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Round-robin schedule
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Round-robin Throughput
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Liquid schedule
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Transfers and Load of Links

The 25 transfer traffic
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Duration of Traffic
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Liquid Throughput
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Schedules yielding the liquid throughput
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X= {3, I}, {13, 17}, {l3, Ig}, {l3, 112, 1o}, {13, 112, 110}
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 Without a right schedule we may have intervals when
the access to the bottleneck links is blocked by other
transmissions.

» Our goal is to schedule the transfers such that all bot-
tlenecks are always kept occupied ensuring that the
liquid throughput is obtained.

A schedule yielding the liquid throughput we call as a
liquid schedule and our objective is to find a liquid
schedule whenever it exists.
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363 Communication Patterns
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Aggregate throughput (MB/s)

363 Topology Test-bed
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Round-robin throughput
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Team: a set of mutually non-congesting
transfers using all bottlenecks
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3J(X), all teams of the traffic X

* To cover the full solution space when
e - transfer x : . :
- transfers congesting with x constructing a liquid schedule an effi-
- - transfers non-congesting with x cient technique obtaining the whole set
of possible teams of a traffic is required.

depot
( .p @)  \We designed an efficient algorithm enu-
R= merating all teams of a traffic traversing
@ each team once and only once.
excluder includer * This algorithm obtains each team by
~ . subsequent partitioning of the set of all
pt X teams.
e We introduced tri-
depot depot plets consisting of
C o) ( o o) subsets of the traf-
fic, representing one-

Rix= @ R x= @ by-one partitions of
the set of all teams.

excluder includer excluder includer
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Liquid schedule search tree
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Additional bottlenecks
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Prediction of dead-ends
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Liquid schedule search optimization
teams ofthg S(Y) — {A c S(X)|A — Y} original traffic’s teams fo_rmed
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decreasing the search space without affecting the solution space
P(Y)={Ae I(X)[ACY] = p(Y)=3(Y)



Liquid schedules construction

Choice =

Choice
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) (Y) additionally decreas-
Ing the search space
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Sfu | I(Y) solution space

For more than 90% of the test-bed topologies
construction of a global liquid schedule is com-
pleted in a fraction of a second (less than 0.1s).



All-to-all throughput (MB/s)

Results
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liquid throughput e carried out according to the liquid schedules



The 25 vertices of the graph
represent the 25 transfers
transfers. The edges repre-
sent congestion relations be-
tween transfers, i.e. each
edge represents one or more
communication links shared
by two transfers.
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Loss of performance induced by schedules com-
puted with a graph colouring heuristic algorithm
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number of transfers for each of 363 topologies

» For 74% of the topologies Dsatur algorithm does not induce a loss of performance.
* For 18% of topologies, the performance loss is bellow 10%.
» For 8% of topologies, the loss of performance is between 10% and 20%.



Conclusion

 Data exchanges relying on the liquid schedules may be carried out several
times faster compared with topology-unaware schedules.

» Thanks to introduced theoretical model we considerably reduce the liquid
schedule search space without affecting the solution space.

« Our method may be applied to applications requiring efficiency in concurrent
continuous transmissions, such as video and voice traffic management, high
energy physics data acquisition and reassembling.

e Liquid scheduling is applicable in wormhole, cut-through networks and can
be useful in wavelength assignment problem in WDM optical networks.

Thank You!
Contact: Emin.Gabrielyan@epfl.ch



