
Abstract - The upper limit of a network’s capacity is its liquid
throughput. The liquid throughput corresponds to the flow of a
liquid in an equivalent network of pipes. However, the aggregate
throughput of a collective communication pattern (traffic)
scheduled according to network topology unaware techniques may
be several times lower than the maximal potential throughput of
the network. In most of the cut-through, wormhole and
wavelength division optical networks, there is a loss of
performance due to congestions between simultaneous transfers
sharing a common communication resource. We propose to
schedule the transfers of a traffic according to a schedule yielding
the liquid throughput. Such a schedule, called liquid schedule,
relies on the knowledge of the underlying network topology and
ensures an optimal utilization of all bottleneck links. To build a
liquid schedule, we partition the traffic into time frames
comprising mutually non-congesting transfers keeping all
bottleneck links busy during all time frames. The search for
mutually non-congesting transfers utilizing all bottleneck links is
of exponential complexity. We present an efficient algorithm which
non-redundantly traverses the search space and limits the search
to only those sets of transfers, which are non-congesting and use all
bottleneck links.

1. INTRODUCTION

Collective multicast communications are of increasing
importance both in scientific and in commercial applications.
Numerous applications require an efficient use of network
resources for collective communications. Such applications
comprise parallel acquisition and distribution of multiple video
streams [2], [14], switching of simultaneous voice
communication sessions [6], [3], [13], and high energy physics,
where particle collision events need to be transmitted from a
large number of detectors and filters to clusters of processing
nodes [1].

The aggregate throughput of a collective communication
pattern (traffic) depends on the underlying network topology.
The amount of data that has to pass across the most loaded links
of the network, called bottleneck links, gives their utilization
time. The total size of a traffic divided by the utilization time of
the bottleneck links gives an estimation of the liquid
throughput, which corresponds to the flow capacity of a non-
compressible fluid in a network of pipes [10]. Both in
wormhole switching networks and in Wavelength Division
Multiplexing (WDM) optical networks, due to possible link or
wavelength allocation conflicts, not any combination of transfer
requests may be carried out simultaneously. The objective is to

minimize the number of timeslots and/or wavelengths required
to carry out a given set of transfer requests. Each transfer shall
be allocated to one (and only one) time frame, such that no pair
of transfers allocated to the same time frame use a common
resource (link, wavelength).

The liquid scheduling problem cannot be solved in
polynomial time. Solving the problem by applying a heuristic
graph colouring algorithm provides in short time suboptimal
solutions, whose throughputs are often 10% to 20% lower than
the liquid throughput [4]. In the present contribution we
propose an exact method for computing liquid schedules, which
is fast enough for real time scheduling of traffics on small size
networks.

2. THE LIQUID SCHEDULING PROBLEM

Let us consider a network topology (Fig. 1) consisting of ten
end nodes (henceforth called processors), two
wormhole cut-through switches and twelve
unidirectional links having identical
throughputs. The processors only transmit data and

 only receive data. It’s easy to guess the routing, e.g. a
message from t4 to r3 traverse links and , and a
message from t1 to r2 uses only links and .

Fig. 1. Example of a network topology.

We denote transfers symbolically to mark out the occupied
network links. For example the transfer from t4 to r3 is
symbolically represented as , the transfer from t1 to r2 as

. We may also represent a set of transfers carried out
simultaneously, e.g. a traffic transferring messages
simultaneously from t4 to r3 and from t1 to r2 by .

Let each sending processor have messages to be transmitted
to each receiving processor and let all messages have identical
sizes [11]. Thus, in the present example, we have 25 transfers to
carry out. Each of the ten links carries 5
transfers and the two links must each carry 6 transfers.
Therefore the links are the network bottlenecks and

EFFICIENT LIQUID SCHEDULE SEARCH STRATEGIES
FOR COLLECTIVE COMMUNICATIONS

Emin Gabrielyan, Roger D. Hersch
{emin.gabrielyan,rd.hersch}@epfl.ch

Swiss Federal Institute of Technology Lausanne

t1…t5 r1…r5,
sa sb,

lt1…lt5 lr1…lr5 lab lba, , ,
t1…t5

r1…r5
lt4 lba, lr3

lt1 lr2

r2

r1

r3 r4 r5

t1

t2 t3 t4 t5

lba

lab
lr3lr2

lr1

lt1

lt2 lt3 lt4 lt5

lr5lr4

sa sb

lt1…lt5 lr1…lr5,
lab lba,

lab lba,

have the longest active time. If the duration of the whole
collective communication is as long as the active time of the
bottleneck links, we say that the collective communication
reaches its liquid throughput. In that case the bottleneck links
are obviously kept busy all the time along the duration of the
communication traffic. Assuming in this example a single link
throughput , the liquid throughput offered by the
network is . Under identical
packet size and link throughputs (kept all along this paper for
the sake of simplicity) the liquid throughput of a traffic X is the
ratio multiplied by the single link throughput,
where is the total number of transfers and is the
number of transfers carried out by one bottleneck link.

Now let us see if the order in which the transfers are carried
out in this wormhole network has an impact on the collective
communication performance. A straight forward schedule to
carry out these 25 transfers is the round-robin schedule,
according to which at first each transmitting processor sends the
message to the receiving processor staying in front of it, then to
the receiving processor staying at the next position, etc. Such a
round robin schedule consists of 5 phases. The transfers of the

first , second and fifth phase of the
round-robin schedule may be carried out simultaneously, but
the third { , , , , } and fourth

{ , , , , } phases contain congesting
transfers, e.g. link (marked thick) can not be

simultaneously used by the two transfers and .
None of these two phases can be carried out in less than two
time frames and therefore the whole schedule lasts 7 time
frames, instead of seemingly 5. Therefore the performance of
our collective communication carried out according to the
round-robin schedule corresponds to the throughput of

 messages per time frame or
, which is less than the liquid

throughput.
Nevertheless, a solution exists to schedule the 25 transfers

within 6 time frames. The sequence of time frames { ,

, , , , } is an example of the
liquid schedule for the 25-transfer collective communication
request.

3. DEFINITIONS

The method we propose allows us to efficiently build liquid
schedules for non-trivial network topologies. Thanks to liquid
schedules we may considerably increase the collective data
exchange throughputs, compared with traditional topology
unaware schedules such as round-robin or random schedules.
The present section introduces the definitions that will be
further used for describing the liquid schedule construction
method.

A single “point-to-point” transfer is represented by the set of
communication links forming the network path between a
transmitting and a receiving processor according to a given
routing schema. A transfer is a set of links (i.e. the path
between a sending processor and a receiving processor). A
traffic is a set of transfers (i.e. a collective data exchange).

Fig. 2 shows a traffic for a collective data exchange carried
out on the network of Fig. 1. The bottleneck links of the
network are marked in bold. The exchange shown in Fig. 2 is a
particular case of a traffic. Any collective exchange comprising
transfers between possibly overlapping sets of sending and
receiving processors is a traffic.

Fig. 2. Example of a traffic composed of 25 transfers carried out over the
network shown on Fig. 1.

A link l is utilized by a transfer x if . A link l is utilized
by a traffic X if l is utilized by a transfer of X. Two transfers are
in congestion if they share a common link. Note that we will be
limiting ourselves to data exchanges consisting of identical
packet sizes.

A simultaneity of a traffic X is a subset of X consisting of
mutually non-congesting transfers. A transfer is in congestion
with a simultaneity if the transfer is in congestion with at least
one member of the simultaneity. A simultaneity of a traffic is
full if all transfers in the complement of the simultaneity in the
traffic are in congestion with that simultaneity. A simultaneity
of a traffic obviously can be carried out within one time frame
(the time to carry out a single transfer). The load of link
l in a traffic X is the number of transfers in X using link l. The
duration of a traffic X is the maximal value of the load
among all links involved in the traffic.

The links having maximal load values, i.e. ,
are called bottlenecks. The liquid throughput of a traffic X is the
ratio multiplied by the single link throughput,
where is the number of transfers in the traffic X.

We define a simultaneity of X as a team of X if it uses all
bottlenecks of X. A team of X is full if it is a full simultaneity of
X. Let and be respectively the sets of all full
simultaneities and all full teams of X.

In order to form liquid schedules, we try to schedule transfers
in such a way that all bottleneck links are always kept busy.
Therefore we search for a liquid schedule by trying to assemble
non-overlapping teams carrying out all transfers of the given
traffic, i.e. we partition the traffic into teams. To cover the whole
solution space we need to generate all possible teams of a given
traffic. This is an exponentially complex problem. It is therefore
important that the team traversing technique be non-redundant
and efficient, i.e. each configuration is evaluated once and only
once, without repetitions.

1Gbps
25 6⁄() 1Gbps× 4.17Gbps=

X() Λ X()⁄
X() Λ X()

lab

25 7⁄ 3.57=
25 7⁄() 1× Gbps 3.57Gbps=

lt1 lr1,{ } lt1 lr2,{ } lt1 lr3,{ } lt1 lab lr4, ,{ } lt1 lab lr5, ,{ }, , , ,

lt2 lr1,{ } lt2 lr2,{ } lt2 lr3,{ } lt2 lab lr4, ,{ } lt2 lab lr5, ,{ }, , , ,

lt3 lr1,{ } lt3 lr2,{ } lt3 lr3,{ } lt3 lab lr4, ,{ } lt3 lab lr5, ,{ }, , , ,

lt4 lba lr1, ,{ } lt4 lba lr2, ,{ } lt4 lba lr3, ,{ } lt4 lr4,{ } lt4 lr5,{ }, , , ,

lt5 lba lr1, ,{ } lt5 lba lr2, ,{ } lt5 lba lr3, ,{ } lt5 lr4,{ } lt5 lr5,{ }, , , ,⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

l x∈

λ l X,()

Λ X()

λ l X,() Λ X()=

X() Λ X()⁄
X()

ℜ X() ℑ X()

4. OBTAINING FULL SIMULTANEITIES

To obtain all full teams, we first optimize the retrieval of all
simultaneities and then use that algorithm to retrieve all full
teams.

Recall that in a traffic X, any mutually non-congesting
combination of transfers is a simultaneity. A full simultaneity is
a combination of non-congesting transfers taken from X, such
that its complement in X contains only transfers congesting with
that simultaneity.

We can categorize full simultaneities according to the
presence or absence of a given transfer x. A full simultaneity is
x-positive if it contains transfer x. If it does not contain transfer
x, it is x-negative. Thus the set of full simultaneities is
partitioned into two non-overlapping subsets: an x-positive and
x-negative subset of . For example, if y is another
transfer, the set of x-positive full simultaneities may be further
partitioned into y-positive and y-negative subsets. Iteration of
this concept allows us to recursively traverse the whole set of
all full simultaneities , one by one, without repetitions.

Let us define a category of full simultaneities of X as an
ordered triplet (excluder, depot, includer), where the includer is
a simultaneity of X (not necessarily full), the excluder contains
some transfers of X non-congesting with the includer and the
depot contains all the remaining transfers non-congesting with
the includer.

A category, defined by the transfers of its includer and
excluder, constrains a subset of full simultaneities. We therefore
say that a full simultaneity is covered by a category R, if the full
simultaneity contains all the transfers of the category’s includer
and does not contain any transfer of the category’s excluder.
Consequently, any full simultaneity covered by a category is the
category’s includer together with some transfers taken from the
category’s depot. The collection of all full simultaneities of
X covered by a category R is defined as the coverage of R. We
denote the coverage of R as .

Transfers of a category’s includer form a simultaneity (not
full). By adding different variations of transfers from the depot,
we may obtain all possible full simultaneities covered by the
category.

The category is a prim-category since it covers all
full simultaneities of X, i.e. .

By taking an arbitrary transfer x from the depot of a category
R, we partition the coverage of R into x-positive and x-negative
subsets. The respective x-positive and x-negative subsets of a
coverage of R are coverages of two categories derived from R: a
positive subcategory and a negative subcategory of R.

The positive subcategory is formed from the category R
by adding transfer x to its includer, and by removing from its
depot and excluder1 all transfers congesting with x. The

negative subcategory is formed from the category R by
moving transfer x from its depot to its excluder. The
replacement of a category R by its two sub categories and

 is defined as a fission of the category. Fig. 3 and Fig. 4
show an example of fission of a category into positive and
negative sub categories.

Fig. 3. An initial category before fission, where symbol , represents
any transfer that is in congestion with x and symbol represents
any transfer which is simultaneous with x.

Fig. 3 shows an example of a category R and Fig. 4 shows the
resulting two sub categories obtained from the initial category
by a fission relatively to a transfer x taken from the depot.

Fig. 4. Fission of the category of Fig. 3 into its positive and negative sub
categories.

The coverage of R is partitioned by the coverages of its sub
categories and , i.e. the coverage of a category is the
union of coverages of its sub categories:

, and the coverages of the sub
categories have no common transfers, .

A singular category is a category that covers only one full
simultaneity. That full simultaneity is equal to the includer of
the singular category. The depot and excluder of a singular
category are empty.

We apply the binary fission to the prim-category and split it
into two categories. Then, we apply the fission to each of these
categories. Repeated fission increases the number of categories
and narrows the coverage of each category. Eventually, the
fission will lead to singular categories only, i.e. categories
whose coverage consists of a single full simultaneity. Since at
each stage we have been partitioning the set of full
simultaneities, at the final stage we know that each full
simultaneity is covered by one and only one singular category.

The algorithm recursively carries out the fission of categories
and yields all full simultaneities without repetitions.

There is a further optimization to be considered. Take a
category. A full simultaneity must contain no transfer from that

1. Since transfers congesting with x are naturally excluded from a
full simultaneity covered by , we may safely remove them

from the excluder (and avoid redundancy in the exclusion con-
straint)

ℜ X()

ℜ X()

ℜ X()

φ R()

∅ X ∅, ,()
φ ∅ X ∅, ,() ℜ X()=

R+x

R+x

R x–

R+x
R x–

R
Θ1{ } includer

Ξ1 x Ξ2 Θ2, , ,{ } depot

Ξ3 Θ3,{ } excluder
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

Ξ
Θ

R

R+x

Θ1 x,{ } includer

Θ2{ } depot

Θ3{ } excluder
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

R x–

Θ1{ } includer

Ξ1 Ξ2 Θ2, ,{ } depot

Ξ3 Θ3 x, ,{ } excluder
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

=

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

→

R+x R x–

φ R+x() φ R x–()∪ φ R()=
φ R+x() φ R x–()∩ ∅=

category’s excluder in order to be covered by that category.
In addition, since the full simultaneity is full, it is in
congestion with all transfers that it does not contain.
Obviously any full simultaneity covered by some category
must congest with each member of that category’s
excluder. Therefore, transfers congesting with the transfers
of the excluder must be available in the depot of the
category1. If the excluder contains at least one transfer, for
which the depot has no congesting transfer, then this
category is blank. The includer of a blank category, cannot
be further extended by the transfers of the depot to a
simultaneity which is full (and congests with every
remaining transfer of the excluder). The coverage of a
blank category is therefore empty and there is no need to
pursue its fission.

Let us now instead of retrieving all full simultaneities
retrieve all full teams (i.e. those full simultaneities, which
ensure the utilization of all bottleneck links).

A category within X is idle if its includer and its depot
together don’t use all bottlenecks of X. This mean that we
can not grow the current simultaneity (i.e. the includer of
the category) into a full simultaneity, which will use all
bottlenecks. The coverage of an idle category does
therefore not contain a full simultaneity, which is a team.
Idle categories allow us to prune the search tree.

Carrying out successive fissions, starting from the prim-
category and continuously removing all the blank and idle
categories ultimately leads to all full teams.

5. SPEEDING UP THE SEARCH FOR FULL TEAMS

This section presents an additional method for speeding
up the search for all full teams of an arbitrary traffic
X.

Let us consider from the original traffic X only those
transfers that use bottlenecks of X and call this set of
transfers the skeleton of X. We denote the skeleton of X as

. Obviously, .
When considering the skeleton of a traffic X as another

traffic, the bottlenecks of the skeleton of a traffic are the
same as the bottlenecks of the traffic. Consequently, a team
of a skeleton is also a team of the original traffic.

We may first obtain all full teams of the traffic’s skeleton
by iteratively applying the fission algorithm and by
eliminating the idle categories.

Then, a full team of the original traffic may be obtained
by adding a combination of non-congesting transfers to a
team of the traffic’s skeleton.

We therefore obtain the set of a traffic’s full teams
by carrying out the following steps:

1. Obtain the set of the skeleton’s full teams by
applying the fission algorithm.

2. Create for each skeleton’s full team a category by:
2.1. Initializing the includer with the transfers of the skel-

eton’s full team;
2.3. Initializing the excluder as empty;
2.2. And putting into the depot all transfers of X non-con-

gesting with the includer.
3. Apply the fission to each category, discarding the check

for idle categories, since the includer is already a team,
i.e. it uses all bottlenecks.

By first applying the fission to the skeleton and then
expanding the skeleton’s full teams to the traffic’s full
teams, we strongly reduce the processing time and at the
same time we obtain all full teams of the original traffic
without repetitions.

We measured the reduction in search space according to
the different search space reduction methods we propose.
We consider 23 different traffic patterns within the T1
cluster computer (see section 7). The search space is given
by the number of categories that are being iteratively
traversed by the fission algorithm. Fig. 5 shows the
obtained search space reductions compared with a naive
algorithm that would build full teams according to a
coverage partitioning strategy, i.e. by constructing
categories thanks to the fission algorithm, but without any
of the proposed optimizations.

Fig. 5. Search space reduction obtained by idle+skele-
ton+blank optimization steps.

The skeleton algorithm together with the idle and blank
optimizations reduces on average the search space to
10.6%, i.e. full teams are computed 9.43 times faster than
without search space reduction techniques. Note that in the

1. The category’s excluder, according to the fission algorithm,
keeps no transfer congesting with the includer.

ℑ X()

ς X() ς X() X⊂

ℑ X()

ℑ ς X()()

4.
7 5.
5 7.
4

7.
9

8.
1

8.
3

9.
2

9.
3

9.
6

9.
9

10
.0

10
.1

10
.7

10
.8

10
.9

11
.3

12
.0

12
.2

12
.6

12
.7

13
.4

14
.0

0%
5%

10%
15%
20%
25%
30%
35%

46
6.

6K
 (1

00
)

92
6.

2K
 (1

21
)

4.
2M

 (1
21

)
4.

2M
 (1

21
)

21
2K

 (1
00

)
4.

9M
 (1

21
)

4.
1M

 (1
21

)
9.

2M
 (1

21
)

69
3.

2K
 (1

00
)

14
.1

M
 (1

21
)

15
.2

M
 (1

21
)

75
3.

7K
 (1

00
)

68
2K

 (1
00

)
93

6K
 (1

00
)

1.
2M

 (1
00

)
88

.1
K

 (8
1)

95
K

 (8
1)

11
5.

9K
 (8

1)
1.

8M
 (1

00
)

57
.6

K
 (8

1)
9.

2K
 (6

4)
13

6.
7K

 (8
1)

14
.2

M
 (1

21
)

Number of possible full teams (and number
of transfers) for 23 different traffics

Se
ar

ch
 sp

ac
e

re
du

ce
d

to
 %

idle+skeleton+blank idle+blank blank

transfers

full te
ams

above comparison even the naive algorithm is smart enough to
avoid repeatedly exploring the full simultaneities.

6. CONSTRUCTION OF LIQUID SCHEDULES

Having the capability of building full teams, this section
presents the general method for building liquid schedules on
irregular topologies for any collective communication pattern.
Note that we neglect network latencies, consider a constant
packet size and assume static routing.

Let us introduce the definition of a schedule. By defining a
partition of X as a disjoint collection of non-empty subsets of X
whose union is X [7], a schedule of a traffic X is a collection
of simultaneities of X partitioning the traffic X. An elements of
a schedule is called time frame. The length of a
schedule is the number of time frames in . A schedule of a
traffic is optimal if the traffic does not have any shorter
schedule. If the length of a schedule is equal to the duration1 of
the traffic, then the schedule is liquid, i.e. a schedule of a
traffic X is liquid if .

Fig. 6 shows a liquid schedule for the collective traffic shown
in Fig 2.

Fig. 6. The time frames of a liquid schedule of the collective traffic
shown in Fig. 1.

If a schedule is liquid, then each of its time frames must use
all bottlenecks. Inversely, if all time frames of a schedule use all
bottlenecks, the schedule is liquid.

The necessary and sufficient condition for the liquidity of a
schedule is that all bottlenecks be used by each time frame of
the schedule. Since a simultaneity of X is defined as a team of
X, if it uses all bottlenecks of X, an equivalent condition for the
liquidity of a schedule on X is that each time frame of be a
team of X.

A liquid schedule is optimal, but the inverse is not always
true, meaning that a traffic may not have a liquid schedule.

6.1. Liquid schedule naive search algorithm

We first propose a simple technique for the construction of a
liquid schedule and then introduce an optimization improving
the efficiency of liquid schedule construction.

Our strategy for finding a liquid schedule relies on partition-
ing the traffic into a set of teams forming the sequence of time
frames. Associate to the traffic X all its possible teams

 which could be selected as the schedule’s first
time frame. is the variety of possible subtraf-
fics remaining after the choice of the first time frame. Each of the
possible subtraffics remaining after the selection of the first
time frame has its own set of possibilities for the second time
frame . The choice of the sec-
ond team for the second time frame yields a further reduced sub-
traffic (see Fig. 7).

Fig. 7. Liquid schedule search tree. denotes a reduced subtraffic

at the layer of the three and denotes a candi-

date for the time frame . The operator applied to a sub-

traffic represents the set of all possible candidates for a time

frame at the present stage.

Dead ends are possible if there are no choice for the next time
frame, i.e. no team of the original traffic may be formed from the1. The duration of a traffic X is the load of its bottlenecks.

α

α # α()
α α

α
α() Λ X()=

time frame (1) time frame (2) time frame (3)
lt1 lab lr4, ,{ }

lt2 lr2,{ }

lt3 lr3,{ }

lt4 lba lr1, ,{ }

lt5 lr5,{ }⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫ lt1 lab lr5, ,{ }

lt2 lr1,{ }

lt4 lba lr2, ,{ }

lt5 lr4,{ }⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

lt1 lr3,{ }

lt2 lab lr4, ,{ }

lt3 lr1,{ }

lt4 lr5,{ }

lt5 lba lr2, ,{ }⎩ ⎭
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎧ ⎫

time frame (4) time frame (5) time frame (6)
lt1 lr2,{ }

lt2 lr3,{ }

lt3 lab lr4, ,{ }

lt5 lba lr1, ,{ }⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫ lt1 lr1,{ }

lt2 lab lr5, ,{ }

lt3 lr2,{ }

lt4 lba lr3, ,{ }⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫ lt3 lab lr5, ,{ }

lt4 lr4,{ }

lt5 lba lr3, ,{ }⎩ ⎭
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

α α

A1 A2 … An, , ,
X A1– X A2– …, ,

Xi

ℵ Xi() Ai 1, Ai 2, Ai 3, …, , ,{ }=

X ℵ X() A1 A2 A3 …, , ,{ }=

X1 X A1–= ℵ X1() A1 1, A1 2, A1 3, …, , ,{ }=

X1 1, X1 A1 1,–=

ℵ X1 1,() A1 1 1, , A1 1 2, , …, ,{ }=

…() …() …⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

X1 2, X1 A1 2,–=

ℵ X1 2,() A1 2 1, , A1 2 2, , …, ,{ }=

…() …⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

X1 3, X1 A1 3,–=

ℵ X1 3,() A1 3 1, , A1 3 2, , …, ,{ }=

…{ }⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

…

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

X2 X A2–= ℵ X2() A2 1, A2 2, A2 3, …, , ,{ }=

X2 1, X2 A2 1,–=

ℵ X2 1,() A2 1 1, , A2 1 2, , …, ,{ }=

…() …⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

X2 2, X2 A2 2,–=

ℵ X2 2,() A2 2 1, , A2 2 2, , …, ,{ }=

…{ }⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

…

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

X3 X A3–=

ℵ X3() A3 1, A3 2, A3 3, …, , ,{ }= …{ }⎝ ⎠
⎜ ⎟
⎛ ⎞

…

 ⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭

Xi1i2… in

n 1+ Ai1i2…inin 1+

n 1+ ℵ

Xsub

transfers of the reduced traffic. A dead end situation may occur,
for example, when the remaining subtraffic appears to have no
teams. Once a dead end is faced, backtracking occurs.

The construction recursively advances and backtracks until a
valid liquid schedule is formed. A valid liquid schedule is ob-
tained, when the transfers remaining in the reduced traffic form
one single team for the last time frame of the liquid schedule.

We use the search tree shown in Fig. 7 and assume that at any
stage the choice for the next time frame is among the

set of the original trafic’s teams , i.e.

. In the next sub sections

we reduce the search space by considering newly emerging bot-
tlenecks at successive time frames.

6.2. Search space reduction by considering newly emerging
bottlenecks and by considering only full teams

We observe in Fig. 6 that when we step from one time frame
to the next, additional new bottleneck links emerge, e.g. from
time frame 3 on, links and appear as new bottlenecks.

In the construction strategy presented in the previous subsec-
tion we considered as a possible time frame any team of the orig-
inal traffic X that can be built from the transfers of the reduced
subtraffic. We have shown [4] that for the liquidity of a schedule,
it is necessary for each time frame to be not only a team of the
original traffic but also a team of the reduced subtraffic. If is
a liquid schedule on X and A is a time frame of , then
is a liquid schedule on .

Thus a liquid schedule may not contain a time frame which is
a team of the original traffic but is not a team of a subtraffic
obtained by removing some of the other time frames. Therefore
we can limit at each iteration our choice to the collection of
only those teams of the original traffic which are also teams of
the current reduced subtraffic. Since the reduced subtraffic
contains additional bottleneck links, there are less teams in the
reduced subtraffic than teams remaining from the original
traffic.

By considering in each time frame all occurring bottlenecks,
we considerably reduce the search space without affecting the
solution space, i.e. .

A further optimization consists in building a liquid schedule
by limiting the choice of teams of the reduced subtraffic to its
full teams, see [4].

7. EXPERIMENTAL VERIFICATION

As basic network topology for our testbed, we use the Swiss-
T1 cluster (called T1, see Fig. 8). The network of the T1 forms a
K-ring [9] and has a static routing scheme. The throughputs of
all links are identical and equal to 86MB/s [8]. The cluster
consists of 32 nodes, each one comprising 2 processors, i.e. 64
processors, [12], [5].

The sample traffic patterns are selected from different
configurations of half-to-half collective data exchanges
between a set of sending and a set of receiving processors,
where each sending processor carries out a transmission to each
receiving processor. We identified for T1 architecture 362
different collective communication patterns [4].

Fig. 8. Architecture of the T1 cluster computer interconnected by a high
performance wormhole switch fabric.

The 362 different traffic patterns were scheduled both by our
liquid scheduling algorithms and according to topology-
unaware round-robin schedule. Overall throughput results for
each method are measured and presented in Fig. 9 for
comparison. The values of the theoretical liquid throughput are
also given.

Fig. 9. Theoretical liquid throughputs and measured throughputs for
traffics scheduled according to round-robin and liquid schedules.

Each black dot represents the median of 7 overall throughput
measurements carried out according to liquid schedules.
Processor to processor transfers have a size of 5MB. The
measured aggregate throughputs (black dots) are very close to
the theoretically expected values of the liquid throughput (light
gray area). For many topologies, liquid scheduling allows to
increase the aggregate throughput by a factor of two compared
with topology-unaware round-robin scheduling (dark gray
dots).

ℵ Xsub()

ℑ X()

ℵ Xsub() A ℑ
˜

X()∈ A Xsub⊂
⎩ ⎭
⎨ ⎬
⎧ ⎫

=

lt3 lr3

α
α α A{ }–

X A–

ℵ Xsub() ℑ Xsub()=

1
2 3

4

5
67

8

nodes

cross-b
ar sw

itch
nodes

Round-robin and liquid schedules

0
200
400
600
800

1000
1200
1400
1600
1800

0
 (0

0)
64

 (
08

)
10

0
 (1

0)
12

1
 (1

1)
14

4
 (1

2)
16

9
 (1

3)
19

6
 (1

4)
22

5
 (1

5)
22

5
 (1

5)
25

6
 (1

6)
28

9
 (1

7)
32

4
 (1

8)
36

1
 (1

9)
40

0
 (2

0)
44

1
 (2

1)
48

4
 (2

2)
57

6
 (2

4)
62

5
 (2

5)
90

0
 (3

0)

O
ve

ra
ll

tth
ro

ug
hp

ut
 (M

B
/s

)

theoretical liquid throughput
measured round-robin throughput
measured liquid throughput

nb of nodes

transfers

Thanks to the presented search space reduction algorithms,
the computation time of a liquid schedule takes for more than
97% of the considered topologies less than of a second
on one Compaq Alpha 500MHz computer.

8. CONCLUSIONS

In high performance networks based on cut-through
wormhole switch fabrics or on wavelength division
multiplexing optical networks, significant performance drops
may be observed due to congestions between transfers sharing
common resources. We propose a method for scheduling
collective communications which avoids congestions. The
proposed scheduling method yields an aggregate throughput
equal to the network’s theoretical upper limit, i.e. its liquid
throughput. Efficient computation of the liquid schedule is
achieved by breaking the overall traffic request into time frames
within which all the transfers of the traffic are allocated. To
ensure a liquid schedule, the time frames must incorporate as
many transfers as possible and utilize all bottleneck links. In
order to compute the liquid schedule we propose a method for
traversing efficiently and without redundancy all candidate
subsets of simultaneous transfers.

We obtained a considerable speed up in the construction of
liquid schedules by carrying out the following optimizations.

Full teams are enumerated by partitioning the solution space
using inclusion and exclusion constraints. The blank
optimization identifies empty partitions, which do not need to
be further evaluated. The idle optimization identifies partitions
containing no full teams, which do not need to be further
evaluated. The skeleton optimization speeds up the retrieval of
full teams, first by considering only the transfers necessary to
keep all bottleneck links busy and then by adding up non-
congesting transfers.

We construct liquid schedules by partitioning the traffic into
teams. The construction of the liquid schedule is accelerated by
limiting at each time frame the choice to teams, which use also
the newly emerging bottleneck links, i.e. teams of the reduced
traffic. Choosing only full teams of the reduced traffic further
speeds up the construction of the liquid schedule.

Measurements on the traffic carried out on various sub-
topologies of the Swiss T1 cluster computer have shown that for
most of the sub-topologies we are able to increase the collective
communication throughput by a factor between 1.5 and 2. In
congestion sensible coarse-grain transmission networks, i.e.
wireless networks, wormhole or lightpath switching networks,
liquid scheduling may considerably improve the utilization of

transmission resources such as communication links,
wavelengths and orthogonal frequency spectra. Liquid
schedules avoid congestions and minimize the overall
transmission time for collective communications.

In the future, we intend to develop multipath routing
solutions, which increase the traffic’s fault-tolerance against
link failures and at the same time keep the throughput liquid.

9. REFERENCES

[1] Large Hadron Collider, Computer Grid project, CERN, 2004,
http://lcg.web.cern.ch/LCG/

[2] S.-H.G. Chan, “Operation and cost optimization of a distributed
server architecture for on-demand video services”, IEEE Com-
munications Letters, Vol. 5, No. 9, Sept. 2001, 384-386

[3] Siemens Carrier Networks, EWSD Digital Switching System,
April 2004, http://www.icn.siemens.com/carrier/products/switch-
ing/ewsdsw.html

[4] Emin Gabrielyan, Roger D. Hersch, Network Topology Aware
Scheduling of Collective Communications, ICT03 - 10th Interna-
tional Conference on Telecommunications - 2003, 1051-1058,
http://ieeexplore.ieee.org/

[5] Ralf Gruber, “Commodity computing results from the Swiss-Tx
project Swiss-Tx Team”, Grid Computing Meeting, 2000

[6] H.323 Standards, http://www.openh323.org/standards.html
[7] Paul R. Halmos, Naive Set Theory, Springer-Verlag New York

Inc, ISBN 0-387-90092-6, 1974, 26-29
[8] R. Horst, “TNet: A Reliable System Area Network”, IEEE

Micro, vol. 15, no. 1, February 1995, pp. 37-45.
[9] P. Kuonen, “The K-Ring: a versatile model for the design of

MIMD computer topology”, Proc. of the High-Performance
Computing Conference (HPC'99), San Diego, USA, 381-385,
April 1999

[10] Benjamin Melamed, Khosrow Sohraby, Yorai Wardi, “Measure-
ment-Based Hybrid Fluid-Flow Models for Fast Multi-Scale
Simulation”, DARPA/NMS BAA 00-18 AGREEMENT No.
F30602-00-2-0556, Sept. 2000, http://204.194.72.101/pub/
nms2000sep/UMissouri-KC.pdf

[11] M. Naghshineh, R. Guerin, “Fixed versus variable packet sizes in
fast packet-switched networks”, Proc.Twelfth Annual Joint Con-
ference of the IEEE Computer and Communications Societies
INFOCOM '93., Networking: Foundation for the Future, IEEE
Press, Vol. 1, 1993, 217-226.

[12] Pierre Kuonen, Ralf Gruber, “Parallel computer architectures for
commodity computing and the Swiss-T1 machine”, EPFL Super-
computing Review, Nov 1999, pp. 3-11, http://sawww.epfl.ch/
SIC/SA/publications/SCR99/scr11-page3.html

[13] SIP Forum, http://www.sipforum.org/
[14] Dinkar Sitaram, Asit Dan, Multimedia Servers, Morgan Kauf-

mann Publishers, San Francisco California, 2000, 69-73, ISBN 1-
55860-430-8

1 10⁄

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

