
Abstract

The upper limit of a network’s capacity is its liquid
throughput. The liquid throughput corresponds to the flow
of a liquid in an equivalent network of pipes. However, the
aggregate throughput of a collective communication
pattern (traffic) scheduled according to network topology
unaware techniques may be several times lower than the
maximal potential throughput of the network. In most of the
cut-through, wormhole and wavelength division optical
networks, there is a loss of performance due to congestions
between simultaneous transfers sharing a common
communication resource. We propose to schedule the
transfers of a traffic according to a schedule yielding the
liquid throughput. Such a schedule, called liquid schedule,
relies on the knowledge of the underlying network topology
and ensures an optimal utilization of all bottleneck links.
To build a liquid schedule, we partition the traffic into time
frames comprising mutually non-congesting transfers
keeping all bottleneck links busy during all time frames.
The search for mutually non-congesting transfers utilizing
all bottleneck links is of exponential complexity. We present
an efficient algorithm which non-redundantly traverses the
search space and limits the search to only those sets of
transfers, which are non-congesting and use all bottleneck
links. We further propose a liquid schedule construction
technique, which reduces the search space without
affecting the solution space.

1. Introduction

Collective multicast communications are of increasing
importance both in scientific and in commercial
applications. Numerous applications require an efficient
use of network resources for collective communications.
Such applications comprise parallel acquisition and
distribution of multiple video streams [Chan01],
[Sitaram00], switching of simultaneous voice
communication sessions [H323], [EWSD04], [SIP04], and
high energy physics, where particle collision events need to

be transmitted from a large number of detectors and filters
to clusters of processing nodes [CERN01].

The aggregate throughput of a collective
communication pattern (traffic) depends on the underlying
network topology. The amount of data that has to pass
across the most loaded links of the network, called
bottleneck links, gives their utilization time. The total size
of a traffic divided by the utilization time of the bottleneck
links gives an estimation of the liquid throughput, which
corresponds to the flow capacity of a non-compressible
fluid in a network of pipes [Melamed00]. Both in
wormhole switching networks and in Wavelength Division
Multiplexing (WDM) optical networks, due to possible
link or wavelength allocation conflicts, not any
combination of transfer requests may be carried out
simultaneously. The objective is to minimize the number of
timeslots and/or wavelengths required to carry out a given
set of transfer requests. Each transfer shall be allocated to
one (and only one) time frame, such that no pair of
transfers allocated to the same time frame use a common
resource (link, wavelength).

The liquid scheduling problem cannot be solved in
polynomial time. Solving the problem by applying a
heuristic graph colouring algorithm provides in short time
suboptimal solutions, whose throughputs are often 10% to
20% lower than the liquid throughput [Gabrielyan03]. In
the present contribution we propose an exact method for
computing liquid schedules, which is fast enough for real
time scheduling of traffics on small size networks.

2. The liquid scheduling problem

Let us consider a network topology (Fig. 1) consisting
of ten end nodes (henceforth called
processors), two wormhole cut-through switches
and twelve unidirectional links
having identical throughputs. The processors only
transmit data and only receive data. It’s easy to
guess the routing, e.g. a message from t4 to r3 traverse
links and , and a message from t1 to r2 uses
only links and .

We denote transfers symbolically to mark out the
occupied network links. For example the transfer from t4 to

Efficient Liquid Schedule Search Strategies for Collective Communications

Emin Gabrielyan, Roger D. Hersch
École Polytechnique Fédérale de Lausanne

{Emin.Gabrielyan,RD.Hersch}@epfl.ch

t1…t5 r1…r5,
sa sb,

lt1…lt5 lr1…lr5 lab lba, , ,
t1…t5

r1…r5

lt4 lba, lr3
lt1 lr2

r3 is symbolically represented as , the transfer from

t1 to r2 as . We may also represent a set of transfers
carried out simultaneously, e.g. a traffic transferring
messages simultaneously from t4 to r3 and from t1 to r2 by

.

Fig. 1. Example of a network topology.

Let each sending processor have messages to be
transmitted to each receiving processor and let all
messages have identical sizes [Naghshineh93]. Thus, in the
present example, we have 25 transfers to carry out. Each of
the ten links carries 5 transfers and the

two links must each carry 6 transfers. Therefore

the links are the network bottlenecks and have the
longest active time. If the duration of the whole collective
communication is as long as the active time of the
bottleneck links, we say that the collective communication
reaches its liquid throughput. In that case the bottleneck
links are obviously kept busy all the time along the
duration of the communication traffic. Assuming in this
example a single link throughput , the liquid
throughput offered by the network is

. Under identical packet
size and link throughputs (kept all along this paper for the
sake of simplicity) the liquid throughput of a traffic X is the
ratio multiplied by the single link throughput,
where is the total number of transfers and is
the number of transfers carried out by one bottleneck link.

Now let us see if the order in which the transfers are
carried out in this wormhole network has an impact on the
collective communication performance. A straight forward
schedule to carry out these 25 transfers is the round-robin
schedule, according to which at first each transmitting
processor sends the message to the receiving processor
staying in front of it, then to the receiving processor staying
at the next position, etc. Such a round robin schedule

consists of 5 phases. The transfers of the first ,

second and fifth phase of the round-robin
schedule may be carried out simultaneously, but the third
{ , , , , } and fourth { ,

, , , } phases contain congesting
transfers, e.g. link (marked thick) can not be

simultaneously used by the two transfers and .
None of these two phases can be carried out in less than
two time frames and therefore the whole schedule lasts 7
time frames, instead of seemingly 5. Therefore the
performance of our collective communication carried out
according to the round-robin schedule corresponds to the
throughput of messages per time frame or

, which is less than the
liquid throughput.

Nevertheless, a solution exists to schedule the 25
transfers within 6 time frames. The sequence of time

frames { , , , , , }
is an example of the liquid schedule for the 25-transfer
collective communication request.

3. Definitions

The method we propose allows us to efficiently build
liquid schedules for non-trivial network topologies. Thanks
to liquid schedules we may considerably increase the
collective data exchange throughputs, compared with
traditional topology unaware schedules such as round-
robin or random schedules. The present section introduces
the definitions that will be further used for describing the
liquid schedule construction method.

A single “point-to-point” transfer is represented by the
set of communication links forming the network path
between a transmitting and a receiving processor according
to a given routing schema. A transfer is a set of links (i.e.
the path between a sending processor and a receiving
processor). A traffic is a set of transfers (i.e. a collective
data exchange).

Fig. 2. Example of a traffic composed of 25 transfers carried
out over the network shown on Fig. 1.

Fig. 2 shows a traffic for a collective data exchange
carried out on the network of Fig. 1. The bottleneck links
of the network are marked in bold. The exchange shown in

t1

r1

t2 t3 t4 t5

r2 r3 r4 r5

l ba

l ab
lt5lt3 l t4l t2

l t1

lr1

lr2 lr4 l r5l r3

sa sb

lt1…lt5 lr1…lr5,

lab lba,

lab lba,

1Gbps

25 6⁄() 1Gbps× 4.17Gbps=

X() Λ X()⁄
X() Λ X()

lab

25 7⁄ 3.57=
25 7⁄() 1× Gbps 3.57Gbps=

lt1 lr1,{ } lt1 lr2,{ } lt1 lr3,{ } lt1 lab lr4, ,{ } lt1 lab lr5, ,{ }, , , ,

lt2 lr1,{ } lt2 lr2,{ } lt2 lr3,{ } lt2 lab lr4, ,{ } lt2 lab lr5, ,{ }, , , ,

lt3 lr1,{ } lt3 lr2,{ } lt3 lr3,{ } lt3 lab lr4, ,{ } lt3 lab lr5, ,{ }, , , ,

lt4 lba lr1, ,{ } lt4 lba lr2, ,{ } lt4 lba lr3, ,{ } lt4 lr4,{ } lt4 lr5,{ }, , , ,

lt5 lba lr1, ,{ } lt5 lba lr2, ,{ } lt5 lba lr3, ,{ } lt5 lr4,{ } lt5 lr5,{ }, , , ,⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

Fig. 2 is a particular case of a traffic. Any collective
exchange comprising transfers between possibly
overlapping sets of sending and receiving processors is a
traffic.

A link l is utilized by a transfer x if . A link l is
utilized by a traffic X if l is utilized by a transfer of X. Two
transfers are in congestion if they share a common link.
Note that we will be limiting ourselves to data exchanges
consisting of identical packet sizes.

A simultaneity of a traffic X is a subset of X consisting
of mutually non-congesting transfers. A transfer is in
congestion with a simultaneity if the transfer is in
congestion with at least one member of the simultaneity. A
simultaneity of a traffic is full if all transfers in the
complement of the simultaneity in the traffic are in
congestion with that simultaneity. A simultaneity of a
traffic obviously can be carried out within one time frame
(the time to carry out a single transfer). The load of
link l in a traffic X is the number of transfers in X using link
l. The duration of a traffic X is the maximal value of
the load among all links involved in the traffic.

The links having maximal load values, i.e.
, are called bottlenecks. The liquid

throughput of a traffic X is the ratio
multiplied by the single link throughput, where is the
number of transfers in the traffic X.

We define a simultaneity of X as a team of X if it uses all
bottlenecks of X. A team of X is full if it is a full
simultaneity of X. Let and be respectively the
sets of all full simultaneities and all full teams of X.

In order to form liquid schedules, we try to schedule
transfers in such a way that all bottleneck links are always
kept busy. Therefore we search for a liquid schedule by try-
ing to assemble non-overlapping teams carrying out all
transfers of the given traffic, i.e. we partition the traffic into
teams. To cover the whole solution space we need to gener-
ate all possible teams of a given traffic. This is an exponen-
tially complex problem. It is therefore important that the
team traversing technique be non-redundant and efficient,
i.e. each configuration is evaluated once and only once,
without repetitions.

4. Obtaining full simultaneities

To obtain all full teams, we first optimize the retrieval of
all simultaneities and then use that algorithm to retrieve all
full teams.

Recall that in a traffic X, any mutually non-congesting
combination of transfers is a simultaneity. A full
simultaneity is a combination of non-congesting transfers

taken from X, such that its complement in X contains only
transfers congesting with that simultaneity.

We can categorize full simultaneities according to the
presence or absence of a given transfer x. A full
simultaneity is x-positive if it contains transfer x. If it does
not contain transfer x, it is x-negative. Thus the set of full
simultaneities is partitioned into two non-
overlapping subsets: an x-positive and x-negative subset of

. For example, if y is another transfer, the set of x-
positive full simultaneities may be further partitioned into
y-positive and y-negative subsets. Iteration of this concept
allows us to recursively traverse the whole set of all full
simultaneities , one by one, without repetitions.

Let us define a category of full simultaneities of X as an
ordered triplet (excluder, depot, includer), where the
includer is a simultaneity of X (not necessarily full), the
excluder contains some transfers of X non-congesting with
the includer and the depot contains all the remaining
transfers non-congesting with the includer.

A category, defined by the transfers of its includer and
excluder, constrains a subset of full simultaneities. We
therefore say that a full simultaneity is covered by a
category R, if the full simultaneity contains all the transfers
of the category’s includer and does not contain any transfer
of the category’s excluder. Consequently, any full
simultaneity covered by a category is the category’s
includer together with some transfers taken from the
category’s depot. The collection of all full simultaneities of
X covered by a category R is defined as the coverage of R.
We denote the coverage of R as .

Transfers of a category’s includer form a simultaneity
(not full). By adding different variations of transfers from
the depot, we may obtain all possible full simultaneities
covered by the category.

The category is a prim-category since it
covers all full simultaneities of X, i.e.

.
By taking an arbitrary transfer x from the depot of a

category R, we partition the coverage of R into x-positive
and x-negative subsets. The respective x-positive and x-
negative subsets of a coverage of R are coverages of two
categories derived from R: a positive subcategory and a
negative subcategory of R.

The positive subcategory is formed from the
category R by adding transfer x to its includer, and by
removing from its depot and excluder1 all transfers

l x∈

λ l X,()

Λ X()

Λ X() max λ li X,(){ }= li∀

λ l X,() Λ X()=
X() Λ X()⁄
X()

ℜ X() ℑ X()

1. Since transfers congesting with x are naturally excluded
from a full simultaneity covered by , we may safely

remove them from the excluder (and avoid redundancy in
the exclusion constraint)

ℜ X()

ℜ X()

ℜ X()

φ R()

∅ X ∅, ,()

φ ∅ X ∅, ,() ℜ X()=

R+x

R+x

congesting with x. The negative subcategory is formed
from the category R by moving transfer x from its depot to
its excluder. The replacement of a category R by its two sub
categories and is defined as a fission of the
category. Fig. 3 and Fig. 4 show an example of fission of a
category into positive and negative sub categories.

Fig. 3. An initial category before fission, where symbol ,
represents any transfer that is in congestion with x
and symbol represents any transfer which is
simultaneous with x.

Fig. 3 shows an example of a category R and Fig. 4
shows the resulting two sub categories obtained from the
initial category by a fission relatively to a transfer x taken
from the depot.

Fig. 4. Fission of the category of Fig. 3 into its positive and
negative sub categories.

The coverage of R is partitioned by the coverages of its
sub categories and , i.e. the coverage of a
category is the union of coverages of its sub categories:

, and the coverages of the sub
categories have no common transfers,

.
A singular category is a category that covers only one

full simultaneity. That full simultaneity is equal to the
includer of the singular category. The depot and excluder
of a singular category are empty.

We apply the binary fission to the prim-category and
split it into two categories. Then, we apply the fission to

each of these categories. Repeated fission increases the
number of categories and narrows the coverage of each
category. Eventually, the fission will lead to singular
categories only, i.e. categories whose coverage consists of
a single full simultaneity. Since at each stage we have been
partitioning the set of full simultaneities, at the final stage
we know that each full simultaneity is covered by one and
only one singular category.

The algorithm recursively carries out the fission of
categories and yields all full simultaneities without
repetitions.

There is a further optimization to be considered. Take a
category. A full simultaneity must contain no transfer from
that category’s excluder in order to be covered by that
category. In addition, since the full simultaneity is full, it is
in congestion with all transfers that it does not contain.
Obviously any full simultaneity covered by some category
must congest with each member of that category’s
excluder. Therefore, transfers congesting with the transfers
of the excluder must be available in the depot of the
category1. If the excluder contains at least one transfer, for
which the depot has no congesting transfer, then this
category is blank. The includer of a blank category, cannot
be further extended by the transfers of the depot to a
simultaneity which is full (and congests with every
remaining transfer of the excluder). The coverage of a
blank category is therefore empty and there is no need to
pursue its fission.

Let us now instead of retrieving all full simultaneities
retrieve all full teams (i.e. those full simultaneities, which
ensure the utilization of all bottleneck links).

A category within X is idle if its includer and its depot
together don’t use all bottlenecks of X. This mean that we
can not grow the current simultaneity (i.e. the includer of
the category) into a full simultaneity, which will use all
bottlenecks. The coverage of an idle category does
therefore not contain a full simultaneity, which is a team.
Idle categories allow us to prune the search tree.

Carrying out successive fissions, starting from the prim-
category and continuously removing all the blank and idle
categories ultimately leads to all full teams.

5. Speeding up the search for full teams

This section presents an additional method for speeding
up the search for all full teams of an arbitrary traffic
X.

Let us consider from the original traffic X only those
transfers that use bottlenecks of X and call this set of

R x–

R+x R x–

R
Θ1{ } includer

Ξ1 x Ξ2 Θ2, , ,{ } depot

Ξ3 Θ3,{ } excluder
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

Θ - denotes any transfer non-congesting with x
Ξ - denotes any transfer congesting with x

Ξ

Θ

R

R+x

Θ1 x,{ } includer

Θ2{ } depot

Θ3{ } excluder
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

R x–

Θ1{ } includer

Ξ1 Ξ2 Θ2, ,{ } depot

Ξ3 Θ3 x, ,{ } excluder
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

→

R+x R x–

φ R+x() φ R x–()∪ φ R()=

φ R+x() φ R x–()∩ ∅=

1. The category’s excluder, according to the fission algorithm,
keeps no transfer congesting with the includer.

ℑ X()

transfers the skeleton of X. We denote the skeleton of X as
. Obviously, .

Fig. 5 shows the relative size of skeletons compared
with the size of the corresponding traffic, for 362 different
traffic patterns within the T1 32 node cluster computer (see
Fig. 10, in section 7). The skeleton sizes are on average
31.5% of the corresponding traffic sizes.

Fig. 5. Proportion of the number of transfers within a skele-
ton, compared with the number of transfers of the cor-
responding traffic.

When considering the skeleton of a traffic X as another
traffic, the bottlenecks of the skeleton of a traffic are the
same as the bottlenecks of the traffic. Consequently, a team
of a skeleton is also a team of the original traffic.

We may first obtain all full teams of the traffic’s
skeleton by iteratively applying the fission algorithm and
by eliminating the idle categories.

Then, a full team of the original traffic may be obtained
by adding a combination of non-congesting transfers to a
team of the traffic’s skeleton.

We therefore obtain the set of a traffic’s full teams
 by carrying out the following steps:

1. Obtain the set of the skeleton’s full teams
by applying the fission algorithm.

2. Create for each skeleton’s full team a category by:
2.1. Initializing the includer with the transfers of the

skeleton’s full team;
2.3. Initializing the excluder as empty;
2.2. And putting into the depot all transfers of X non-

congesting with the includer.
3. Apply the fission to each category, discarding the

check for idle categories, since the includer is
already a team, i.e. it uses all bottlenecks.

By first applying the fission to the skeleton and then
expanding the skeleton’s full teams to the traffic’s full
teams, we strongly reduce the processing time and at the
same time we obtain all full teams of the original traffic
without repetitions.

We measured the reduction in search space according to
the different search space reduction methods we propose.
We consider 23 different traffic patterns within the T1
cluster computer (see section 7). The search space is given
by the number of categories that are being iteratively
traversed by the fission algorithm. Fig. 6 shows the
obtained search space reductions compared with a naive
algorithm that would build full teams according to a
coverage partitioning strategy, i.e. by constructing
categories thanks to the fission algorithm, but without any
of the proposed optimizations.

Fig. 6. Search space reduction obtained by idle+skele-
ton+blank optimization steps.

The skeleton algorithm together with the idle and blank
optimizations reduces on average the search space to
10.6%, i.e. full teams are computed 9.43 times faster than
without search space reduction techniques. Note that in the
above comparison even the naive algorithm is smart
enough to avoid repeatedly exploring the full
simultaneities.

6. Construction of liquid schedules

Having the capability of building full teams, this section
presents the general method for building liquid schedules
on irregular topologies for any collective communication
pattern. Note that we neglect network latencies, consider a
constant packet size and assume static routing.

ς X() ς X() X⊂

The skeleton content of traffic

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0
(0

0)
64

 (0
8)

10
0

(1
0)

12
1

(1
1)

14
4

(1
2)

16
9

(1
3)

19
6

(1
4)

22
5

(1
5)

22
5

(1
5)

25
6

(1
6)

28
9

(1
7)

32
4

(1
8)

36
1

(1
9)

40
0

(2
0)

44
1

(2
1)

48
4

(2
2)

57
6

(2
4)

62
5

(2
5)

90
0

(3
0)

Number of transfers (and number of nodes) for
362 different traffics

th
e

sk
el

et
on

's
re

la
tiv

e
si

ze
 (%

)

nb of nodes

transfers

ℑ X()
ℑ ς X()()

4.
7 5.
5 7.
4

7.
9

8.
1 8.
3

9.
2

9.
3

9.
6

9.
9

10
.0

10
.1

10
.7

10
.8

10
.9

11
.3

12
.0

12
.2

12
.6

12
.7

13
.4

14
.0

0%
5%

10%
15%
20%
25%
30%
35%

46
6.

6K
 (1

00
)

92
6.

2K
 (1

21
)

4.
2M

 (1
21

)
4.

2M
 (1

21
)

21
2K

 (1
00

)
4.

9M
 (1

21
)

4.
1M

 (1
21

)
9.

2M
 (1

21
)

69
3.

2K
 (1

00
)

14
.1

M
 (1

21
)

15
.2

M
 (1

21
)

75
3.

7K
 (1

00
)

68
2K

 (1
00

)
93

6K
 (1

00
)

1.
2M

 (1
00

)
88

.1
K

 (8
1)

95
K

 (8
1)

11
5.

9K
 (8

1)
1.

8M
 (1

00
)

57
.6

K
 (8

1)
9.

2K
 (6

4)
13

6.
7K

 (8
1)

14
.2

M
 (1

21
)

Number of possible full teams (and number
of transfers) for 23 different traffics

Se
ar

ch
 sp

ac
e

re
du

ce
d

to
 %

idle+skeleton+blank idle+blank blank

transfers

full te
ams

Let us introduce the definition of a schedule. By
defining a partition of X as a disjoint collection of non-
empty subsets of X whose union is X [Halmos74], a
schedule of a traffic X is a collection of simultaneities of
X partitioning the traffic X. An elements of a schedule is
called time frame. The length of a schedule is the
number of time frames in . A schedule of a traffic is
optimal if the traffic does not have any shorter schedule. If
the length of a schedule is equal to the duration1 of the
traffic, then the schedule is liquid, i.e. a schedule of a
traffic X is liquid if .

Fig. 7. The time frames of a liquid schedule of the collective
traffic shown in Fig. 1.

Fig. 7 shows a liquid schedule for the collective traffic
shown in Fig 2.

If a schedule is liquid, then each of its time frames must
use all bottlenecks. Inversely, if all time frames of a
schedule use all bottlenecks, the schedule is liquid.

Fig. 8. This traffic has no team and no liquid schedule.

The necessary and sufficient condition for the liquidity
of a schedule is that all bottlenecks be used by each time
frame of the schedule. Since a simultaneity of X is defined
as a team of X, if it uses all bottlenecks of X, an equivalent
condition for the liquidity of a schedule on X is that each
time frame of be a team of X.

A liquid schedule is optimal, but the inverse is not
always true, meaning that a traffic may not have a liquid
schedule. Fig. 8 shows a simple traffic with three
bottleneck links. Since there is no schedule whose time
frames keep all bottleneck links all the time busy, this
traffic has no team and therefore no liquid schedule.

6.1. Liquid schedule naive search algorithm

We first propose a simple technique for the construction
of a liquid schedule and then introduce an optimization im-
proving the efficiency of liquid schedule construction.

Our strategy for finding a liquid schedule relies on parti-
tioning the traffic into a set of teams forming the sequence
of time frames. Associate to the traffic X all its possible
teams which could be selected as the sched-

ule’s first time frame. is the variety of
possible subtraffics remaining after the choice of the first
time frame. Each of the possible subtraffics remaining
after the selection of the first time frame has its own set of
possibilities for the second time frame

. The choice of the second
team for the second time frame yields a further reduced sub-
traffic (see Fig. 9).

Dead ends are possible if there are no choice for the next
time frame, i.e. no team of the original traffic may be
formed from the transfers of the reduced traffic. A dead end
situation may occur, for example, when the remaining sub-
traffic appears to be like the one shown in Fig. 8. Once a
dead end is faced, backtracking occurs.

The construction recursively advances and backtracks
until a valid liquid schedule is formed. A valid liquid sched-
ule is obtained, when the transfers remaining in the reduced
traffic form one single team for the last time frame of the
liquid schedule.

We use the search tree shown in Fig. 9 and assume that
at any stage the choice for the next time frame is

among the set of the original trafic’s teams , i.e.

. In the next sub sec-

tions we reduce the search space by considering newly
emerging bottlenecks at successive time frames.

1. The duration of a traffic X is the load of its bottlenecks.

α
α

α() α
α

α
α() Λ X()=

time frame (1) time frame (2) time frame (3)
lt1 lab lr4, ,{ }

lt2 lr2,{ }

lt3 lr3,{ }

lt4 lba lr1, ,{ }

lt5 lr5,{ }⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫ lt1 lab lr5, ,{ }

lt2 lr1,{ }

lt4 lba lr2, ,{ }

lt5 lr4,{ }⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

lt1 lr3,{ }

lt2 lab lr4, ,{ }

lt3 lr1,{ }

lt4 lr5,{ }

lt5 lba lr2, ,{ }⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

time frame (4) time frame (5) time frame (6)
lt1 lr2,{ }

lt2 lr3,{ }

lt3 lab lr4, ,{ }

lt5 lba lr1, ,{ }⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫ lt1 lr1,{ }

lt2 lab lr5, ,{ }

lt3 lr2,{ }

lt4 lba lr3, ,{ }⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫ lt3 lab lr5, ,{ }

lt4 lr4,{ }

lt5 lba lr3, ,{ }⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

lt1

lt2

lt3

lr2

lr3

lr1
lb

lc

Traffic:

lt1 la lb lr1, , ,{ }

lt2 lb lc lr2, , ,{ }

lt3 lc la lr3, , ,{ }⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

la

bottleneck links:
la lb lc, ,

t1 r2

t2

r3t3

r1

α
α

A1 A2 … An, , ,

X A1– X A2– …, ,

Xi

ℵ Xi() Ai 1, Ai 2, Ai 3, …, , ,{ }=

ℵ Xsub()

ℑ X()

ℵ Xsub() A ℑ
˜

X()∈ A Xsub⊂
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

Fig. 9. Liquid schedule search tree. denotes a re-

duced subtraffic at the layer of the three and
 denotes a candidate for the time frame

. The operator applied to a subtraffic
 represents the set of all possible candidates

for a time frame at the present stage.

6.2. Search space reduction by considering newly
emerging bottlenecks

We observe in Fig. 7 that when we step from one time
frame to the next, additional new bottleneck links emerge,
e.g. from time frame 3 on, links and appear as new
bottlenecks.

In the construction strategy presented in the previous
subsection we considered as a possible time frame any team
of the original traffic X that can be built from the transfers
of the reduced subtraffic. We have shown [Gabrielyan03]

that for the liquidity of a schedule, it is necessary for each
time frame to be not only a team of the original traffic but
also a team of the reduced subtraffic. If is a liquid sched-
ule on X and A is a time frame of , then is a liq-
uid schedule on .

Thus a liquid schedule may not contain a time frame
which is a team of the original traffic but is not a team of a
subtraffic obtained by removing some of the other time
frames. Therefore we can limit at each iteration our choice
to the collection of only those teams of the original traffic
which are also teams of the current reduced subtraffic.
Since the reduced subtraffic contains additional bottleneck
links, there are less teams in the reduced subtraffic than
teams remaining from the original traffic.

By considering in each time frame all occurring
bottlenecks, we considerably reduce the search space
without affecting the solution space, i.e.

.

6.3. Liquid schedule construction optimization by
considering only full teams

We can build a liquid schedule by limiting the choice of
teams of the reduced subtraffic to its full teams.

Let us modify a liquid schedule so as to convert one of
its teams into a full team. We assume that a traffic X has a
liquid schedule . Let A be a time frame of . If A is not a
full team of X, then, by moving the necessary transfers
from other time frames of , we can convert the team A to
a full team. Evidently, the properties of liquidity
(partitioning, simultaneousness and length) of will not
be affected.

Therefore if a liquid schedule is built by a choice of a
non full team of at any stage of construction, then
the liquid schedule could have also been built by a choice
of a full team A of , such that . Therefore the
choice of the teams in the construction may be narrowed
from the set of all teams to the set of full teams only, i.e.

.
The expression bellow summarizes the search space

reduction by building liquid schedule using full teams of
the reduced traffic.

7. Experimental verification

As basic network topology for our testbed, we use the
Swiss-T1 cluster (called T1, see Fig. 10). The network of

X ℵ X() A1 A2 A3 …, , ,{ }=

X1 X A1–= ℵ X1() A1 1, A1 2, A1 3, …, , ,{ }=

X1 1, X1 A1 1,–=

ℵ X1 1,() A1 1 1, , A1 1 2, , …, ,{ }=

…() …() …⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

X1 2, X1 A1 2,–=

ℵ X1 2,() A1 2 1, , A1 2 2, , …, ,{ }=

…() …⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

X1 3, X1 A1 3,–=

ℵ X1 3,() A1 3 1, , A1 3 2, , …, ,{ }=

…{ }⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

…

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

X2 X A2–= ℵ X2() A2 1, A2 2, A2 3, …, , ,{ }=

X2 1, X2 A2 1,–=

ℵ X2 1,() A2 1 1, , A2 1 2, , …, ,{ }=

…() …⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

X2 2, X2 A2 2,–=

ℵ X2 2,() A2 2 1, , A2 2 2, , …, ,{ }=

…{ }⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

…

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

X3 X A3–=

ℵ X3() A3 1, A3 2, A3 3, …, , ,{ }= …{ }⎝ ⎠
⎜ ⎟
⎛ ⎞

…

 ⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭

Xi1i2…in

n 1+
Ai1 i2… in in 1+

n 1+ ℵ
Xsub

lt3 lr3

α
α α A{ }–

X A–

ℵ Xsub() ℑ Xsub()=

α α

α

α

Ã Xsub

Xsub Ã A⊂

ℵ Xsub() ℑ Xsub()=

A ℑ
˜

X()∈ A Xsub⊂{ } ℑ
˜

Xsub() ℑ Xsub()⊃ ⊃

the T1 forms a K-ring [Kuonen99] and has a static routing
scheme. The throughputs of all links are identical and equal
to 86MB/s [Horst95]. The cluster consists of 32 nodes,
each one comprising 2 processors, i.e. 64 processors,
[SWISSTX99], [Gruber00].

Fig. 10. Architecture of the T1 cluster computer
interconnected by a high performance wormhole
switch fabric.

The sample traffic patterns are selected from different
configurations of half-to-half collective data exchanges
between a set of sending and a set of receiving processors,
where each sending processor carries out a transmission to
each receiving processor. We identified for T1 architecture
362 different collective communication patterns
[Gabrielyan03].

The 362 different traffic patterns were scheduled both
by our liquid scheduling algorithms and according to
topology-unaware round-robin schedule. Overall
throughput results for each method are measured and
presented in Fig. 11 for comparison. The values of the
theoretical liquid throughput are also given.

Fig. 11. Theoretical liquid throughputs and measured
throughputs for traffics scheduled according to
round-robin and liquid schedules.

Each black dot represents the median of 7 overall
throughput measurements carried out according to liquid
schedules. Processor to processor transfers have a size of
5MB. The measured aggregate throughputs (black dots) are
very close to the theoretically expected values of the liquid
throughput (light gray area). For many topologies, liquid
scheduling allows to increase the aggregate throughput by
a factor of two compared with topology-unaware round-
robin scheduling (dark gray dots).

Thanks to the presented search space reduction
algorithms, the computation time of a liquid schedule takes
for more than 97% of the considered topologies less than

 of a second on one Compaq Alpha 500MHz
computer.

8. Conclusions

In high performance networks based on cut-through
wormhole switch fabrics or on wavelength division
multiplexing optical networks, significant performance
drops may be observed due to congestions between
transfers sharing common resources. We propose a method
for scheduling collective communications which avoids
congestions. The proposed scheduling method yields an
aggregate throughput equal to the network’s theoretical
upper limit, i.e. its liquid throughput. Efficient computation
of the liquid schedule is achieved by breaking the overall
traffic request into time frames within which all the
transfers of the traffic are allocated. To ensure a liquid
schedule, the time frames must incorporate as many
transfers as possible and utilize all bottleneck links. In
order to compute the liquid schedule we propose a method
for traversing efficiently and without redundancy all
candidate subsets of simultaneous transfers.

We obtained a considerable speed up in the construction
of liquid schedules by carrying out the following
optimizations.

Full teams are enumerated by partitioning the solution
space using inclusion and exclusion constraints. The blank
optimization identifies empty partitions, which do not need
to be further evaluated. The idle optimization identifies
partitions containing no full teams, which do not need to be
further evaluated. The skeleton optimization speeds up the
retrieval of full teams, first by considering only the
transfers necessary to keep all bottleneck links busy and
then by adding up non-congesting transfers.

We construct liquid schedules by partitioning the traffic
into teams. The construction of the liquid schedule is
accelerated by limiting at each time frame the choice to
teams, which use also the newly emerging bottleneck links,
i.e. teams of the reduced traffic. Choosing only full teams

1
2 3

4

5
67

8

nodes

cross-b
ar sw

itch
nodes

Round-robin and liquid schedules

0
200

400
600

800

1000
1200

1400
1600
1800

0
 (0

0)
64

 (
08

)
10

0
 (1

0)
12

1
 (1

1)
14

4
 (1

2)
16

9
 (1

3)
19

6
 (1

4)
22

5
 (1

5)
22

5
 (1

5)
25

6
 (1

6)
28

9
 (1

7)
32

4
 (1

8)
36

1
 (1

9)
40

0
 (2

0)
44

1
 (2

1)
48

4
 (2

2)
57

6
 (2

4)
62

5
 (2

5)
90

0
 (3

0)

O
ve

ra
ll

tth
ro

ug
hp

ut
 (M

B
/s

)

theoretical liquid throughput
measured round-robin throughput
measured liquid throughput

nb of nodes

transfers

1 10⁄

of the reduced traffic further speeds up the construction of
the liquid schedule.

Measurements on the traffic carried out on various sub-
topologies of the Swiss T1 cluster computer have shown
that for most of the sub-topologies we are able to increase
the collective communication throughput by a factor
between 1.5 and 2. In congestion sensible coarse-grain
transmission networks, i.e. wireless networks, wormhole or
lightpath switching networks, liquid scheduling may
considerably improve the utilization of transmission
resources such as communication links, wavelengths and
orthogonal frequency spectra. Liquid schedules avoid
congestions and minimize the overall transmission time for
collective communications.

In the future, we intend to develop multipath routing
solutions, which increase the traffic’s fault-tolerance
against link failures and at the same time keep the
throughput liquid.

References

[CERN01] Large Hadron Collider, Computer Grid project,
CERN, Sept. 2001, http://press.web.cern.ch/Press/
Releases01/PR10.01EGoaheadGrid.

[Chan01] S.-H.G. Chan, “Operation and cost optimization of a
distributed server architecture for on-demand video ser-
vices”, IEEE Communications Letters, Vol. 5, No. 9, Sept.
2001, 384-386.

[EWSD04] Siemens Carrier Networks, EWSD Digital Switching
System, April 2004, http://www.icn.siemens.com/carrier/
products/switching/ewsdsw.html.

[Gabrielyan03] Emin Gabrielyan, Roger D. Hersch, Network
Topology Aware Scheduling of Collective Communica-
tions, ICT03 - 10th International Conference on Telecom-
munications, February 23 - March 1, 2003, pp. 1051-1058,
ISBN: 0-7803-7661-7, http://diwww.epfl.ch/w3lsp/publica-
tions/gigaserver/

[Gruber00] Ralf Gruber, “Commodity computing results from the
Swiss-Tx project Swiss-Tx Team”, Grid Computing Meet-
ing, 2000

[H323] H.323 Standards, http://www.openh323.org/stan-
dards.html

[Halmos74] Paul R. Halmos, Naive Set Theory, Springer-Verlag
New York Inc, ISBN 0-387-90092-6, 1974, 26-29.

[Horst95] R. Horst, “TNet: A Reliable System Area Network”,
IEEE Micro, vol. 15, no. 1, February 1995, pp. 37-45.

[Kuonen99] P. Kuonen, “The K-Ring: a versatile model for the
design of MIMD computer topology”, Proc. of the High-
Performance Computing Conference (HPC'99), San Diego,
USA, 381-385, April 1999

[Melamed00] Benjamin Melamed, Khosrow Sohraby, Yorai
Wardi, “Measurement-Based Hybrid Fluid-Flow Models for
Fast Multi-Scale Simulation”, DARPA/NMS BAA 00-18

AGREEMENT No. F30602-00-2-0556, Sept. 2000, http://
204.194.72.101/pub/nms2000sep/UMissouri-KC.pdf

[Naghshineh93] M. Naghshineh, R. Guerin, “Fixed versus vari-
able packet sizes in fast packet-switched networks”,
Proc.Twelfth Annual Joint Conference of the IEEE Com-
puter and Communications Societies INFOCOM '93., Net-
working: Foundation for the Future, IEEE Press, Vol. 1,
1993, 217-226.

[Quadrics] www.quadrics.com
[SWISSTX99] Pierre Kuonen, Ralf Gruber, “Parallel computer

architectures for commodity computing and the Swiss-T1
machine”, EPFL Supercomputing Review, Nov 1999, pp. 3-
11, http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-
page3.html

[SIP04] SIP Forum, http://www.sipforum.org/
[Sitaram00] Dinkar Sitaram, Asit Dan, Multimedia Servers, Mor-

gan Kaufmann Publishers, San Francisco California, 2000,
69-73, ISBN 1-55860-430-8

