques, computing a liquid schedule takes for
more than 97% of the considered sub-topologies of the T1
cluster takes a fraction of milliseconds on a simple
computer.

8. Conclusion

We propose a method for scheduling collective data
exchanges in order to obtain an aggregate throughput equal
to the network’s liquid throughput. This is achieved by
building at each step of the schedule mutually non-
congesting sets of transfers using all bottleneck links.
Exploration of the full solution space yields a liquid
schedule if it exists. The proposed search space reduction
techniques make the approach practical for networks
having in the order of ten interconnected crossbar switches.

On the Swiss T1 cluster computer, the proposed
scheduling technique allows for many sub-topologies to
increase the collective data exchange throughput by a
factor of two.

1.The figure demonstrates that depending on the sub-topology, the liquid
throughput for a given number of nodes may considerably vary.

0
200
400
600
800

1000
1200
1400
1600
1800

0
 0

0
64

 0
8

10
0

 1
0

12
1

 1
1

14
4

 1
2

16
9

 1
3

19
6

 1
4

22
5

 1
5

22
5

 1
5

25
6

 1
6

28
9

 1
7

32
4

 1
8

36
1

 1
9

40
0

 2
0

44
1

 2
1

48
4

 2
2

57
6

 2
4

62
5

 2
5

90
0

 3
0

Number of transfers and number of
contributing nodes for the 363 sub-topologies

Th
ro

ug
hp

ut
 (M

B/
s)

theoretical liquid measured round-robin

Fig. 10. Theoretical liquid throughput and measured round-
robin schedule throughput for 363 network sub-
topologies.

0
200
400
600
800

1000
1200
1400
1600
1800

0 64 10
0

12
1

14
4

16
9

19
6

22
5

22
5

25
6

28
9

32
4

36
1

40
0

44
1

48
4

57
6

62
5

90
0

Number of transfers for the 363 traff ics

Tt
hr

ou
gh

pu
t (

M
B

/s
)

theoretical liquid measured liquid

Fig. 11. Measured throughputs carried out according to
computed liquid schedules.

In the future, we intend to explore how to extend the
presented scheduling technique in order to dynamically
reschedule collective data exchanges when the set of
planned exchanges evolves over time.

References

[Melamed] Benjamin Melamed, Khosrow Sohraby, Yorai Wardi,
“Measurement-Based Hybrid Fluid-Flow Models for
Fast Multi-Scale Simulation”, DARPA/NMS BAA 00-
18 AGREEMENT No. F30602-00-2-0556, http://
www.darpa.mil/ito/research/nms/meetings/nms2001apr/
Rutgers-SD.pdf

[CPLEX] ILOG-CPLEX 7.1 User’s Manual
[AMPL] AMPL: A Modeling Language for Mathematical Pro-

gramming
[Chan] S.-H.G. Chan, “Operation and cost optimization of a dis-

tributed server architecture for on-demand video ser-
vices”, IEEE Communications Letters, Vol. 5, No. 9,
Sept. 2001, 384-386.

[Sitaram] Dinkar Sitaram, Asit Dan, Multimedia Servers, Morgan
Kaufmann Publishers, San Francisco California, ISBN
1-55860-430-8, 2000, 69-73.

[H323] H.323 Standards, http://www.openh323.org/stan-
dards.html

[Fritz] D.A. Fritz, D.W. Moy, R.A. Nichols, “Modeling and
simulation of Advanced EHF efficiency enhancements”,
Proc. of Military Communications Conference, IEEE
MILCOM 1999, Vol. 1, 354-358.

[CERN] Large Hadron Collider, Computer Grid project, CERN,
20.09.2001, http://press.web.cern.ch/Press/Releases01/
PR10.01EGoaheadGrid.

[Liu] Pangfeng Liu, Jan-Jan Wu, Yi-Fang Lin, Shih-Hsien
Yeh, “A simple incremental network topology for
wormhole switch-based networks”, Proc. 15th Interna-
tional Parallel and Distributed Processing Symposium,
2001, 6-12.

[Puente] V. Puente, C. Izu, J. A. Gregorio, R. Beivide, J. M. Prell-
ezo, F. Vallejo, “Improving parallel system performance
by changing the arrangement of the network links”,
Proc. of the International Conference on Supercomput-
ing, May 2000, 44-53.

[Ayad] N.M.A. Ayad, F.A. Mohamed, “Performance analysis of
a cut-through vs. packet-switching techniques”, Proc.
Second IEEE Symposium on Computers and Communi-
cations, 1997, 230-234.

[Duato] J. Duato, A. Robles, F. Silla, R. Beivide, “A comparison
of router architectures for virtual cut-through and worm-
hole switching in a NOW environment”, IEEE Sympo-
sium on Parallel and Distributed Processing SPDP,
1999, 240 -247

[Shin] K.G. Shin, S.W. Daniel “Analysis and implementation
of hybrid switching”, IEEE Transactions on Computers,
Vol. 45 Issue 6, June 1996, 684-692

[Rexford] Jenifer Rexford, Kang G. Shin, “Analytical Modeling
of Routing Algorithms in Virtual Cut-Through Net-
works”

[Colajanni] M. Colajanni, B. Ciciani, F. Quaglia, “Performance
Analysis of Wormhole Switching with Adaptive Rout-
ing in a Two-Dimensional Torus”

[Boden] N.J. Boden, et al., “Myrinet - A gigabit per second local
area network,” IEEE Micro, pp. 29-36, February 1995.

[Yocum] K.G. Yocum, J.S. Chase, A.J. Gallatin, A.R. Lebeck,
“Cut-through delivery in Trapeze: An Exercise in Low-
Latency Messaging”, 6th IEEE International Sympo-
sium on High Performance Distributed Computing,
1997, 243-252.

[Ramaswami] R. Ramaswami, G. Sasaki, “Multiwavelength opti-
cal networks with limited wavelength conversion”,
Proc. of IEEE Infocom, 1997.

[Bermond] J.-C. Bermond, L. Gargano, S. Perennes, A. A.
Rescigno, and U. Vaccaro, “Efficient collective commu-
nication in optical networks”, Proc. of ICALP'96. Lec-
ture Notes in Computer Science, 574-585, 1996.

[Caragiannis] I. Caragiannis and Ch. Kaklamanis and P. Persiano,
“Wavelength Routing in All-Optical Tree Networks: A
Survey”, Bulletin of the European Association for Theo-
retical Computer Science, 2002, Vol. 76, 104-112.

[Stern] Thomas E. Stern, Krishna Bala, Multiwavelength Opti-
cal Networks: A Layered Approach, Addison-Wesley,
ISBN: 020130967X, May 1999

[Jain] R. Jain, G. Sasaki, “Scheduling packet transfers in a
class of TDM hierarchical switching systems”, IEEE
International Conference on Communications ICC '91,
Vol. 3, 1991, 1559-1563.

[Battiti] Roberto Battiti, Alan A. Bertossi, Maurizzio A. Bonuc-
celli, “Assigning Codes in Wireless Networks: Bounds
and Scaling Properties.”, ACM/Baltzer Wireless Net-
works, Vol. 5, 1999, 195-209.

[Chiu] Dah-Ming Chiu, Raj Jain, “Analysis of the increase and
decrease algorithms for congestion avoidance in com-
puter networks”, Computer Networks and ISDN Sys-
tems, 1989, Vol. 17, 1-14.

[Ozbay] H. Ozbay, S. Kalyanaraman, A. Iftar, “On rate-based
congestion control in high-speed networks: Design of an
H-infinity based flow controller for single bottleneck”,
Proc. of the American Control Conference, June 1998,
2376-2380.

[Loh] P.K.K. Loh, Wen Jing Hsu, Cai Wentong, N. Sriskan-
than, “How network topology affects dynamic loading
balancing”, IEEE Parallel & Distributed Technology:
Systems & Applications, Vol. 4, No. 3, Fall 1996, 25-35.

[Naghshineh] M. Naghshineh, R. Guerin, “Fixed versus variable
packet sizes in fast packet-switched networks”,
Proc.Twelfth Annual Joint Conference of the IEEE
Computer and Communications Societies INFOCOM
'93., Networking: Foundation for the Future, IEEE
Press, Vol. 1, 1993, 217-226.

[Halmos] Paul R. Halmos, Naive Set Theory, Springer-Verlag
New York Inc, ISBN 0-387-90092-6, 1974, 26-29.

[Kuonen] P. Kuonen, “The K-Ring: a versatile model for the
design of MIMD computer topology”, Proc. of the

High-Performance Computing Conference (HPC'99),
San Diego, USA, April 1999, 381-385.

[Sayoud] H. Sayoud, K. Takahashi, B. Vaillant, “Designing com-
munication network topologies using steady-state
genetic algorithms”, IEEE Communications Letters,
Vol. 5, No. 3, March 2001, 113-115.

[SwissT1] Pierre Kuonen, Ralf Gruber, “Parallel computer archi-
tectures for commodity computing and the Swiss-T1
machine”, EPFL Supercomputing Review, Nov 99, pp.
3-11, http://sawww.epfl.ch/SIC/SA/publications/SCR99/
scr11-page3.html

[Gruber] Ralf Gruber, “Commodity computing results from the
Swiss-Tx project Swiss-Tx Team”, http://www.grid-
computing.net/documents/Commodity_computing.pdf

[Campers] G. Campers and O. Henkes and J. P. Leclerq “Graph
Coloring Heuristics: A Survey, Some New Propositions
and Computational Experiences on Random and
‘{L}eighton's’ Graphs” Proc. Operational Research,
917-932, 1988.

[Hertz] A. Hertz and D. de Werra “Using Tabu Search Tech-
niques for Graph Coloring” in Computing(39) 345-351,
1987.

[Beauquier] B. Beauquier, J.C. Bermond, L. Gargano, P. Hell, S.
Pérennes, U. Vaccaro, “Graph Problems Arising from
Wavelength-Routing in All-Optical Networks”, 2nd
IEEE Workshop on Optics and Computer Science
(WOCS, part of IPPS '97), IEEE Press, April 1997.

[Brelaz] Daniel Brelaz, “New Methods to Color the Vertices of a
Graph”, CACM(22), 1979, 251-256.

Annex A. Performance loss induced by a graph
coloring heuristic algorithm

The search for a liquid schedule requires to partition the
traffic [Halmos] into a set of non-overlapping mutually
non-congesting transfers. The problem can also be
formulated as an intersection graph colouring problem
[Campers], [Hertz]. Application of conflict graph colouring
is also studied in [Beauquier]. Vertices of the conflict
intersection graph represent the transfers of the traffic.
Edges between vertices represent congestions between
transfers. Two vertices of the conflict graph are joined by
an edge if the two corresponding transfers are congesting.

Fig. 12 shows the graph corresponding to the data
exchange shown in the Fig. 2. The 25 vertices of the graph
represent the transfers. The edges represent congestion
relation between transfers. Each edge represents one or
more communication links shared by two transfers. Bold
edges of the figure represent all congestions due to
bottleneck links and .

The objective is to colour the vertices of the graph with
as few colours as possible, such that no two adjoint vertices
have the same colour. Vertex corresponds to a transfer

from the sending processor to the receiving processor

. For example vertex represents the transfer

.

Whenever a liquid schedule exists, an optimal solution
of the graph colouring problem is a liquid schedule. The
chromatic number of the graph’s optimal colouring is the
length of the liquid schedule. Vertices having the same
colour represent a time frame of the liquid schedule.

x1,1

x2,1

x3,1 x4,1

x5,1

x1,2

x2,2

x3,2 x4,2

x1,3

x2,3

x3,3 x4,3

x1,4

x2,4

x3,4 x4,4

x5,4

x1,5

x4,5

x5,5

Fig. 12. Conflict graph corresponding to the 25-transfer the
traffic of Fig. 2.

lab lba

xi j,

ti

rj x4 1,

t4 r1→ lt4 lba lr1, ,{ }=

The graph to be coloured is characterized by relatively
low density of its edges. Fig. 13 shows the ratio of the
number of vertices of a graph to the density of its edges.
We can label each edge of the graph by the link(s) causing
the congestion. A half-all-to-all data exchange on the Swiss
T1 cluster with 32 transmitting and 32 receiving processors
forms a graph with vertices and
48704 edges.

We compared our method of finding a liquid schedule
with the results obtained by applying a greedy high-speed
graph coloring algorithm Dsatur [Brelaz]. We compared
the network performance corresponding to the suboptimal
solution of the greedy algorithm with the performance
delivered by liquid schedule algorithm. Fig. 14 shows the
loss in overall throughput on the Swiss-T1 sample sub-
topologies due to the redundant unnecessary colours
induced by the greedy graph colouring algorithm.

For 74% of the topologies there is no loss of
performance. For 18% of the topologies, the performance
loss is below 10% and for 8% of the topologies, the loss of
performance is between 10% and 20%. Hovewer the
computation time of the greedy algorithm is polynomial
and compares therefore favourably with the liquid schedule
construction algorithm.

Annex B. Comparison of efficiencies of liquid
scheduling algorithm with MILP

For 362 test bed topologies introduced in the section 7
we applied MILP method. The efficiency of the MILP for
this problem was far bellow compared with our liquid
scheduling algorithm. The median of the gain factor of our
algorithm is about 4000. Fig. 15 shows the computation
times required for the optimal scheduling by both MILP
and liquid scheduling methods.

Density of edges for the sample topologies of
Swiss-T1

0

10,000

20,000

30,000

40,000

50,000

1 64 10
0

12
1

14
4

16
9

19
6

22
5

22
5

25
6

28
9

32
4

36
1

40
0

44
1

48
4

57
6

67
6

96
1

number of vertices

nu
m

be
r o

f e
d

Fig. 13. Characteristics of the graphs corresponding to 362
sample traffic exchanges on the testbed shown in
the Fig. 8.

32 32× 1024=

Loss in performance due to suboptimal
scheduling

0
2
4
6
8

10
12
14
16
18
20

1 64 10
0

12
1

14
4

16
9

19
6

22
5

22
5

25
6

28
9

32
4

36
1

40
0

44
1

48
4

57
6

67
6

96
1

number of transfers for 363 sub-topologies

lo
ss

 in
 p

er
fo

rm
an

ce

Fig. 14. Loss in performance induced by schedules com-
puted with the Dsatur heuristic algorithm.

Comparison of two exact algorithms

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

10000.000

100000.000

1000000.000

1 23 45 67 89 11
1

13
3

15
5

17
7

19
9

22
1

24
3

26
5

28
7

30
9

33
1

35
3

362 sample topologies

C
PU

 ti
m

e
in

 s
ec

o

MILP Cplex Liquid Schedule Construction

Fig. 15. Comparison of efficiencies of two algorithms, MILP method and liquid scheduling
method.

