
Abstract

For collective communications, the upper limit of a
network’s capacity is its liquid throughput. The liquid
throughput corresponds to the flow of a liquid in an
equivalent network of pipes. However, in communication
networks, the aggregate throughput of a collective
communication pattern (traffic) scheduled according to
straight forward topology unaware techniques may be
several times lower than the maximal potential throughput
of the network. In most of the cut-through, wormhole and
wavelength division optical networks, there is a loss of
performance due to congestions between simultaneous
transfers sharing a common link resource. We propose to
schedule the transfers of a traffic according to a schedule
yielding the liquid throughput. Such a schedule, called
liquid schedule, relies on the knowledge of the underlying
network topology and ensures an optimal utilization of all
bottleneck links. To build a liquid schedule, we partition
the traffic into time frames comprising mutually non-
congesting transfers keeping all bottleneck links occupied
all the time. The search for mutually non-congesting
transfers utilizing all bottleneck links is of exponential
complexity. We present an efficient algorithm which non-
redundantly traverses the search space and limits the
search to only those sets of transfers, which are non-
congesting and utilize all bottleneck links. We further
propose a liquid schedule construction technique, which
efficiently reduces the search space without affecting the
solution space.

1. Introduction

Collective multicast communications are of increasing
importance both in scientific and in commercial
applications. The aggregate throughput of a collective
communication pattern (traffic) depends on the underlying
network topology. The amount of data that has to pass
across the most loaded links of the network, called

bottleneck links, gives their utilization time. The total size
of a traffic divided by the utilization time of the bottleneck
links gives an estimation of the liquid throughput, which
corresponds to the flow capacity of a non-compressible
fluid in a network of pipes [Melamed00]. Both in
wormhole switching networks and in Wavelength Division
Multiplexing (WDM) optical networks, due to possible
link or wavelength allocation conflicts, not any
combination of transfer requests may be carried out
simultaneously. For a physical network modelled as a
directed graph , the objective is to
minimize the number T of timeslots and/or wavelengths
required to carry out a given set of transfer requests. Each
transfer shall be allocated to one (and only one) time frame,
such that no pair of transfers allocated to the same time
frame use a common resource (link, wavelength).

The liquid scheduling problem is hard to solve. For the
sizes of practical interest, solving the problem by Mixed
Integer Linear Programming (MILP) [CPLEX02],
[Fourer03] leads to very long computation times (see
Appendix). Solving the problem by applying a heuristic
graph colouring algorithm provides in short time a
suboptimal solution. We propose an exact method for
deriving the optimal solution, which is fast enough to allow
real time scheduling of a traffic in congestion sensible
transmission networks. Numerous applications require
using network resources efficiently, for example parallel
acquisition and distribution of multiple video streams
[Chan01], [Sitaram00], switching of simultaneous voice
communication sessions [H323], [EWSD04], [SIP04], and
high energy physics, where particle collision events need to
be transmitted from a large number of detectors and filters
to clusters of processing nodes [CERN01].

We have tested liquid scheduling on a computer cluster
interconnected by a high performance wormhole switch
fabric [Kuonen99].
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2. Applicable networks

This section introduces different types of electronic,
optical and wireless networks having in common the
problem of congestion avoidance. Liquid scheduling of
collective communication patterns (multicast
communications) is applicable to each of these networks.

2.1. Cut-through switching

In many high performance multicomputer
communication networks, the links lying on the path of a
message are kept occupied during the transmission of that
message. Unlike packet switching (or store-and-forward
switching) where each network packet is present at an
intermediate router [Ayad97], wormhole switching (also
called cut-through switching) [Liu01] transmits a message
as a worm propagating itself across intermediate switches,
i.e. a continuous stream of bits which make their way
through the fabric spanning multiple switches. In a
wormhole switching network [Duato99], [Shin96],
[Rexford96], [Colajanni99], a message entering into the
network is being broken up into small parts of equal size
called flits (standing from flow-control digits). These flits
are streamed across the network. All the flits of a packet
follow the same path. As soon as a switch on the path of a
message receives the head flit and processes the routing
header, it triggers the flow of flits to the corresponding
outgoing link. If the message encounters a busy outgoing
link, the wormhole switch stalls the message in the network
along the already established path until the link becomes
available. Occupied channels are not released. A channel is
released only when the last tail flit of the message has been
transmitted. Thus each link laying on the path of the
message is kept occupied during the whole transmission
time of a message1.

Compared with store and forward switches, wormhole
switching considerably decreases the latency of message
transmission across multiple routers. Wormhole switching
makes the latency insensitive to the message distance.
Most contemporary research and commercial
multicomputers use some form of wormhole or advanced
cut-through networks, e.g. Myrinet [Boden95], fat tree
interconnections for clusters [Petrini03], [Quadrics] and
Tnet [Horst95], [Brauss99].

Wormhole switching only pipelines messages and thus
requires not more than a very small buffer. This enables a
cost effective implementation of high performance

switches on a single chip [Yocum97]. However, wormhole
switching alone quickly saturates as load increases due to
blocked message paths. Congestions occurring due to
simultaneous transmission of messages sharing common
network links result in an aggregate data throughput
considerably lower than the liquid throughput offered by
the network.

For the same set of collective communications the rate
of network congestions may significantly vary depending
in which order individual communications are carried out.
Channel contentions can be avoided if the transfers are
scheduled so that no congesting messages are transmitted
at a time.

2.2. Lightpaths on demand

Lightpaths are end to end optical connections from a
source node to a destination node over a wavelength within
each intermediate link. Different lightpaths in a wavelength
routing network can use the same wavelength as long as
they do not share any common links. Fig. 1 shows an
example of an optical network.

Fig. 1. Optical layer, wavelength-routing network.

The Optical Line Terminal (OLT) multiplexes multiple
wavelengths into a single fiber and demultiplexes a set of
wavelengths from a single fiber into separate fibers. The
Optical Cross Connects (OXC) switches wavelengths from
one port to another2 [Ramaswami97], [Stern99].

Optical networks, such as the one shown in Fig. 1, are
designed to provide lightpaths between the terminal edge
nodes of a conventional network, for example IP routers.
However from a network design point of view, it is essen-

1. However in virtual cut-through (VCT) networks, if the mes-
sage encounters a busy outgoing link, the entire packet is 
buffered in the router and already allocated portions of the 
message path are released.

2. End nodes, i.e. IP routers, SONET terminals or ATM 
switches are usually plugged into network via an Optical 
Add/Drop Multiplexer (OADM).
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tial to keep transmissions in the optical domain as long as
possible. For example a relatively inexpensive optical
switch can be implemented by an array of microscopic mir-
rors, build with micro electromechanical systems (MEMS).
Such an optical cross connect, called wavelength-selective
cross-connect (WSXC), does not provide wavelength con-
version features1. In networks build with WSXC switches,
the basic optical transmission channel remains on a fixed
wavelength from end to end (a condition called wavelength
continuity constraint) and therefore any lightpath must be
assigned the same wavelength on all the links it traverses.
Two lightpaths traversing a common link must be assigned
different wavelengths. Let us assume that the optical cross-
connects of the example in the Fig. 1 do not carry out
wavelength conversion. The lightpath between nodes A and
B uses one single wavelength  all along its route and

therefore  cannot be reused by another lightpath at any
link of the route. Two transmissions from IP router A to B
and from C to D must then either be carried out on two dif-
ferent wavelengths  and , or must be scheduled in
different timeslots, i.e. by optical burst switching [Yoo99],
[Turner99]. In order to apply liquid scheduling to optical
networks we assume that the routing control is carried out
at the edge nodes. We also assume that appropriate signal-
ling is available between edge nodes enabling them to col-
laborate. Then, liquid scheduling, exploited by edge nodes
ensures congestion avoidance and leads to an efficient
usage of wavelengths and timeslots. For an incoming con-
tinuous traffic, edge nodes repeatedly apply liquid schedul-
ing on the buffered communication requests. For a
continuously evolving traffic demand, liquid scheduling
will only accept the sub flow, which can be sustained by
the optical cloud. This leads to a liquid schedule based
admission control mechanism [Jagannathan02],
[Mandjes02].

There has been research on theoretical considerations
about the required number of wavelengths and the com-
plexity of finding a solution to the wavelength assignment
problem according to the network topology [Bermond96],
[Caragiannis02]. Feed-back and flow control based con-
gestion avoidance mechanisms are studied in [Maach04],
[Chiu89], [Ozbay98], [Loh96]. In contrast to these
approaches, we establish schedules for the data transfers
without trying to regulate the sending nodes’ data rate.

2.3. Time division networks, CDMA and spread
spectrum wireless networks.

Satellite-switch time division multiplexing networks
[Jain91] and Code Division Multiple Access (CDMA)
spread spectrum wireless networks [Battiti99],
[Leelahakriengkrai03] can also be viewed as
interconnection topologies. With CDMA, the bottleneck
resources comprise also orthogonal frequency spectra.
Congestion occurs if two transmissions simultaneously
compete for a common frequency. One may therefore try to
apply a variant of liquid scheduling to CDMA wireless
networks so as to ensure an optimal utilization of the
resources and to obtain the highest possible overall
throughput.

2.4. Liquid scheduling for parallel applications

We have shown [Gabrielyan03] that liquid schedules
may significantly increase the overall performance of a
parallel application running on a high-speed low latency
supercomputer network, e.g. Myrinet [Boden95] or Tnet
[Horst95].

Liquid schedules do not always exists. When a liquid
schedule does not exist, we may search for suboptimal
solutions offered by heuristic graph colouring methods
[Gabrielyan03]. In the present paper, we focus our
attention only on algorithms for the construction of liquid
schedules.

3. The liquid scheduling problem

Fig. 2. Example of a network topology.

Let us consider a network topology (Fig. 2) consisting
of ten end nodes  (henceforth called
processors), two wormhole cut-through switches 

and twelve unidirectional links 

having identical throughputs. The processors  only

1. Lightpaths may be converted from one wavelength to 
another along their route, however this conversion is costly, 
since in most cases it requires O/E and E/O conversions. 
OXCs providing wavelength conversion are called wave-
length-interchanging cross-connects (WIXC). WIXCs do 
both space switching and wavelength conversion.
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transmit data and  only receive data. It’s easy to
guess the routing, e.g. a message from t4 to r3 traverse
links  and , and a message from t1 to r2 uses

only links  and .
We denote transfers symbolically to mark out the

occupied network links. For example the transfer from t4 to
r3 is symbolically represented as , the transfer from

t1 to r2 as . We may also represent a set of transfers
carried out simultaneously, e.g. a traffic transferring
messages simultaneously from t4 to r3 and from t1 to r2 by

.
Let each sending processor have messages to be

transmitted to each receiving processor and let all
messages have identical sizes [Naghshineh93]. Thus, in the
present example, we have 25 transfers to carry out. Each of
the ten links  carries 5 transfers and the

two links  must each carry 6 transfers. Therefore

the links  are the network bottlenecks and have the
longest active time. If the duration of the whole collective
communication is as long as the active time of the
bottleneck links, we say that the collective communication
reaches its liquid throughput. In that case the bottleneck
links are obviously kept busy all the time along the
duration of the communication traffic. Assuming in this
example a single link throughput , the liquid
throughput offered by the network is

. Under identical packet
size and link throughputs (kept all along this paper for the
sake of simplicity) the liquid throughput of a traffic X is the
ratio  multiplied by the single link throughput,
where  is the total number of transfers and  is
the number of transfers carried out by one bottleneck link.

Now let us see if the order in which the transfers are
carried out in this wormhole network has an impact on the
collective communication performance. A straight forward
schedule to carry out these 25 transfers is the round-robin
schedule, according to which at first each transmitting
processor sends the message to the receiving processor
staying in front of it, then to the receiving processor staying
at the next position, etc. Such a round robin schedule

consists of 5 phases. The transfers of the first ,

second  and fifth  phase of the round-robin
schedule may be carried out simultaneously, but the third
{ , , , , } and fourth { ,

, , , } phases contain congesting

transfers, e.g. link  (marked thick) can not be

simultaneously used by the two transfers  and .
None of these two phases can be carried out in less than
two time frames and therefore the whole schedule lasts 7
time frames, instead of seemingly 5. Therefore the
performance of our collective communication carried out
according to the round-robin schedule corresponds to the
throughput of  messages per time frame or

, which is less than the
liquid throughput.

Nevertheless, a solution exists to schedule the 25
transfers within 6 time frames. The sequence of time

frames { , , , , , }
is an example of the liquid schedule for the 25-transfer
collective communication request.

4. Definitions

The method we propose allows us to efficiently build
liquid schedules for non-trivial network topologies. Thanks
to liquid schedules we may considerably increase the
collective data exchange throughputs, compared with
traditional topology unaware schedules such as round-
robin or random schedules. The present section introduces
the definitions that will be further used for describing the
liquid schedule construction method.

A single “point-to-point” transfer is represented by the
set of communication links forming the network path
between a transmitting and a receiving processor according
to a given routing schema. A transfer is a set of links (i.e.
the path between a sending processor and a receiving
processor). A traffic is a set of transfers (i.e. a collective
data exchange).

Fig. 3 shows a traffic for a collective data exchange
carried out on the network of Fig. 2. The bottleneck links
of the network are marked in bold. The exchange shown in
Fig. 3 is a particular case of a traffic. Any collective
exchange comprising transfers between possibly
overlapping sets of sending and receiving processors is a
traffic.

Fig. 3. Example of a traffic composed of 25 transfers carried 
out over the network shown on Fig. 2.
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A link l is utilized by a transfer x if . A link l is
utilized by a traffic X if l is utilized by a transfer of X. Two
transfers are in congestion if they share a common link.
Note that we will be limiting ourselves to data exchanges
consisting of identical packet sizes.

A simultaneity of a traffic X is a subset of X consisting
of mutually non-congesting transfers. A transfer is in
congestion with a simultaneity if the transfer is in
congestion with at least one member of the simultaneity. A
simultaneity of a traffic is full if all transfers in the
complement of the simultaneity in the traffic are in
congestion with that simultaneity. A simultaneity of a
traffic obviously can be carried out within one time frame
(the time to carry out a single transfer). The load  of
link l in a traffic X is the number of transfers in X using link
l. The duration  of a traffic X is the maximal value of
the load among all links involved in the traffic.

The links having maximal load values, i.e.
, are called bottlenecks. The liquid

throughput of a traffic X is the ratio 
multiplied by the single link throughput, where  is the
number of transfers in the traffic X.

We define a simultaneity of X as a team of X if it uses all
bottlenecks of X. A team of X is full if it is a full
simultaneity of X. Let  and  be respectively the
sets of all full simultaneities and all full teams of X.

In order to form liquid schedules, we try to schedule
transfers in such a way that all bottleneck links are always
kept busy. Therefore we search for a liquid schedule by try-
ing to assemble non-overlapping teams carrying out all
transfers of the given traffic, i.e. we partition the traffic into
teams. To cover the whole solution space we need to gener-
ate all possible teams of a given traffic. This is an exponen-
tially complex problem. It is therefore important that the
team traversing technique be non-redundant and efficient,
i.e. each configuration is evaluated once and only once,
without repetitions.

5. Obtaining full simultaneities

To obtain all full teams, we first optimize the retrieval of
all simultaneities and then use that algorithm to retrieve all
full teams.

Recall that in a traffic X, any mutually non-congesting
combination of transfers is a simultaneity. A full
simultaneity is a combination of non-congesting transfers
taken from X, such that its complement in X contains only
transfers congesting with that simultaneity.

We can categorize full simultaneities according to the
presence or absence of a given transfer x. A full

simultaneity is x-positive if it contains transfer x. If it does
not contain transfer x, it is x-negative. Thus the set of full
simultaneities  is partitioned into two non-
overlapping subsets: an x-positive and x-negative subset of

. For example, if y is another transfer, the set of x-
positive full simultaneities may be further partitioned into
y-positive and y-negative subsets. Iteration of this concept
allows us to recursively traverse the whole set of all full
simultaneities , one by one, without repetitions.

Let us define a category of full simultaneities of X as an
ordered triplet (excluder, depot, includer), where the
includer is a simultaneity of X (not necessarily full), the
excluder contains some transfers of X non-congesting with
the includer and the depot contains all the remaining
transfers non-congesting with the includer.

A category, defined by the transfers of its includer and
excluder, constrains a subset of full simultaneities. We
therefore say that a full simultaneity is covered by a
category R, if the full simultaneity contains all the transfers
of the category’s includer and does not contain any transfer
of the category’s excluder. Consequently, any full
simultaneity covered by a category is the category’s
includer together with some transfers taken from the
category’s depot. The collection of all full simultaneities of
X covered by a category R is defined as the coverage of R.
We denote the coverage of R as .

Transfers of a category’s includer form a simultaneity
(not full). By adding different variations of transfers from
the depot, we may obtain all possible full simultaneities
covered by the category.

The category  is a prim-category since it
covers all full simultaneities of X, i.e.

.
By taking an arbitrary transfer x from the depot of a

category R, we partition the coverage of R into x-positive
and x-negative subsets. The respective x-positive and x-
negative subsets of a coverage of R are coverages of two
categories derived from R: a positive subcategory and a
negative subcategory of R.

The positive subcategory  is formed from the
category R by adding transfer x to its includer, and by
removing from its depot and excluder1 all transfers
congesting with x. The negative subcategory  is formed
from the category R by moving transfer x from its depot to
its excluder. The replacement of a category R by its two sub

l x∈
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categories  and  is defined as a fission of the
category. Fig. 4 and Fig. 5 show an example of fission of a
category into positive and negative sub categories.

Fig. 4. An initial category before fission, where symbol ,
represents any transfer that is in congestion with x
and symbol  represents any transfer which is
simultaneous with x.

Fig. 4 shows an example of a category R and Fig. 5
shows the resulting two sub categories obtained from the
initial category by a fission relatively to a transfer x taken
from the depot.

Fig. 5. Fission of the category of Fig. 4 into its positive and
negative sub categories.

The coverage of R is partitioned by the coverages of its
sub categories  and , i.e. the coverage of a
category is the union of coverages of its sub categories:

, and the coverages of the sub
categories have no common transfers,

.
A singular category is a category that covers only one

full simultaneity. That full simultaneity is equal to the
includer of the singular category. The depot and excluder
of a singular category are empty.

We apply the binary fission to the prim-category and
split it into two categories. Then, we apply the fission to
each of these categories. Repeated fission increases the
number of categories and narrows the coverage of each
category. Eventually, the fission will lead to singular

categories only, i.e. categories whose coverage consists of
a single full simultaneity. Since at each stage we have been
partitioning the set of full simultaneities, at the final stage
we know that each full simultaneity is covered by one and
only one singular category.

The algorithm recursively carries out the fission of
categories and yields all full simultaneities without
repetitions.

There is a further optimization to be considered. Take a
category. A full simultaneity must contain no transfer from
that category’s excluder in order to be covered by that
category. In addition, since the full simultaneity is full, it is
in congestion with all transfers that it does not contain.
Obviously any full simultaneity covered by some category
must congest with each member of that category’s
excluder. Therefore, transfers congesting with the transfers
of the excluder must be available in the depot of the
category1. If the excluder contains at least one transfer, for
which the depot has no congesting transfer, then this
category is blank. The includer of a blank category, cannot
be further extended by the transfers of the depot to a
simultaneity which is full (and congests with every
remaining transfer of the excluder). The coverage of a
blank category is therefore empty and there is no need to
pursue its fission.

Let us now instead of retrieving all full simultaneities
retrieve all full teams (i.e. those full simultaneities, which
ensure the utilization of all bottleneck links).

A category within X is idle if its includer and its depot
together don’t use all bottlenecks of X. This mean that we
can not grow the current simultaneity (i.e. the includer of
the category) into a full simultaneity, which will use all
bottlenecks. The coverage of an idle category does
therefore not contain a full simultaneity, which is a team.
Idle categories allow us to prune the search tree.

Carrying out successive fissions, starting from the prim-
category and continuously removing all the blank and idle
categories ultimately leads to all full teams.

6. Speeding up the search for full teams

This section presents an additional method for speeding
up the search for all full teams  of an arbitrary traffic
X.

Let us consider from the original traffic X only those
transfers that use bottlenecks of X and call this set of
transfers the skeleton of X. We denote the skeleton of X as

. Obviously, . 
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Fig. 6 shows the relative size of skeletons compared
with the size of the corresponding traffic, for 362 different
traffic patterns within the T1 32 node cluster computer (see
Fig. 11, in section 8). The skeleton sizes are on average
31.5% of the corresponding traffic sizes.

Fig. 6. Proportion of the number of transfers within a skele-
ton, compared with the number of transfers of the cor-
responding traffic.

When considering the skeleton of a traffic X as another
traffic, the bottlenecks of the skeleton of a traffic are the
same as the bottlenecks of the traffic. Consequently, a team
of a skeleton is also a team of the original traffic.

We may first obtain all full teams of the traffic’s
skeleton by iteratively applying the fission algorithm and
by eliminating the idle categories.

Then, a full team of the original traffic may be obtained
by adding a combination of non-congesting transfers to a
team of the traffic’s skeleton.

We therefore obtain the set of a traffic’s full teams 
 by carrying out the following steps:

1. Obtain the set of the skeleton’s full teams  
by applying the fission algorithm.

2. Create for each skeleton’s full team a category by:
2.1. Initializing the includer with the transfers of the

skeleton’s full team;
2.3. Initializing the excluder as empty;
2.2. And putting into the depot all transfers of X non-

congesting with the includer.
3. Apply the fission to each category, discarding the 

check for idle categories, since the includer is 
already a team, i.e. it uses all bottlenecks.

By first applying the fission to the skeleton and then 
expanding the skeleton’s full teams to the traffic’s full 
teams, we strongly reduce the processing time and at the 

same time we obtain all full teams of the original traffic 
without repetitions.

We measured the reduction in search space according to
the different search space reduction methods we propose.
We consider 23 different traffic patterns within the T1
cluster computer (see section 8). The search space is given
by the number of categories that are being iteratively
traversed by the fission algorithm. Fig. 7 shows the
obtained search space reductions compared with a naive
algorithm that would build full teams according to a
coverage partitioning strategy, i.e. by constructing
categories thanks to the fission algorithm, but without any
of the proposed optimizations. 

Fig. 7. Search space reduction obtained by idle+skele-
ton+blank optimization steps.

The skeleton algorithm together with the idle and blank
optimizations reduces on average the search space to
10.6%, i.e. full teams are computed 9.43 times faster than
without search space reduction techniques. Note that in the
above comparison even the naive algorithm is smart
enough to avoid repeatedly exploring the full
simultaneities.

7. Construction of liquid schedules

Having the capability of building full teams, this section
presents the general method for building liquid schedules
on irregular topologies for any collective communication
pattern. Note that we neglect network latencies, consider a
constant packet size and assume static routing.

Let us introduce the definition of a schedule. By
defining a partition of X as a disjoint collection of non-
empty subsets of X whose union is X [Halmos74], a
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schedule  of a traffic X is a collection of simultaneities of
X partitioning the traffic X. An elements of a schedule  is
called time frame. The length  of a schedule  is the
number of time frames in . A schedule of a traffic is
optimal if the traffic does not have any shorter schedule. If
the length of a schedule is equal to the duration1 of the
traffic, then the schedule is liquid, i.e. a schedule  of a
traffic X is liquid if .

Fig. 8 shows a liquid schedule for the collective traffic
shown in Fig 2.

Fig. 8. The time frames of a liquid schedule of the collective
traffic shown in Fig. 2. 

If a schedule is liquid, then each of its time frames must
use all bottlenecks. Inversely, if all time frames of a
schedule use all bottlenecks, the schedule is liquid.

Fig. 9. This traffic has no team and no liquid schedule.

The necessary and sufficient condition for the liquidity
of a schedule is that all bottlenecks be used by each time
frame of the schedule. Since a simultaneity of X is defined
as a team of X, if it uses all bottlenecks of X, an equivalent

condition for the liquidity of a schedule  on X is that each
time frame of  be a team of X. 

A liquid schedule is optimal, but the inverse is not
always true, meaning that a traffic may not have a liquid
schedule. Fig. 9 shows a simple traffic with three
bottleneck links. Since there is no schedule whose time
frames keep all bottleneck links all the time busy, this
traffic has no team and therefore no liquid schedule.

In the Appendix, we formulate the problem of searching
for a liquid schedule with Mixed Integer Linear
Programming (MILP), [CPLEX02], [Fourer03]. We
compare the performances of the liquid schedule search
approach presented here with that of MILP.

7.1. Liquid schedule naive search algorithm

We first propose a simple technique for the construction
of a liquid schedule and then introduce an optimization im-
proving the efficiency of liquid schedule construction.

Our strategy for finding a liquid schedule relies on parti-
tioning the traffic into a set of teams forming the sequence
of time frames. Associate to the traffic X all its possible
teams  which could be selected as the sched-

ule’s first time frame.  is the variety of
possible subtraffics remaining after the choice of the first
time frame. Each of the possible subtraffics  remaining
after the selection of the first time frame has its own set of
possibilities for the second time frame

. The choice of the second
team for the second time frame yields a further reduced sub-
traffic (see Fig. 10).

Dead ends are possible if there are no choice for the next
time frame, i.e. no team of the original traffic may be
formed from the transfers of the reduced traffic. A dead end
situation may occur, for example, when the remaining sub-
traffic appears to be like the one shown in Fig. 9. Once a
dead end is faced, backtracking occurs.

The construction recursively advances and backtracks
until a valid liquid schedule is formed. A valid liquid sched-
ule is obtained, when the transfers remaining in the reduced
traffic form one single team for the last time frame of the
liquid schedule.

We use the search tree shown in Fig. 10 and assume that
at any stage the choice  for the next time frame is

among the set of the original trafic’s teams , i.e.

. In the next sub sec-

1. The duration of a traffic X is the load of its bottlenecks.
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tions we reduce the search space by considering newly
emerging bottlenecks at successive time frames.

Fig. 10. Liquid schedule search tree.  denotes a re-

duced subtraffic at the layer  of the three and
 denotes a candidate for the time frame

. The operator  applied to a subtraffic
 represents the set of all possible candidates

for a time frame at the present stage.

7.2. Search space reduction by considering newly
emerging bottlenecks

We observe in Fig. 8 that when we step from one time
frame to the next, additional new bottleneck links emerge,
e.g. from time frame 3 on, links  and  appear as new
bottlenecks.

In the construction strategy presented in the previous
subsection we considered as a possible time frame any team

of the original traffic X that can be built from the transfers
of the reduced subtraffic. We have shown [Gabrielyan03]
that for the liquidity of a schedule, it is necessary for each
time frame to be not only a team of the original traffic but
also a team of the reduced subtraffic. If  is a liquid sched-
ule on X and A is a time frame of , then  is a liq-
uid schedule on .

Thus a liquid schedule may not contain a time frame
which is a team of the original traffic but is not a team of a
subtraffic obtained by removing some of the other time
frames. Therefore we can limit at each iteration our choice
to the collection of only those teams of the original traffic
which are also teams of the current reduced subtraffic.
Since the reduced subtraffic contains additional bottleneck
links, there are less teams in the reduced subtraffic than
teams remaining from the original traffic.

By considering in each time frame all occurring
bottlenecks, we considerably reduce the search space
without affecting the solution space, i.e.

.

7.3. Liquid schedule construction optimization by
considering only full teams

We can build a liquid schedule by limiting the choice of
teams of the reduced subtraffic to its full teams.

Let us modify a liquid schedule so as to convert one of
its teams into a full team. We assume that a traffic X has a
liquid schedule . Let A be a time frame of . If A is not a
full team of X, then, by moving the necessary transfers
from other time frames of , we can convert the team A to
a full team. Evidently, the properties of liquidity
(partitioning, simultaneousness and length) of  will not
be affected.

Therefore if a liquid schedule is built by a choice of a
non full team  of  at any stage of construction, then
the liquid schedule could have also been built by a choice
of a full team A of , such that . Therefore the
choice of the teams in the construction may be narrowed
from the set of all teams to the set of full teams only, i.e.

.
The expression bellow summarizes the search space

reduction by building liquid schedule using full teams of
the reduced traffic.
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8. Testbed and measurements

In this section we present a testbed consisting of sample
traffic patterns for various topologies. Measurements of
collective data exchange throughputs enable us to validate
the efficiency of our full team search and liquid schedule
construction strategy.

Fig. 11. Architecture of the T1 cluster computer
interconnected by a high performance wormhole
switch fabric.

As basic network topology for our testbed, we use the
Swiss-T1 cluster (called T1, see Fig. 11). The network of
the T1 forms a K-ring [Kuonen99] and has a static routing
scheme. The throughputs of all links are identical and equal
to 86MB/s. The cluster consists of 32 nodes, each one
comprising 2 processors, i.e. 64 processors,
[SWISSTX99], [Gruber00].

The sample traffic patterns are selected from different
configurations of half-to-half collective data exchanges
between a set of sending and a set of receiving processors,
where each sending processor carries out a transmission to
each receiving processor. Within each node we allocate one
of the processors for transmission and the other one for
reception such that for any given allocation of nodes, we
obtain an equal number of sending and receiving
processors.

With a T1 cluster incorporating 32 nodes, 8 switches
and with 4 nodes per switch we have 5 possibilities of

allocating nodes to switches. This yields 
different node allocation patterns. To limit our choice to
really different topologies, we have computed the liquid
throughputs for each of the 390625 topologies, taking into
account the routing information of the cluster. Because of
various symmetries within the network, many of these
topologies yield an identical liquid throughput and only
362 topologies yielding different liquid throughput values
were obtained.

Fig. 12. shows these 362 topologies, each one being
characterized by the number of contributing nodes and by
its liquid throughput. Depending on the specific topology,
the liquid throughput for a given number of nodes may
considerably vary.

Fig. 12. Liquid throughput in relation to the number of nodes
with variations according to different topologies.

These 362 topologies may be placed on one axis, sorted
first by the number of nodes and then according to their
liquid throughput. For each topology, Fig. 13 shows the
theoretical liquid throughput and the throughput measured
according to a topology-unaware round-robin schedule.

For each measurement, the amount of data transferred
from a transmitting processor to a receiving processor is
equal to 2MB. For each topology, 20 measurements were
made. The black dots represent the median of the collected
results. The throughput difference shows that topology-
unaware scheduling techniques do not utilize efficiently the
potential throughput capabilities offered by the
communication network.
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Fig. 13. Theoretical liquid throughput and measured round-
robin schedule throughput for 362 network sub
topologies.

The 362 sample traffic patterns were scheduled by our
liquid scheduling algorithms. The traffic for each pattern
was launched onto the network according to the computed
liquid schedules. Overall throughput results are measured
and presented in Fig. 14. The curve of the theoretical value
is given for comparison.

Fig. 14. Predicted liquid throughput and measured
throughput according to the computed liquid
schedule.

Each black dot represents the median of 7
measurements. Processor to processor transfers have a size
of 5MB. The measured aggregate throughputs (black dots)

are very close to the theoretically expected values of the
liquid throughput (gray curve). For many topologies, liquid
scheduling allows to increase the aggregate throughput by
a factor of two compared with topology-unaware round-
robin scheduling (Fig. 13).

Thanks to the presented search space reduction
algorithms, the computation time of a liquid schedule takes
for more than 97% of the considered topologies less than

 of a second on one Compaq Alpha 500MHz
computer.

9. Conclusion

In high performance networks based on cut-through
wormhole switch fabrics or on wavelength division
multiplexing optical networks, significant performance
drops may be observed due to congestions between
transfers sharing common resources. We propose a method
for scheduling collective communications which avoids
congestions. The proposed scheduling method yields an
aggregate throughput equal to the network’s theoretical
upper limit, i.e. its liquid throughput. Efficient computation
of the liquid schedule is achieved by breaking the overall
traffic request into time frames within which all the
transfers of the traffic are allocated. To ensure a liquid
schedule, the time frames must incorporate as many
transfers as possible and utilize all bottleneck links. In
order to compute the liquid schedule we propose a method
for traversing efficiently and without redundancy all
candidate subsets of simultaneous transfers.

We obtained a considerable speed up in the construction
of liquid schedules by carrying out the following
optimizations, which do not affect the solution space.

1. Full teams are enumerated by partitioning the
solution space using inclusion and exclusion
constraints.
1.1. The blank optimization identifies empty

partitions, which do not need to be further
evaluated.

1.2. The idle optimization identifies partitions
containing no full teams, which do not need to
be further evaluated.

1.3. The skeleton optimization speeds up the
retrieval of full teams, first by considering only
the transfers necessary to keep all bottleneck
links busy and then by adding up non-
congesting transfers.

2. We construct liquid schedules by partitioning the
traffic into teams.
2.1. The construction of the liquid schedule is

accelerated by limiting at each time frame the
choice to teams, which use also the newly
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emerging bottleneck links, i.e. teams of the
reduced traffic.

2.2. Choosing only full teams of the reduced traffic
further speeds up the construction of the liquid
schedule.

Measurements on the traffic carried out on various sub-
topologies of the Swiss T1 cluster computer have shown
that for most of the sub-topologies we are able to increase
the collective communication throughput by a factor
between 1.5 and 2. In congestion sensible coarse-grain
transmission networks, i.e. wireless networks, wormhole or
lightpath switching networks, liquid scheduling may
considerably improve the utilization of transmission
resources such as communication links, wavelengths and
orthogonal frequency spectra. Liquid schedules avoid
congestions and minimize the overall transmission time for
collective communications.

In the future we also intend to develop multipath routing
solutions, which increase the traffic’s fault-tolerance
against link failures and at the same time keep the
throughput liquid.
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Appendix. Comparison of efficiency of liquid
scheduling algorithm with Mixed Integer Linear
Programming

The problem of liquid scheduling can be formulated
with Mixed Integer Linear Programming (MILP), see
[CPLEX02], [Fourer03]. The network is represented as a
directed graph . The objective is to
minimize the number T of timeslots and/or wavelengths
required to carry out a given set of transfer requests. We
may formulate this as follows:

Minimize: T
subject to:

Here  denotes the routing, i.e. it indicates if the
transfer (flit stream flow for wormhole switching or
lightpaths for optical networks) from source s to

destination d traverses the link e.  indicates if the
transfer from source s to destination d is assigned to the
time slot t.
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Since a traffic is partitioned into time frames of a
schedule, i.e. each transfer of a traffic must be assigned to
one and only one time slot, then

The present problem is hard to solve with MILP. For the
362 test bed topologies introduced in section 8, we
compared Mixed Integer Linear Programming (MILP) with
liquid scheduling. The computation speed of MILP was far
below that of our liquid scheduling algorithm (Fig. 15).
Our algorithm is on average about 4000 times faster than
MILP.

Fig. 15. Running times for computing liquid schedules by 
MILP and by our optimized liquid schedule computa-
tion method.
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