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Example: 25 transmissions to be carried out
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= 25/7-1Gbps = 3.57Gbps



Liquid schedule
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Transfers and Load of Links

The 25 transfer traffic

A1, X) =5, . A(l X) = 6

Transfers: {1, 15}, ... {l, 115, 19}, -



Duration of Traffic

T T2 T3] |T4 [T5

A1, X) =5, .. A(lyp X) = 5
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| 12

*I7 lg lg 10

R1 \Rz \SF@\ F!4 F!5| A(X) = 6

{11, 16}, {11, 17}, {11, 1g}, {11, 112, 1o}, {11, 112, 110},

{12, 16}, {12, 17}, {12, I}, {12, 112, 1o}, {12, 112, 110}

X= {13, 1}, {13, 17}, {13, Ig}, {13, 12, I}, {13, 112, 110}
{14111, 16}, {14 110, 17}, {14, 112, g}, {14, 19}, {14, 110},
{Is. 111, le}, {5, [11, 17}, {I5, 111, g}, {15, la}, {I5, 110}



Liquid Throughput

{3, 1e}, {11, 17}, {11, g}y {14, 1o, o}, {14, 112, 110}
{15, 16}, {12, 17}, {12, 1g}, {12, 112, Ig}, {12, 112, 110},

X = {13, 16}, {13, 17}, {13, Ig}, {13, 112, Ig}, {13, 112, I10},
{14, 111, 6}, {1as 111, 17}, {1as 11, Tghs {140 Lo}, {1as 110}

{I5, 111, l6}s {15, 111, 17}, {15, 111, I}, {15, o}, {15, |10}

the throughput of asingle link

total number of traisﬁy

_ #X)

T 25
liquid — A(X).

4:1% c’'sduration (the load of its bottlenecks)



Schedules yielding the liguid throughput

{11, 1}, {11, 17}, {11, g}, {11, 12, 1o}, {14, 112, 110}

{12, 6}, {12, 17}, {l2, I}, {12, 12, o}, {12, |12, 110},

X= {13, 16}, {I3, 17}, {13, g}, {13, 112, lo}, {13, 112, 110}
{14, 111, 1}, {14 110, 17} {14 111, lgds {14: 1o}, {14 110}
{ls, l11, 16}, {15, 111, 17}, {I5, 111, lg}, {15, 1o}, {15, 110}

« Without aright schedule we may have intervals when
the access to the bottleneck links is blocked by other
transmissions.

» Our goal isto schedule the transfers such that all bot-
tlenecks are always kept occupied ensuring that the
liquid throughput is obtained.

A scheduleyielding the liquid throughput we call asa
liquid schedule and our objectiveisto find aliquid
schedule whenever it exists.
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363 Communication Patterns
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Aggregate throughput (MB/s)

363 Topology Test-bed
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Topology (contributing nodes)



Round-robin throughput

theoreticd liquid © measured round-robin

(s/lan
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Transfers / Contributing nodes



Team: aset of mutually non-congesting
transfers using all bottlenecks

{1316}, {12, 12}, {1, 1gh, {11, T2 1} {11, 110, 140 SChEdU'E oL iS IIqUId =
{1, 16}, {12, 17}, {12, Ig}h, {12, [12. 19}, {12, 112, 110},

X = {31}, {13, 17}, {la 1}, {13, 112, g} {13, 12, 110}
{la 111,16} {14 111,17} {14 112, 18}, {14, 1} {14, L1}

{Ig, I11,1&}, {1 41, 15}, {1g, 114, 1}, {15, 1o}, {15, 10}
5111 '6 5111, '7 5 111, 18 5: 19 5 110 Ioadof thebottlenecks

number of timeframes

{11, 112, 1o}, {11, Ig},
{IZ’ |7}1 {Ili |121 I]_O}; {IZ’ |12’ I9}s
{13 1g}, {12, 16}, {13, lg}, _
ot | Y tetwinf ] et S Ha) = AX) e
_ {ls.l10} o {ls 1} J 4 K{lslu.174d
o =
{1, 17}, {11, lg},

{15, Ig}, {12, 112, l10}. {3, 112, 110},
{|3’ |121 |9} {|3’ |7}, {|4, |9}, @ V(A S a)
A Isateam of X

{5 I, el 5 N\ {14 12: g} {I5, 111, lg}



3J(X), al teams of the traffic X

e - transfer x

- transfers congesting with x
o - transfers non-congesting with x
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 To cover the full solution space when
constructing a liquid schedule an effi-
cient technique obtaining the whole set
of possible teams of atraffic isrequired.

 We designed an efficient algorithm enu-
merating all teams of atraffic traversing
each team once and only once.

 This algorithm obtains each team by
subsequent partitioning of the set of all

teams. _ |
» We introduced tri-

depot \ plets consisting of
® O subsets of the traf-
fic, representing one-

g

@ by-one partitions of
/ the set of all teams.

\ .
excluder includer



| X> 0 () = (A Ay Az Al

N X1 = X=A; > (X)) ={A] 1A 50}
\I_Xl,l = X1-A11
M X2 = X1-Ag

N
N X5 0

Liquid schedule search tree

Xo=As 4
Xo=As 5

al teams of X
;

P(Y) = {Ae I(X)|AcY]}
L possible steps to the next layer

K-LIXZ — X_Az_) p(XZ) — {AZ, 1, AZ, 2...}



Additiona bottlenecks

D\‘D g
2 bottlenecks 2 bottlenecks 4 bottlenecks 4 pottlenecks 6 bottlenecks 8 bottlenecks
AX)=6  AXDD  AXyD=4 AKX )=8 A(Xy)=2 A(Xp )=l

N J
Xl,l = Xl - A1’1Y(16 tranSferS)
J

X1=X- ADf(zo transfers)
\_ _J
MZS transfers)




Prediction of dead-ends and search optimization

* When ateam of transfersis carried out - for the remaining traffic we
have the same bottleneck links as before - with possibly new addition-
ally emerged bottleneck links.

» Considering new bottleneck links (at every step of construction) inthe
choice of the further teams substantially reduces the search space.

e Team is a collection of simultaneous transmissions using all bottle-
necks of the network. Teams are full if they congest with all other
transmissions of the traffic.

e Limiting our choice with only full teams reduces the search space
without affecting the solution space.



Liquid schedules construction

teams of the original traffic’s teams formed
@uced traffic ‘S(Y) — {A < ‘S(X)|A — Y} from the reduced traffiD

fuII

(Y) < 3(Y)
MS of the reduced traffic

Choice = p(Y) = {Ae I(X)[AcY! > o(Y)=3(Y)

: * ~ additionally decreas-
Choice = SO(Y) = J(Y) {ingthesearchspace}

without affecting the
solution space

Choice = &(Y) = 3 (v)

For more than 90% of the test-bed topol ogies construction of aglobal
liquid schedule is completed in afraction of a second (lessthan 0.19).




All-to-all throughput (MB/s)

Results
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liquid throughput e carried out according to the liquid schedules



Congestion Graph
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The 25 vertices of the graph
represent the 25 transfers +
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Loss of performance induced by schedules com-
puted with a graph colouring heuristic algorithm
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» For 74% of the topologies Dsatur algorithm does not induce aloss of performance.
 For 18% of topologies, the performance loss is bellow 10%.
 For 8% of topologies, the loss of performance is between 10% and 20%.



Conclusion

» Data exchanges relying on the liquid schedules may be carried out severd
times faster compared with topol ogy-unaware schedul es.

» Thanks to introduced theoretical model we considerably reduce the liquid
schedul e search space without affecting the solution space.

» Our method may be applied to applications requiring efficiency in concurrent
continuous transmissions, such as video and voice traffic management, high
energy physics data acquisition.

e Liquid scheduling is applicable in wormhole, cut-through and WDM optical
networks.

Thank Y ou!
Contact: Emin.Gabrielyan@epfl.ch



