
Abstract

The upper limit of the network’s capacity for a collective
communication is its liquid throughput related to the flow
capacity of a liquid in a network of pipes. However, in a
communication network the aggregate throughput of a
traffic carried out by straight-forward topology-unaware
techniques may be several times lower than the maximal
potential throughput of the network. In most of the cut-
through, wormhole and wavelength division optical
networks, the loss of performance is caused by congestions
between simultaneous transfers sharing a common link
resource. We propose to carry out the transfers of the
traffic according to special liquid schedules, which, relying
on the knowledge of the underlying network topology and
by ensuring successive utilization of bottleneck links,
obtain the network’s liquid throughput. To build a liquid
schedule we need to partition and distribute the traffic into
time-frames consisting of mutually non-congesting
transfers and also keeping the bottleneck links occupied all
the time. Time frames filled up until saturation by non-
congesting transfers lead to an exponential explosion of
many unsuccessful configurations, resulting in a very large
search space. In this paper we present an efficient
algorithm which non-redundantly traverses all possible
subsets of simultaneous transfers for time-frames and,
further on, a liquid schedule construction technique, which
efficiently reduces the search space without affecting the
solution space. There is a practical minority of collective
communications yielding no liquid throughput for any
resequencing of its transfers. The optimal or sub optimal
schedules for such communications we propose to obtain
by applying one of the heuristic graph coloring algorithms.

Keywords: optimal network utilization, collective
communication, liquid schedules, network topology,
topology-aware scheduling.

1. Introduction

Collective multicast communications are of increasingly
high importance in multimedia scientific applications. The
aggregate throughput of a collective communication
pattern depends on the application’s underlying network
topology. The amount of data that has to pass across the
most loaded links of the network (bottleneck links) gives
the utilization time of the bottleneck links. The total size of
the traffic divided by the utilization time of the bottleneck
links gives an estimation of the liquid throughput
corresponding to the flow capacity of a non-compressible
fluid in a network of pipes [Melamed]. In the wormhole
electronic networks as well as in the WDM optical
networks not any combination of transfer requests may be
carried out simultaneously. For a physical network
modelled as an undirected graph 
there is an objective to minimize the number T of timeslots
and/or wavelengths required to carry out the given set of
transfer requests. The proposed formulation is as follows:

Minimize: 
subject to:

Here  denotes the routing, i.e. indicates if the

transfer (flit stream flow for wormhole switching or
lightpaths for optical networks) from source s to

destination d traverses the link e.  indicates if the

transfer from source s to destination d is assigned to the
time slot t.

It remains to express the partitioning constraint of the
schedule, i.e. each transfer of traffic must be assigned to
one and only one time slot:

Network’s Liquid Throughput: Topology Aware Optimization of Collective 
Communication

Emin Gabrielyan, Roger D Hersch
École Polytechnique Fédérale de Lausanne

{Emin.Gabrielyan,RD.Hersch}@epfl.ch

G V G( ) E G( ),( )=

T

At
s d, Re

s d,⋅
s d,
∑ 1≤ e E G( )∈∀ t∀ 1…T{ }∈,

Fe
s d, 0 1,=

At
s d, 0 1,=

Re
sd

At
sd



The present problem is hard to solve. We will show that for
the sizes of practical interest the application of the exact
method MILP [CPLEX], [Fourer] (Mixed Integer Linear
Programming) to the problem leads to very long solution
times. Application of heuristic method of graph colouring
algorithms efficiently providing a sub optimal solution is
possible. However the sub optimal results of heuristic
graph colouring method, translated back to the original
problem in term of performance results to a loss of up to
18%. The exact method proposed in this paper, is fast
enough to allow real time scheduling of an evolving over
time broadcast and multicast communication in congestion
sensible transmission networks. There are numerous
applications requiring highly efficient network resources:
parallel acquisition and distribution of multiple video
streams [Chan], [Sitaram]; switching of simultaneous voice
communication sessions [H323], [Fritz]; and high energy
physics data acquisition and transmission from a large
number of detectors to a cluster of processing nodes for
data filtering and event assembling [CERN].

An application of a particular interest is an optical
network capable of the lightpath assignment on demand.
Liquid scheduling is successfully tested on the cluster of
parallel supercomputer interconnected by a high
performance wormhole [Liu] switch fabric. A
communication intensive application of a direct interest for
applying networks’s liquid scheduling optimization is a
high performance distributed I/O for parallel applications,
such as Striped File I/O1 [SFIO], Petal Frangipani scalable
virtual disk space [Thekkath] (e.g. for out of core parallel
applications). 

2. Applicable networks

This section introduces different types of electronic,
optical, wireless networks having in common the problem
of congestion avoidance in the traffic. Liquid scheduling of
collective broadcast and multicast communication is
applicable for each of these networks.

2.1. Cut-through switching

In many high performance multicomputer
communication networks links lying on the path of a
message are exclusively kept occupied during the

transmission of that message. Unlike packet switching (or
store-and-forward switching) with each network packet
being solely present at intermediate router [Ayad],
wormhole switching (or cut-through switching) transmits a
message as a worm propagating itself across intermediate
switches, i.e. a continuous stream of bits which make their
way through the fabric spanning multiple switches. In a
cut-through switching [Duato], [Shin], [Rexford],
[Colajanni] a message entering into a network is being
broken up into small parts of equal size (e.g. one 32-bit
word) called flits (standing from flow-control digit), which
are streamed across the network. All the flits of a packet
follow the same path. As soon as a switch on the path of a
message receives the head flit and processes the routing
header, it triggers the flow of flits to the corresponding
outgoing link. If the message encounters a busy outgoing
link, the wormhole switch stalls the message in the network
along the already established path until the link becomes
available2. Occupied channels are not released. A channel
is released only when the last tail flit of the message is
transmitted through it. Thus each link laying on the path of
the message is kept occupied during the whole
transmission time of a message.

Compared with store and forward switches, cut-through
switching considerably decreases the latency of message
transmission across multiple routers. Cut-through
switching makes the latency insensitive to the message
distance. Most contemporary research and commercial
multicomputer switches use some form of cut-through
switching, e.g. Myrinet [Boden], fat tree architecture of
Quadrics [Petrini], [Quadrics], Tnet [Horst], [Brauss].

Wormhole switching only pipelines message and thus
requires no more than a very small buffer. This makes
easier realization of a high performance switch on a single
chip considerably reducing the cost of a large scale
network [Yocum]. However, wormhole switching alone,
quickly saturates as load increases due to blocked message
paths. Congestions occurring due to simultaneous
transmission of messages sharing common network links
result in an aggregate data throughput lower than the liquid
throughput offered by the network.

For the same set of collective communications the rate
of network congestions may significantly vary depending
in which order individual communications are carried out.
Channel contentions can be avoided if the transfers are
scheduled so that no congesting messages are transmitted
at a time.

1.2. Lightpaths on demand

1. Striped File I/O for parallel programs was our first applica-
tion which indicated the importance of the knowledge of the 
underlaying network topology by the parallel application.

At
s d,

t 1=

T

∑ 1= s d,∀

2. If the message encounters a busy outgoing link virtual cut-
through (VCT) switching buffers the entire packet in the 
router.



Lightpaths are end to end optical connections from a
source node to a destination node over a wavelength within
each intermediate link. Different lightpaths in a wavelength
routing network can use the same wavelength as long as
they do not share any common links. Fig. 1 shows an
example of optical network.

Fig. 1. Optical layer, wavelength-routing network.

OLT, Optical Line Terminal, multiplexes multiple wave-
lengths into a single fiber and demultiplexes a set of wave-
lengths on a single fiber into separate fibers; OADM is an
Optical Add/Drop Multiplexer; and OXC, Optical Cross-
connect, switches wavelengths from one port to another.

End nodes are IP routers and SONET terminals. The
network is designed to provide permanent lightpaths
between terminal nodes, e.g. between the node A and E.
Both OADMs and OXCs in the network may incorporate
wavelength conversion capabilities. OXCs that provides no
wavelength conversion features are called wavelength-
selective cross-connects (WSXC). In networks uniquely
based on WSXC optical switches, it is assumed that the
basic optical transmission channel remains on a fixed
wavelength from end to end (a condition called wavelength
continuity constraint) and therefore any lightpath must be
assigned the same wavelength on all the links it traverses
(two lightpaths traversing a common link must be assigned
different wavelengths [Ramaswami]). Assuming that the
OXCs of the example in the Fig. 1 do not carry out wave-
length conversion, the lightpath between the nodes A and E
uses one single wavelength  all along its route and
therefore  cannot be reused by another lightpath at any
link of the route1. 

In most cases we are already given the routing, in which
case, we are concerned only with the Wavelength
Assignment (WA) problem. WA is a problem of optimal
design in the optical layer. There has been work on
theoretical considerations about the required number of
wavelengths and the complexity of finding a solution
according to the network topology [Bermond],
[Caragiannis]. 

Under wavelength continuity condition, when the
network is based on WSXC switches, the problem of
wavelength assignment to the set of lightpaths and the
problem of the time slot assignment to the set of
transmissions are very similar. 

Additional interest for liquid scheduling is found in
optical transmission systems deploying the capability of
dynamic switching of lightpath circuits. The functionality
providing the ability to set up and take down lightpaths
across the network in a dynamic fashion is currently
evolving in the optical layer very fast [Stern]. An issue in
such a network providing lightpaths on demand is a fast
and efficient scheduling of multicast communications
within minimal number of timeframes. 

1.3. Time division networks and spread spectrum
wireless networks (CDMA).

Satellite-switch time division multiplexing networks
[Jain] and CDMA spread spectrum wireless networks
[Battiti] also can be viewed as interconnection topologies.
The links of the interconnection topology reflecting
CDMA networks represent orthogonal frequency spectra.
Congestion occurs if there is a common frequency for two
simultaneous transmissions. The liquid throughput may be
obtained for a traffic over a CDMA wireless network by
applying our algorithms to the same radio-communication
traffic, but carried out over a virtual interconnection
topology reflecting the configuration of the wireless
network. The obtained distribution of radio transmissions
over successive time frames will yield the liquid
throughput of the wireless network.

We propose a dynamic scheduling of multicast
communications, where the application is capable of
determining its underlying topology and apply liquid
schedules to its data intensive collective communication
requests. Such a large research subject as the search of a
suitable topology for the application is not covered in our

SONET
Terminal

IP
Router

IP
Router

IP
Router

SONET
Terminal

A C

E

OLT

OADM

OXC

λ1

λ1

B

D

λ1
λ1

1. In some cases, lightpaths may be converted from one wave-
length to another wavelength along their route. OXCs pro-
viding the wavelength conversion are called wavelength-
interchanging cross-connects (WIXC). WIXCs do both 
space switching and wavelength conversion.



work [Puente]. We assume that the application has an
access to information on the interconnection network, such
that based on the actual run-time node allocation it may
obtain the underlying topology knowledge. Unlike flow
control based congestion avoidance mechanisms [Chiu],
[Ozbay], [Loh] we establish schedules for the data transfers
without trying to regulate the sending nodes’ data rate.
Liquid schedules do not always exists, in that cases we turn
to optimal or sub optimal solutions offered by one of
efficient heuristic algorithms of the graph colouring
problem.

We integrated implementations of the presented
algorithm as a library with a communication intensive MPI
(Message Passing Interface) application running on a cut-
through high performance network [Pacheco], [Snir],
[Gropp98], [Gropp99], [MPI]. The obtained measurement
results are very close to the expected theoretical values.

2. Examples and demonstrations

The example of network topology shown in Fig. 2
consists of ten end nodes t1...t5, r1...r5 (henceforth called
processors), two wormhole cut-through switches sa, sb and
twelve unidirectional links lt1...lt5, lr1...lr5, lab, lba having
identical throughputs. In this example the processors t1...t5
only transmit data and r1...r5 only receive. It’s easy to
guess the routing, e.g. a message from t4 to r3 traverse
links lt4, lba and lr3, a message from t2 to r3 uses only links
lt2 and lr3, etc.

Fig. 2. Example of a network topology.

We denote transfers symbolically to mark out the
network links occupied by the transfer. For example the
transfer from t4 to r3 is symbolically represented as ,

the transfer from t1 to r2 as , etc. Extending the
graphical representation a set of transfers carried out

simultaneously we also denote symbolically, e.g. 
corresponds to a traffic simultaneously transferring
messages from t4 to r3 and from t1 to r2.

Let each sending processor have a messages destined to
each receiving processor and let all messages have
identical sizes [Naghshineh]. Thus we have 25 transfers to
carry out. Each of the ten links lt1...lt5, lr1...lr5 carries 5
transfers and the two links lab, lba must carry 6 transfers
each. Therefore the links lab, lba are the network
bottlenecks and have the longest active time. If the duration
of whole collective communication is as long as the active
time of the bottleneck links, we say that the collective
communication reaches its liquid throughput. In that case
the bottleneck links are obviously kept busy all the time
along the duration of the communication traffic. Assuming
in this example a single link throughput 1 Gb/s, the liquid
throughput offered by the network is

. Under the identical
transfer size and link throughput constraints (kept all along
this paper for the sake of simplicity) the liquid throughput
of a traffic X is the ratio  multiplied by

single link throughput, where  is the total number of

transfers and  is the number of transfers carried by
one bottleneck link.

Now let us see if the order in which the transfers are
carried out in this wormhole network can have any impact
to the collective communication performance. A straight
forward schedule to carry out these 25 transfers is the
round-robin schedule, according to which at first each
transmitting processor sends the message to the receiving
processor staying in front, then to the receiving processor
staying in the next position, etc. (the order turns from the
last fifth processor to the first one). This round robin
schedule consists of 5 phases. The transfers of the first

 second  and fifth  phases of the
round-robin schedule may be carried out simultaneously,
but the third { , , , , } and

fourth { , , , , } phases contain
congesting transfers, e.g. at the third phase the transfer

 stays blocked until the transmission  is
accomplished (or vice a versa). None of these two phases
can be carried out in less than two time-frames and
therefore the whole schedule lasts 7 time-frames, instead of
seemingly 5. Consecutively the performance of our
collective communication carried out according to the
round-robin schedule corresponds to the throughput of

 messages per time-frame or

, which is less than
liquid throughput.

Nevertheless, the 25 transfers may be carried out within
6 time-frames. We call a liquid schedule the schedule

t1

r1

t2 t3 t4 t5

r2 r3 r4 r5

l ba

l ab

lt5lt3 l t4l t2

l t1

lr1
lr2 lr4 l r5l r3

sa sb

25 6⁄( ) 1×  Gb/s 4.17 Gb/s=

# X( ) Λ X( )⁄
# X( )

Λ X( )

25 7⁄ 3.57=
25 7⁄( ) 1×  Gb/s 3.57 Gb/s=



yielding the liquid throughput of the collective
communication. The following sequence of time-frames

{ , , , , , } is an
example of the liquid schedule for the 25-transfer
collective communication request.

3. Definitions

The method we propose allows efficient construction of
liquid schedules for complex network topologies resulting
in considerable increase of collective data exchange
throughputs, compared with traditional topology-unaware
techniques such as round-robin or random schedules. This
section introduces the definitions that will be further used
in this paper for presentation of the underlying algorithms
of the construction method.
A single “point-to-point” transfer is represented by the set
of communication links forming the network path between
a transmitting and a receiving processor according to a
given routing. A transfer is a set of links (i.e. the path
between a sending processor and a receiving processor). A
traffic is a set of transfers (i.e. the collective data
exchange). Fig. 3 shows the traffic for a data exchange
carried out on a network topology shown in the Fig. 2. In
the figure the bottleneck links of the network are marked in
bold.

Fig. 3. Example of traffic composed of 25 transfers carried 
out over a network shown on Fig. 2.

This half-all-to-all data exchange is a particular case of
a traffic, any collective exchange comprising of transfers
between possibly overlapping sets of sending and receiving
processors is a traffic. A link l is utilized by a transfer x if

. A link l is utilized by a traffic X if l is utilized by a
transfer of X. Two transfers are in congestion if they share a
common link. If they don’t use a common link they are
simultaneous. Note that we will be limiting ourselves to
data exchanges consisting of identical packet sizes.

A simultaneity of a traffic X is a subset of X consisting
of mutually non-congesting transfers. A transfer is in
congestion with a simultaneity if the transfer is in
congestion with at least one member of the simultaneity. A
simultaneity of a traffic is full if all transfers in the
complement of the simultaneity in the traffic are in

congestion with that simultaneity. A simultaneity of a
traffic is obviously can be carried out in one timeframe
required by a single transfer. , the load of link l in
the traffic X, is the number of transfers in X using link l.
Now comes the formal definition of  already

introduced before. The duration  of a traffic X is the
maximal value of the load among all links involved in the
traffic.

The links having maximal load values, i.e.
, are called bottlenecks. The liquid

throughput of a traffic X is the ratio 

multiplied by the single link throughput, where  is
the number of transfers in the traffic X.

Let us define a simultaneity of X as a team of X if it uses
all bottlenecks of X. A team of X is full if it is a full
simultaneity of X. Let  and  be respectively
the sets of all full simultaneities and all full teams of X.

In order to form liquid schedules, we try to schedule
transfers in such a way that all bottleneck links are always
kept busy. Therefore we search for a liquid schedule by try-
ing to assemble non-overlapping teams carrying out all
transfers of the given traffic (i.e. partitioning of the traffic
into teams [Halmos]). To cover the whole solution space we
need means of generating all possible teams of a given traf-
fic. This is an exponentially complex problem. It is there-
fore important that the team traversing technique be non-
redundant and efficient, i.e. each configuration is evaluated
once and only once, without repetitions.

4. Obtaining full simultaneities

The construction of liquid schedules requires the ability
of traversing the set of all full teams of an arbitrary traffic.
To limit redundant search steps, each full team should be
constructed once and only once. We first optimize the
retrieval of all simultaneities and then use that algorithm to
retrieve all full teams.

Recall that in a traffic X, any mutually non-congesting
combination of transfers is a simultaneity. A full
simultaneity is a combination of non-congesting transfers
taken from X, such that its complement in X contains only
transfers congesting with that simultaneity.

We can categorize full simultaneities according to the
presence or absence of a given transfer x. A full
simultaneity is x-positive if it contains transfer x. If it does
not contain transfer x, it is x-negative. Thus the set of full

lt1 lr1,{ } lt1 lr2,{ } lt1 lr3,{ } lt1 lab lr4, ,{ } lt1 lab lr5, ,{ }, , , ,

lt2 lr1,{ } lt2 lr2,{ } lt2 lr3,{ } lt2 lab lr4, ,{ } lt2 lab lr5, ,{ }, , , ,

lt3 lr1,{ } lt3 lr2,{ } lt3 lr3,{ } lt3 lab lr4, ,{ } lt3 lab lr5, ,{ }, , , ,

lt4 lba lr1, ,{ } lt4 lba lr2, ,{ } lt4 lba lr3, ,{ } lt4 lr4,{ } lt4 lr5,{ }, , , ,

lt5 lba lr1, ,{ } lt5 lba lr2, ,{ } lt5 lba lr3, ,{ } lt5 lr4,{ } lt5 lr5,{ }, , , , 
 
 
 
 
 
 
 
 
 
 

l x∈

λ l X,( )

Λ X( )
Λ X( )

Λ X( ) max
l x

x X∈
∪∈

 
 
 

λ l X,( )=

λ l X,( ) Λ X( )=
# X( ) Λ X( )⁄

# X( )

ℜ X( ) ℑ X( )



simultaneities  is partitioned into two non-
overlapping subsets: an x-positive and x-negative subset of

. For example, if y is another transfer, the set of x-
positive full simultaneities may be further partitioned into
y-positive and y-negative subsets. Iteration of this concept
allows us to design a recursive technique traversing whole
set of all full simultaneities  one by one without
repetitions.

Let us define a category of full simultaneities of X as an
ordered triplet (excluder, depot, includer), where the
includer is a simultaneity of X (not necessarily full) and the
transfers of X non-congesting with the includer are either in
the depot or in the excluder.

We say that a full simultaneity is covered by a category
R, if the full simultaneity contains all the transfers of the
category’s includer and does not contain any transfer of the
category’s excluder. Consequently, any full simultaneity
covered by a category is the category’s includer together
with some transfers taken from the category’s depot. The
collection of all full simultaneities of X covered by a
category R is defined as the coverage of R. We denote the
coverage of R as .

The category  is a prim-category since it
covers all full simultaneities of X, i.e.

.
By taking an arbitrary transfer x from the depot of a

category R, we partition the coverage of R into x-positive
and x-negative subsets. The x-positive and x-negative
subsets of a coverage of R respectively are coverages of
two categories derived from R: a positive sub category and
a negative sub category of R.

The positive sub category  is formed from the

category R by adding transfer x to its includer, and
removing from its depot and excluder1 all transfers
congesting with x. The negative sub category  is

formed from the category R by moving transfer x from its
depot to its excluder. Fig. 4 and Fig. 5 show an example of
fission of a category into positive and negative sub
categories.

Fig. 4. Fission of a an initial category into two sub
categories. Symbol  Xi, represents any transfer
that is in congestion with x and symbol  Theta
signify any transfer, which is simultaneous with x.

Fig. 4 shows an example of a category R and Fig. 5
shows the resulting two sub categories obtained from the
initial category by a fission relatively to some transfer x
taken from the depot.

Fig. 5. Fission of a category of Fig. 4. into its positive and
negative sub categories.

The coverage of R is partitioned by the coverages of its
sub categories  and , i.e. the coverage of a

category is the union of coverages of its sub categories:
, where the coverages of

the sub categories have no common transfers,
. The replacement of a

category R by its two sub categories  and  is

defined as a binary fission of a category.
A singular category is a category that covers only one

full simultaneity. That full simultaneity is equal to the
includer of the singular category. The depot and excluder
of a singular category are empty.1. Since transfers congesting with x anyway can not be in a full 

simultaneity covered by , we may safely remove them 
from the excluder.

ℜ X( )

ℜ X( )

ℜ X( )

φ R( )
∅ X ∅, ,( )

φ ∅ X ∅, ,( ) ℜ X( )=

R+x

R+x

R x–

R
Θ{ }  includer

Ξ x Ξ Θ, , ,{ }  depot

Ξ Θ,{ }  excluder
 
 
 
 
 
 
 

=
R+x

R x–



→

Θ - denotes any transfer non-congesting with x
Ξ - denotes any transfer congesting with x

Ξ
Θ

R

R+x

Θ x,{ }  includer

Θ{ }  depot

Θ{ }  excluder
 
 
 
 
 
 
 

=

R x–

Θ{ }  includer

Ξ Ξ Θ, ,{ }  depot

Ξ Θ x, ,{ }  excluder
 
 
 
 
 
 
 

=



















→

R+x R x–

φ R+x( ) φ R x–( )∪ φ R( )=

φ R+x( ) φ R x–( )∩ ∅=

R+x R x–



We apply the binary fission to the prim-category and
split it into two categories. Then, we apply the fission to
each of these categories. Repeated fission increases the
number of categories and narrows the coverage of each
category. Finally, the fission will lead to singular categories
only, i.e. categories whose coverage consists of a single full
simultaneity. Since at each stage we have been partitioning
the set of full simultaneities, at the final stage we know that
each full simultaneity is covered by one and only one
singular category.

The algorithm carries out recursively the fission of
categories and yields all full simultaneities without
repetitions.

There is a further optimization to be considered. Full
simultaneities covered by a category have no transfer from
the category’s excluder. Therefore each full simultaneity
covered by a category must contain a congesting transfer
for each member of the excluder. Since we keep in the
excluder transfers which do not congest with the includer,
congesting transfers must be taken from the depot. A
category whose depot doesn’t have a congesting transfer
for at least one of the excluder’s transfers is blank. The
coverage of a blank category is empty and there is
therefore no need to pursue its fission.

Let a category within X be idle if its includer and its
depot together don’t use all bottlenecks of X. The coverage
of an idle category does therefore not contain a team.

An algorithm that is carrying out successive fissions,
starting from the prim-ancestor and contiguously removing
all the blank and idle categories ultimately leads to all full
teams.

5. Speeding up full team formation

This section presents a further method for speeding up
the search for all full teams  of an arbitrary traffic X.

Let us consider from the original traffic X only those
transfers that use bottlenecks of X and call this set of
transfers skeleton of X. We denote the skeleton of X as

. Obviously, . 
Considering the skeleton of a traffic X as another traffic,

the bottlenecks of the skeleton of a traffic are the same as
the bottlenecks of the traffic. Consequently, a team of a
skeleton is also a team of the original traffic.

Let us obtain all full teams of the traffic’s skeleton by
applying the fission algorithm eliminating the idle
categories.

Then, a full team of the original traffic may be obtained
by adding a combination of non-congesting transfers to a
team of the traffic’s skeleton.

We therefore obtain the set of a traffic’s full teams 
, by carrying out the following steps:

1. Obtain the set of the skeleton’s full teams 
 by applying the fission algorithm.

2. Create for each skeleton’s full team a category by
2.1.initializing the includer with the transfers of the

skeleton’s full team,
2.3.initializing the excluder as empty,
2.2.and putting into the depot all transfers of X non-

congesting with the includer.
3. Apply the fission to each category, discarding the 

check for idle categories, since the includer is 
already a team, i.e. it uses all bottlenecks.

By first applying the fission to the skeleton and then 
expanding the skeleton’s full teams to the traffic’s full 
teams, we strongly reduce the required processing time and 
at the same time we obtain all full teams of the original 
traffic without repetitions.

We measured the reduction in search space according to
the different search space reduction methods we propose.
We consider 31 different traffics within the T1 32 node
cluster computer (see Fig. 10) which will be introduced
further in section 7. The search space is given by the
number of nodes that are being explored within the
recursion tree. Fig. 6 shows the obtained search space
reductions compared with a naive algorithm that would
build full teams without any of the proposed optimizations.
The skeleton algorithm reduces on average the search
space to 12.48%, i.e. full teams are computed 8 times faster
than without search space reduction techniques. Note that
in the above comparison even the naive algorithm has
implemented the most important coverage partitioning
strategy, i.e. all presented algorithms, including the naive
algorithm, are smart enough to avoid repetitions of full
simultaneities.ℑ X( )

ς X( ) ς X( ) X⊂

ℑ X( )

ℑ ς X( )( )



6. Liquid schedules

Having the capability of building full teams, this section
presents a general method for building on irregular
topologies liquid schedules for any collective
communication pattern. Note that we neglect network
latencies, consider a constant packet size and assume a
given static routing.

DEFINITIONS. A partition of X is a disjoint collection of
non-empty subsets of X whose union is X [Halmos]. A
schedule  of a traffic X is a collection of simultaneities of

X partitioning the traffic X. A time frame of a schedule 

is an element of the schedule . , the length of a

schedule , is the number of time frames in . A
schedule of a traffic is optimal if the traffic does not have
any shorter schedule. If the length of a schedule is equal to
the duration of the traffic then the schedule is liquid, i.e. 
is liququid if:

A liquid schedule is optimal, but the inverse is not
always true, meaning that a traffic may not have a liquid
schedule. Fig. 7. demonstrates a simple traffic with three
bottleneck links. However this traffic have no team and
therefore no liquid schedule. 

Fig. 7. This traffic has no team and no liquid schedule.

In larger scale networks of practical importance any
dead locking in the attempts of simultaneous occupation of
bottleneck links arisen at some final stage of the schedule
construction should be avoided by rearrangement of the
previously scheduled transfers.

In Annex A, the problem of finding a sub optimal
schedule is represented as a graph colouring problem
[Beaquier]. Annex B, overviews the formulation of the
problem in MILP [CPLEX], [Fourer] and the performance
results are shown.

Fig. 8 shows a liquid schedule for the collective traffic
shown in Fig 2.

4.
7 5.
5 7.
4

7.
9

8.
1

8.
3 9.
2

9.
3

9.
6

9.
9

10
.0

10
.1

10
.7

10
.8

10
.9

11
.3

12
.0

12
.2

12
.4

12
.6

12
.6

12
.7

13
.4

14
.0

14
.1

14
.4

14
.9

16
.5

17
.5 20
.0

20
.5

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

46
6.

6K
 (1

00
)

92
6.

2K
 (1

21
)

4.
2M

 (1
21

)
4.

2M
 (1

21
)

21
2K

 (1
00

)
4.

9M
 (1

21
)

4.
1M

 (1
21

)
9.

2M
 (1

21
)

69
3.

2K
 (1

00
)

14
.1

M
 (1

21
)

15
.2

M
 (1

21
)

75
3.

7K
 (1

00
)

68
2K

 (1
00

)
93

6K
 (1

00
)

1.
2M

 (1
00

)
88

.1
K

 (8
1)

95
K

 (8
1)

11
5.

9K
 (8

1)
10

.8
K

 (6
4)

1.
8M

 (1
00

)
16

2.
4K

 (8
1)

57
.6

K
 (8

1)
9.

2K
 (6

4)
13

6.
7K

 (8
1)

19
.8

K
 (6

4)
23

0.
4K

 (8
1)

1.
7K

 (4
9)

1.
4M

 (1
00

)
1.

1M
 (1

00
)

14
.2

M
 (1

21
)

20
.4

M
 (1

21
)

Number of possible full teams (and number of transfers) for 31 different traffics

Se
ar

ch
 sp

ac
e 

re
du

ct
io

n 
%

idle+skeleton+blank idle+blank blank

number of 
full teams

number of 
transfers

Fig. 6. Search space reduction obtained by idle+skeleton+blank
optimization.

α
α

α # α( )
α α

α

# α( ) Λ A
A α∈
∪ 

 
 

=

l1

l2

l3

l4

l5

l6

l7

l8

l9

l1 l7 l8 l6, , ,{ }

l2 l8 l9 l4, , ,{ }

l3 l9 l7 l5, , ,{ }
 
 
 
 
 
 
 



Fig. 8. A liquid schedule of the collective traffic shown in
Fig. 2. 

The duration of a traffic X is the load of its bottlenecks.
If a schedule is liquid, then each of its time frames must use
all bottlenecks. Inversely, if all time frames of a schedule
use all bottlenecks, the schedule is liquid.

The necessary and sufficient condition for the liquidity
of a schedule is that all bottlenecks be used by each time
frame of the schedule. Since a simultaneity of X is defined
as a team of X, if it uses all bottlenecks of X, an equivalent
condition for the liquidity of a schedule  on X is that

each time frame of  be a team of X.

6.1. Liquid schedule naive search algorithm

First we propose a simple technique for construction of a
liquid schedule and then in the following subsection we in-
troduce an improved version of the construction algorithm. 

Consider all possible teams of the original traffic X. Take
one of them (for example A1) and consider it as the first time
frame of the liquid schedule. Remove the team A1 from the
traffic and look at the reduced traffic. The choice for the
second time frame is limited by only those teams of the orig-
inal traffic X, which are included in the reduced traffic

. Take a candidate for the second time frame from

the current choice (for example A1,1). Remove from the traf-
fic the team A1,1 as well. Similarly the choice for the third
time frame is limited by only those teams of the original
traffic X, which are included in the reduced traffic

, etc.

A dead end is possible if there are no choice for the suc-
cessive time frame, i.e. no team of the original traffic may
be formed from the reduced traffic (i.e. not yet carried out
transfers). Example of a dead end is the situation shown in

Fig. 7. When a dead end is faced the algorithm backtracks
one or more steps back and analyses other possibilities. The
algorithm simply searches a liquid schedule in the depth-
wise order along a recursive tree (see Fig. 9).

Fig. 9. Liquid schedule search tree.  denotes a re-

duced sub traffic at the layer n and  de-

notes a prospective candidate for the time frame 
n+1. E.g.  is a sub traffic at node  of the 2nd 

layer of tree and  is its kth candidate team. 
The symbol “!” points to all possible time frames 
for the current reduced traffic.

Solution id found and the search is finalized at the mo-
ment when the transfers remaining in the reduced traffic all
form one single team. Then, all the teams laying along the
path of the algorithm from its root to that final team yield a
liquid schedule.

TO CONCLUDE. At each stage of the search tree we
associate with the current reduced sub traffic the choices of
the candidate teams (each of candidate team yielding
respectively another sub traffic for the next layer). In the
presented naive algorithm a possible candidate for a time

lt1 lab lr4, ,{ }

lt2 lr2,{ }

lt3 lr3,{ }

lt4 lba lr1, ,{ }

lt5 lr5,{ }
 
 
 
 
 
 
 
 
 
 
 

lt1 lab lr5, ,{ }

lt2 lr1,{ }

lt4 lba lr2, ,{ }

lt5 lr4,{ }
 
 
 
 
 
 
 
 
 

lt1 lr3,{ }

lt2 lab lr4, ,{ }

lt3 lr1,{ }

lt4 lr5,{ }

lt5 lba lr2, ,{ } 
 
 
 
 
 
 
 
 
 
 

lt1 lr2,{ }

lt2 lr3,{ }

lt3 lab lr4, ,{ }

lt5 lba lr1, ,{ }
 
 
 
 
 
 
 
 
  lt1 lr1,{ }

lt2 lab lr5, ,{ }

lt3 lr2,{ }

lt4 lba lr3, ,{ }
 
 
 
 
 
 
 
 
 

lt3 lab lr5, ,{ }

lt4 lr4,{ }

lt5 lba lr3, ,{ }
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

α
α

X A1–

X A1– A1 1,–

X ! A1,  A2,  A3,  ...

X1 = X   A1 ! A1,1,  A1,2,  A1,3,  ...

X1,1 = X1   A1,1 ! A1,1,1,  A1,1,2,  A1,1,3,  ...

X1,2 = X1   A1,2 ! A1,2,1,  A1,2,2,  A1,2,3,  ...

X1,3 = X1   A1,3 ! A1,3,1,  A1,3,2,  A1,3,3,  ...

X2 = X   A2 ! A2,1,  A2,2,  A2,3,  ...

X2,1 = X2   A2,1 ! A2,1,1,  A2,1,2,  A2,1,3,  ...

X2,2 = X2   A2,2 ! A2,2,1,  A2,2,2,  A2,2,3,  ...

X3 = X   A3 ! A3,1,  A3,2,  A3,3,  ...

X3,1 = X3   A3,1 ! A3,1,1,  A3,1,2,  A3,2,3,  ...

Xi1i2… in

Ai1i2… inin 1+

Xi j, i j,

Ai j k, ,



frame associated to a sub traffic  is any team of X

formed by not yet carried out transfers
, where operator  associates

to a traffic the set of all its teams (not necessarily full).

6.2. Speeding up the search of a liquid schedule

Let’s analyse the liquid schedule shown in Fig. 8. Re-
move from the traffic a few time frames of the schedule and
look at the reduced traffic.

Load of bottlenecks decreases in the reduced traffic.
However the reduced traffic may contain additional bottle-
necks. More time frames of a liquid schedule are carried out
more additional bottlenecks appears in the reduced traffic.
All newly identified bottleneck links are shown in bold in

Fig. 8. For example, from time frame 3 on, links  and

 appear as additional bottlenecks. Emerging additional

bottlenecks allow us to reduce the search space when creat-
ing a liquid schedule.

The construction strategy of a liquid schedule presented
in the previous subsection forms the choice of the candi-
dates according to this expression

. I.e. the successive time frame

may be any team of the the original traffic X that can be built
from the transfers of the reduced sub traffic.

Observe, that the time frames of the liquid schedule, are
not only teams for the original traffic, but they are also
teams of the corresponding reduced traffics. We are going
to prove that this property of time frames is a necessary and
sufficient condition of the liquidity of a schedule. This prop-
erly is valid independently from the order of time frames.

A time frame which is a team of the original traffic (uses
the bottlenecks of the original traffic) but does not use the
additional bottlenecks of the reduced traffic (isn’t a team of
the reduced traffic) may not lead to a liquid schedule.

Since the set of bottlenecks in the reduced traffic is larger
than the set of bottlenecks of the original traffic, the number
of teams of the reduced traffic is less than the number of
teams of the original traffic could be built by the transfers of
the reduced traffic. Therefore by limiting our choice at each
time frame only by the set of teams of the reduced traffic we
considerably reduce the search space without affecting the
solution space.

DISCUSSION. Suppose A is a timeframe of a liquid
schedule  on a traffic X. Therefore A is a team of X.
Remove the team A from X so as to form a new traffic

. The duration of the new traffic  is the load

of the bottlenecks in . The bottlenecks of X are also

the bottlenecks of . The load of a bottleneck of X

decreases by one in the new traffic  (new traffic

 may have additional bottlenecks). The schedule 

shortened by one element A is a schedule for . The

new schedule  has as many timeframes as the

duration of the corresponding new traffic .

Therefore, if  is a liquid schedule on X then for any of its

time frame A the schedule  is a liquid schedule

on . Therefore the following theorem is proven.

THEOREM 1. Let  be a liquid schedule on X and A be a

time frame of . Then  is a liquid schedule on

.
Consider traffic X as a problem whose solution is a

liquid schedule . The technique presented in section 5, is
capable of generating the set of all teams of X. If X has a
solution  then a timeframe A of the schedule  is a

member of the set of all teams of X and  is a

schedule on . Therefore the problem X can be
reduced into smaller problems. Examine each possible
team A of X and search inductively a solution for .
If a solution exists for X, then this method will find it. If the
method does not find a solution for X, then, since we
explored the full solution space, we conclude that X does
not have a liquid schedule.

We limit at each iteration our choice to the collection of
only those teams of the original traffic which are also teams
of the current reduced sub traffic (having an expanded
number of bottlenecks). By doing so, we considerably
reduce the search space without affecting the solution
space.

By limiting the choice of the next time frame only by full
teams of the reduced traffic we again reduce the search
space of the construction algorithm. Let us show that here
the solution space is not affected as well. Let us modify a
liquid schedule so as to convert one of its teams into a full
team. Let X (a traffic) have a solution  (a liquid schedule).

Let A be a timeframe of . If A is not a full team of X, then,
by moving the necessary transfers from other timeframes of

, we can convert timeframe A to a full team. Evidently,
the properties of liquidity (partitioning, simultaneousness
and length) of  will not be affected. Therefore if X has a
solution then it has also a solution when the team of one of
its time frames is full, hence the choice of the teams in the

Xsub

A ℑ
˜

X( )∈ A Xsub⊂{ } ℑ
˜

lt3
lr3

A ℑ
˜

X( )∈ A Xsub⊂{ }

α

X A– X A–
X A–

X A–
X A–

X A– α
X A–

α A{ }–
X A–

α
α A{ }–

X A–
α

α α A{ }–
X A–

α

α α
α A{ }–

X A–

X A–

α
α

α

α



construction may be narrowed from the set of all teams to
the set of full teams only.

By a choice of a full team A of a traffic X we are faced
with the new smaller problem of searching a liquid
schedule for a traffic . The traffic  may not
have a solution, or it may not have even a team. In these
cases we have to backtrack to evaluate other choices.
Evaluation of all choices ultimately leads to a solution if it
exists.

The liquid schedule of Fig. 8 is built as explained above.
Each its successive time frame being a team of the reduced
traffic incorporates all bottlenecks of that reduced traffic.

Thanks to the presented optimizations for traffic patterns
consisting of up to thousand transmissions the liquid sched-
lue is found in fraction of seconds.

7. Testbed and measurements

In this section we present a testbed consisting of sample
traffic patterns for various topologies. Measurements of
collective data exchange throughputs will help us to
validate the efficiency of our scheduling strategy.

Fig. 10. Architecture of the T1 cluster computer
interconnected by a high performance wormhole
switch fabric.

As basic network topology for our testbed, we use the
Swiss-T1 cluster (called henceforth T1, see Fig. 10). The
network of the T1 forms a K-ring [Kuonen], [Sayoud] and
has a static routing scheme. The throughputs of all links are
identical and equal to 86MB/s. The cluster consists of 32
nodes, each one comprising 2 processors [SwissT1],
[Gruber] (i.e. 64 processors).

The sample traffic patterns are selected from different
configurations of half-all-to-all collective data exchanges
between a set of sending and receiving processors, where
each sending processor effect a transmission to each
receiving processor (similar to a bi-partite graph). Within
each node we allocate one of the processors for
transmission and the other one for receiving such that any
given allocation of nodes gives an equal number of sending
and receiving processors.

Fig. 11. Liquid throughput in relation to the number of nodes
with variations according to sub topologies.

Since the T1 cluster incorporates 32 nodes, there exist

 possible allocations of nodes to an
application. Considering only the number of nodes in front

of each switch, there are only  different node
allocations, since there are 8 switches, each having from 0
to 4 nodes allocated (i.e. 5 different possibilities). To limit
our choice to really different topologies, we’ve computed
the liquid throughputs for each of 390625 topologies,
taking into account the routing information of the cluster.
Because of various symmetries within the network, many
of these topologies yield an identical liquid throughput and
only 362 different liquid throughput values were obtained.
We have extracted a set of 362 different topologies one for
each value of the liquid throughput. Fig. 11. shows these
362 sub topologies, each one being characterized by the

X A– X A–

}

1

2

3

4

5

6

7

8

Transmissions from
switch i to switch j are
routed through the
switch with the number
located in the table’s
ith raw and jth column.
Symbol “!” indicates a
direct link between two
switches.

Full Cross-
bar Switch

Node

-

1 2 3 4 5 6 7 8
1 " ! 2 ! 4 ! 8 !

2 ! " ! 7 ! 3 ! 5
3 2 ! " ! 4 ! 8 !

4 ! 7 ! " ! 7 ! 3
5 4 ! 4 ! " ! 6 !

6 ! 3 ! 7 ! " ! 1
7 8 ! 8 ! 6 ! " !

8 ! 5 ! 3 ! 1 ! "

Routing Table

0

200

400

600

800

1000

1200

1400

1600

1800

0 4 8 12 16 20 24 28 32

Number of contributing nodes

Li
qu

id
 th

ro
ug

hp
ut

 (M
B

/s
)

Upp
er 

bo
un

d

Lo
wer 

bo
un

d
232 4294967296=

58 390625=



number of contributing nodes and by its liquid throughput.
Depending on the sub topology, the liquid throughput for a
given number of nodes may considerably vary.

These 363 sub-topologies may be placed on one axis,
sorted first by the number of nodes and then according to
their liquid throughput. For each sub-topology, Fig. 12
shows the theoretical liquid throughput and the throughput
measured with a topology-unaware round-robin schedule.

Fig. 12. Theoretical liquid throughput and measured round-
robin schedule throughput for 362 network sub
topologies. Black dots “ ” represent the measured
throughput of collective communication carried out
by a round-robin schedule, the gray line “ ”
shows the upper limit of network capacity, i.e. the
network’s liquid throughput.

For each measurement, the amount of data transferred
from a transmitting processor to a receiving processor is
equal to 2MB. For each topology, 20 measurements were
made. The black dots represent the median of the collected
results. For many sub-topologies, the theoretical liquid
throughput is twice as high as the round-robin throughput.
This clearly shows that topology-unaware scheduling
techniques do not utilize efficiently the potential
throughput capabilities offered by the communication
network. Throughputs of collective exchanges carried out
according to a random schedule do not perform better.

The 362 sample traffic patterns were then scheduled by
our liquid scheduling algorithms. The traffic for each
pattern was effected over the network according to the
computed schedules. Overall throughput results are
measured and presented in Fig. 13. The curve of the
theoretical value is given for comparison.

Fig. 13. Predicted liquid throughput and measured
throughput according to the computed liquid
schedule. The gray line “ ” shows the theoretical
limit of the network capacity, black dots “ ”
represent the measured throughput of collective
communication scheduled by our method.

Each black dot represents the median of 7
measurements. Processor to processor transfers have a size
of 5MB. The measured aggregate throughputs (black dots)
are very close to the theoretically expected values of the
liquid throughput (gray curve). For many sub topologies,
the proposed scheduling technique allows to increase the
aggregate throughput by a factor of two compared with
topology-unaware round-robin scheduling (Fig. 12).

Thanks to the presented search space reduction
algorithms, the computation time of a liquid schedule takes
for more than 97% of the considered sub topologies of the
T1 cluster less than 1/10 of a second on one Compaq Alpha
500MHz computer.

For applications having relatively long communication
patterns such as exchanges of continuous media streams,
the gain in the utilization of network resources may be
significant compared with the resources required to
compute a liquid schedule.

8. Conclusion

If transmissions of a traffic are not properly scheduled,
in many high performance cluster networks based on cut-
through wormhole switch fabrics and wavelength division
multiplexing optical networks a significant performance
drop is observed due to congestions between transfers
sharing common communication links. We propose a
method for fast scheduling of collective communication
yielding an aggregate throughput equal to the network’s
theoretical capacity’s upper limit: liquid throughput of the

Round-Robin Communication

0
200
400
600
800

1000
1200
1400
1600
1800

0 
 0

0
64

  0
8

10
0 

 1
0

12
1 

 1
1

14
4 

 1
2

16
9 

 1
3

19
6 

 1
4

22
5 

 1
5

22
5 

 1
5

25
6 

 1
6

28
9 

 1
7

32
4 

 1
8

36
1 

 1
9

40
0 

 2
0

44
1 

 2
1

48
4 

 2
2

57
6 

 2
4

62
5 

 2
5

90
0 

 3
0

O
ve

ra
ll 

th
ro

ug
hp

ut
 (M

B
/s

)

nodes:
transfers:

Liquid Communication

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 8 10 12 13 14 15 16 17 18 19 21 22 24 27

Number of contributing nodes for the 362 sub-topologies

O
ve

ra
ll 

th
ro

ug
hp

ut
 (M

B
/s

)



network. Fast processing of the collective communication
is achieved by an algorithm having the time required for
the overall transmission broken into time frames, over
which, all the transfers of the traffic are to be allocated. In
order to process one time frame in the transmission period
of a single transfers, time frames must not contain
congesting transfers sharing a common link. To ensure the
shortest possible processing time frames must envelope as
many transfers as possible and further all bottleneck links
of the network must be kept busy by each time frame. We
proposed a technique non-redundantly and efficiently
traversing all the subsets of simultaneous transfers pre-
examined to be suitable for obtaining the minimal number
of time frames.

Measurements on the traffic carried out on the various
sample sub topologies of the Swiss T1 cluster computer
has shown that for the most sub topologies our technique
allows to increase the collective communication
throughput by a factor between 1.5 and 2.

As an alternative to the search for the liquid schedule,
we can colour the conflict graph associated to the set of
collective transfers by applying a greedy algorithm (see
Annex A). Sub optimal scheduling solutions may be
obtained with polynomial computation effort, however for
many topologies the loss of the performance may overpass
10%. In a concrete application one may choose to carry out
simultaneously the search for a liquid schedule and the
colouring of the conflict graph. In the case no liquid
schedule is found within a certain limit of time, the sub
optimal solution may be adopted.

In the present problem we have been always assuming a
given in advance routing. Currently our research is being
continued on the problem where the routing constraint is
released and the search of the routing leading to the best
liquid schedule is also included in the objective. Further,
we are particularly interested in methods, leading to
multipath routing solutions adjusting additionally the
routing in order to increase the traffic’s fault-tolerance
against link failure events, note, without sacrificing the
value of once obtained best liquid throughput.

References

[Melamed] Benjamin Melamed, Khosrow Sohraby, Yorai Wardi,
“Measurement-Based Hybrid Fluid-Flow Models for Fast
Multi-Scale Simulation”, DARPA/NMS BAA 00-18
AGREEMENT No. F30602-00-2-0556, http://
www.darpa.mil/ito/research/nms/meetings/nms2001apr/Rut-
gers-SD.pdf

[CPLEX] ILOG CPLEX 8.0. User's Manual. ILOG SA, Gentilly,
France, 2002.

[Fourer] R. Fourer, D. M. Gay, B. W. Kernighan, AMPL: A Mod-
eling Language for Mathematical Programming, Thomson
Learning Brooks/Cole, ISBN: 0-534-38809-4, 2003.

[Chan] S.-H.G. Chan, “Operation and cost optimization of a dis-
tributed server architecture for on-demand video services”,
IEEE Communications Letters, Vol. 5, No. 9, Sept. 2001,
384-386.

[Sitaram] Dinkar Sitaram, Asit Dan, Multimedia Servers, Morgan
Kaufmann Publishers, San Francisco California, ISBN 1-
55860-430-8, 2000, 69-73.

[H323] H.323 Standards, http://www.openh323.org/stan-
dards.html

[Fritz] D.A. Fritz, D.W. Moy, R.A. Nichols, “Modeling and simu-
lation of Advanced EHF efficiency enhancements”, Proc. of
Military Communications Conference, IEEE MILCOM
1999, Vol. 1, 354-358.

[CERN] Large Hadron Collider, Computer Grid project, CERN,
20.09.2001, http://press.web.cern.ch/Press/Releases01/
PR10.01EGoaheadGrid.

[Liu] Pangfeng Liu, Jan-Jan Wu, Yi-Fang Lin, Shih-Hsien Yeh,
“A simple incremental network topology for wormhole
switch-based networks”, Proc. 15th International Parallel and
Distributed Processing Symposium, 2001, 6-12.

[SFIO] E. Gabrielyan, R. Hersch, “SFIO a striped file I/O library
for MPI”, Large Scale Storage in the Web, 18-th IEEE Sym-
posium on Mass Storage Systems and Technologies, April
17-20, 2001, pp. 135-144, ISBN: 0-7695-0849-9

[Thekkath] C. Thekkath, T. Mann, and E. Lee, “Frangipani: A
Scalable Distributed File System”, 16th SOSP, ACM, Dec
1997, pp. 224-237.

[Ayad] N.M.A. Ayad, F.A. Mohamed, “Performance analysis of a
cut-through vs. packet-switching techniques”, Proc. Second
IEEE Symposium on Computers and Communications,
1997, 230-234.

[Duato] J. Duato, A. Robles, F. Silla, R. Beivide, “A comparison
of router architectures for virtual cut-through and wormhole
switching in a NOW environment”, IEEE Symposium on
Parallel and Distributed Processing SPDP, 1999, 240 -247

[Shin] K.G. Shin, S.W. Daniel “Analysis and implementation of
hybrid switching”, IEEE Transactions on Computers, Vol. 45
Issue 6, June 1996, 684-692

[Rexford] Jenifer Rexford, Kang G. Shin, “Analytical Modeling
of Routing Algorithms in Virtual Cut-Through Networks”

[Colajanni] M. Colajanni, B. Ciciani, F. Quaglia, “Performance
Analysis of Wormhole Switching with Adaptive Routing in a
Two-Dimensional Torus”

[Boden] N.J. Boden, et al., “Myrinet - A gigabit per second local
area network,” IEEE Micro, pp. 29-36, February 1995.

[Petrini] F. Petrini, E. Frachtenberg, A. Hoisie, S. Coll, Perfor-
mance Evaluation of the Quadrics Interconnection Network-
Cluster Computing 6, 125-142, 2003

[Quadrics] www.quadrics.com
[Horst] R. Horst, “TNet: A Reliable System Area Network”,

IEEE Micro, vol. 15, no. 1, February 1995, pp. 37-45.
[Brauss] Stephan Brauss, Communication Libraries for the Swiss-

Tx Machines. EPFL Supercomputing Review, Nov 99, pp.
12-15. http://sawww.epfl.ch/SIC/SA/publications/SCR99/
scr11-page12.html

[Yocum] K.G. Yocum, J.S. Chase, A.J. Gallatin, A.R. Lebeck,
“Cut-through delivery in Trapeze: An Exercise in Low-



Latency Messaging”, 6th IEEE International Symposium on
High Performance Distributed Computing, 1997, 243-252.

[Ramaswami] R. Ramaswami, G. Sasaki, “Multiwavelength opti-
cal networks with limited wavelength conversion”, Proc. of
IEEE Infocom, 1997.

[Bermond] J.-C. Bermond, L. Gargano, S. Perennes, A. A.
Rescigno, and U. Vaccaro, “Efficient collective communica-
tion in optical networks”, Proc. of ICALP'96. Lecture Notes
in Computer Science, 574-585, 1996. 

[Caragiannis] I. Caragiannis and Ch. Kaklamanis and P. Persiano,
“Wavelength Routing in All-Optical Tree Networks: A Sur-
vey”, Bulletin of the European Association for Theoretical
Computer Science, 2002, Vol. 76, 104-112.

[Stern] Thomas E. Stern, Krishna Bala, Multiwavelength Optical
Networks: A Layered Approach, Addison-Wesley, ISBN:
020130967X, May 1999

[Jain] R. Jain, G. Sasaki, “Scheduling packet transfers in a class of
TDM hierarchical switching systems”, IEEE International
Conference on Communications ICC '91, Vol. 3, 1991, 1559-
1563.

[Battiti] Roberto Battiti, Alan A. Bertossi, Maurizzio A. Bonuc-
celli, “Assigning Codes in Wireless Networks: Bounds and
Scaling Properties.”, ACM/Baltzer Wireless Networks, Vol.
5, 1999, 195-209.

[Puente] V. Puente, C. Izu, J. A. Gregorio, R. Beivide, J. M. Prell-
ezo, F. Vallejo, “Improving parallel system performance by
changing the arrangement of the network links”, Proc. of the
International Conference on Supercomputing, May 2000, 44-
53.

[Chiu] Dah-Ming Chiu, Raj Jain, “Analysis of the increase and
decrease algorithms for congestion avoidance in computer
networks”, Computer Networks and ISDN Systems, 1989,
Vol. 17, 1-14.

[Ozbay] H. Ozbay, S. Kalyanaraman, A. Iftar, “On rate-based
congestion control in high-speed networks: Design of an H-
infinity based flow controller for single bottleneck”, Proc. of
the American Control Conference, June 1998, 2376-2380.

[Loh] P.K.K. Loh, Wen Jing Hsu, Cai Wentong, N. Sriskanthan,
“How network topology affects dynamic loading balancing”,
IEEE Parallel & Distributed Technology: Systems & Appli-
cations, Vol. 4, No. 3, Fall 1996, 25-35.

[Pacheco] Peter S. Pacheco, Parallel Programming with MPI, by
Morgan Kaufmann Publishers, pages 137-178, 1997 

[Snir] Marc Snir, Steve Otto, Steven Huss-Lederman, David
Walker, Jack Dongarra, MPI - The Complete Reference, Vol-
ume 1, The MPI Core, MIT Press, pages 123-189, 1996

[Gropp98] William Gropp, Steven Huss-Lederman, Andrew
Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir,
Marc Snir, MPI - The Complete Reference, Volume 2, The
MPI Extensions, MIT Press, pages 185-274, 1998

[Gropp99] William Gropp, Ewing Lusk, Rajeev Thakur, Using
MPI-2 Advanced Features of the Message-Passing Interface,
MIT Press, pages 51-118, 1999

[MPI] Message Passing Interface Forum, MPI-2 Extensions to the
Message-Passing Interface, University of Tennessee, pages
209-300, 1997

[Naghshineh] M. Naghshineh, R. Guerin, “Fixed versus variable
packet sizes in fast packet-switched networks”, Proc.Twelfth

Annual Joint Conference of the IEEE Computer and Com-
munications Societies INFOCOM '93., Networking: Founda-
tion for the Future, IEEE Press, Vol. 1, 1993, 217-226.

[Halmos] Paul R. Halmos, Naive Set Theory, Springer-Verlag
New York Inc, ISBN 0-387-90092-6, 1974, 26-29.

[Beauquier] B. Beauquier, J.C. Bermond, L. Gargano, P. Hell, S.
Pérennes, U. Vaccaro, “Graph Problems Arising from Wave-
length-Routing in All-Optical Networks”, 2nd IEEE Work-
shop on Optics and Computer Science (WOCS, part of IPPS
'97), IEEE Press, April 1997.

[Kuonen] P. Kuonen, “The K-Ring: a versatile model for the
design of MIMD computer topology”, Proc. of the High-Per-
formance Computing Conference (HPC'99), San Diego,
USA, April 1999, 381-385.

[Sayoud] H. Sayoud, K. Takahashi, B. Vaillant, “Designing com-
munication network topologies using steady-state genetic
algorithms”, IEEE Communications Letters, Vol. 5, No. 3,
March 2001, 113-115.

[SwissT1] Pierre Kuonen, Ralf Gruber, “Parallel computer archi-
tectures for commodity computing and the Swiss-T1
machine”, EPFL Supercomputing Review, Nov 99, pp. 3-11,
http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-
page3.html

[Gruber] Ralf Gruber, “Commodity computing results from the
Swiss-Tx project Swiss-Tx Team”, http://www.grid-comput-
ing.net/documents/Commodity_computing.pdf

[Campers] G. Campers and O. Henkes and J. P. Leclerq “Graph
Coloring Heuristics: A Survey, Some New Propositions and
Computational Experiences on Random and ‘{L}eighton's’
Graphs” Proc. Operational Research, 917-932, 1988.

[Hertz] A. Hertz and D. de Werra “Using Tabu Search Techniques
for Graph Coloring” in Computing(39) 345-351, 1987.

[Brelaz] Daniel Brelaz, “New Methods to Color the Vertices of a
Graph”, CACM(22), 1979, 251-256.

Annex A. Performance loss induced by a graph
colouring heuristic algorithm

The search for a liquid schedule requires to partition the
traffic [Halmos] into a set of non-overlapping mutually
non-congesting transfers. The problem can also be
formulated as an intersection graph colouring problem
[Campers], [Hertz]. Application of conflict graph colouring
is also studied in [Beauquier]. Vertices of the conflict
intersection graph represent the transfers of the traffic.
Edges between vertices represent congestions between
transfers. Two vertices of the conflict graph are joined by
an edge if the two corresponding transfers are congesting.



Fig. 14. Conflict graph corresponding to the 25-transfer the 
traffic of Fig. 2.

Fig. 14 shows the graph corresponding to the data
exchange shown in the Fig. 2. The 25 vertices of the graph
represent the transfers. The edges represent congestion
relation between transfers. Each edge represents one or
more communication links shared by two transfers. Bold
edges of the figure represent all congestions due to
bottleneck links  and .

The objective is to colour the vertices of the graph with
as few colours as possible, such that no two adjoint vertices
have the same colour. Vertex  corresponds to a transfer

from the sending processor  to the receiving processor

. For example vertex  represents the transfer

.

Whenever a liquid schedule exists, an optimal solution
of the graph colouring problem is a liquid schedule. The
chromatic number of the graph’s optimal colouring is the
length of the liquid schedule. Vertices having the same
colour represent a time frame of the liquid schedule.

Fig. 15. Characteristics of the graphs corresponding to 362
sample traffic exchanges on the testbed shown in the
Fig. 10.

The graph to be coloured is characterized by relatively
low density of its edges. Fig. 15 shows the ratio of the
number of vertices of a graph to the density of its edges.
We can label each edge of the graph by the link(s) causing
the congestion. A half-all-to-all data exchange on the Swiss
T1 cluster with 32 transmitting and 32 receiving processors
forms a graph with  vertices and
48704 edges.

We compared our method of finding a liquid schedule
with the results obtained by applying a greedy high-speed
graph colouring algorithm Dsatur [Brelaz]. We compared
the network performance corresponding to the sub optimal
solution of the greedy algorithm with the performance
delivered by liquid schedule algorithm. Fig. 16 shows the
loss in overall throughput on the Swiss-T1 sample sub
topologies due to the redundant unnecessary colours
induced by the greedy graph colouring algorithm.

x1,1

x2,1

x3,1 x4,1

x5,1

x1,2

x2,2

x3,2 x4,2

x1,3

x2,3

x3,3 x4,3

x1,4

x2,4

x3,4 x4,4

x5,4

x1,5

x4,5

x5,5

lab lba

xi j,

ti

rj x4 1,

t4 r1→ lt4 lba lr1, ,{ }=

Density of edges for the sample  topologies of 
Swiss-T1

0

10,000

20,000

30,000

40,000

50,000

1 64 10
0

12
1

14
4

16
9

19
6

22
5

22
5

25
6

28
9

32
4

36
1

40
0

44
1

48
4

57
6

67
6

96
1

number of vertices

nu
m

be
r o

f e
dg

es
32 32× 1024=

Loss in performance due to suboptimal 
scheduling

0
2
4
6
8

10
12
14
16
18
20

1 64 10
0

12
1

14
4

16
9

19
6

22
5

22
5

25
6

28
9

32
4

36
1

40
0

44
1

48
4

57
6

67
6

96
1

number of transfers for 363 sub-topologies

lo
ss

 in
 p

er
fo

rm
an

ce
 (%

)



Fig. 16. Loss in performance induced by schedules computed
with the Dsatur heuristic algorithm.

For 74% of the topologies there is no loss of
performance. For 18% of the topologies, the performance
loss is below 10% and for 8% of the topologies, the loss of
performance is between 10% and 20%. However the
computation time of the greedy algorithm is polynomial
and compares therefore favourably with the liquid schedule
construction algorithm. 

Annex B. Comparison of efficiency of liquid
scheduling algorithm with MILP

For 362 test bed topologies introduced in the section 7 we
applied MILP method. The efficiency of the MILP for this
problem was far bellow compared with our liquid
scheduling algorithm. The median of the gain factor of our
algorithm is about 4000. Fig. 17 shows the computation
times required for the optimal scheduling by both MILP
and liquid scheduling methods. For the sake of precision it
has to be noted that the computation of the optimal
scheduling is carried on different processors: liquid
scheduling algorithm is benchmarked on Compaq 500MHz
Alpha processor and the MILP algorithm on Intel
1400MHz Pentium 4 processor. This difference obviously
may not result in a change of any interest in the gain factor.

 

Comparison of two exact algorithms

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

10000.000

100000.000

1000000.000

362 sample topologies

C
PU

 ti
m

e 
in

 se
co

nd
s

MILP Cplex Liquid Schedule Construction

Fig. 17. Comparison of efficiency of two algorithms, MILP method and liquid scheduling 
method.


