
EFFICIENT LIQUID SCHEDULE SEARCH STRATEGIES
FOR COLLECTIVE COMMUNICATIONS

Emin Gabrielyan, Roger D. Hersch
(emin.gabrielyan,rd.hersch] @epfl.ch

Ecole Polytechnique FCderale de Lausanne (EPFL), Switzerland

Abstract - The upper limit of a network's capacity is its liquid be allocated to one (and only one) time frame, such that no pair
throughput. The liquid throughput corresponds to the flow of a of transfers allocated to the same time frame use a common
liquid in an equivalent network of pipes. However, the aggregate resource (link, wavelength).
throughput of a collective communication pattern (traRic) The liquid scheduling problem he solved in

graph colouring algorithm provides in short time suboptimal be several times lower than the maximal potential throughput of
the eetwork. In most of the cut-through, wormhole and solutions, whose throughputs are often 10% to 20% lower than wavelength division optical networks, there is a loss of
performance due to congestions between simultaneous transfers the liquid L4]' In the present contribution we
sharing a communication resource. we propose to propose an exact method for computing liquid schedules, which
schedule the transfers of a traffic according to a schedule yielding is fast enouSh for real time scheduling of traffics on small size
the liquid throughput. Such a schedule, called liquid schedule, networks.
relies on the knowledge of the underlying nehvork topology and

scheduled according to network topology unaware techniques may polynomial time. solving the problem by a heuristic

ensures an optimal utilization of all bottleneck links. To build a 2. THE LIQUID SCHEDULING PROBLEM
liquid schedule, we partition the traffic into time frames
comprising mutually nonsongesting transfers keeping all
bottleneck links busy during all time frames. The for
mutually non-congesting transfers utilizing all bottleneck links is cut-through switches sb and
of exponential complexity. We present an efficient algorithm which
non-redundantlv traverses the search mace and limits the search

Let us consider a network topology (Fig. 1) consisting of ten
end nodes 11 . . . f 5 , rl ... r5 (henceforth called processors), two

unidirectional links 1,1 .../,5, I,, ...1,.5, la,, having identical
throughputs. The processurs 11 ... 15 onlv transmit data and _ .

to only those sets of transfers, which are non-congesting and use all
bottleneck links.

r l . . . r5 only receive data. It's easy to guess the routing, e.g. a
message from 14 to u3 traverse links lr4, lbo and I,, , and a
message from 11 to r2 uses only links I l l and l rZ . 1. INTRODUCTION

Collective multicast communications are of increasing
importance both in scientific and in commercial applications.
Numerous applications require an efficient use of network
resources for collective communications. Such applications
comprise parallel acquisition and distribution of multiple video
streams 121, [14], switching of simultaneous voice
communication sessions [6], [3], [13], and high energy physics,
where particle collision events need to be transmitted from a
large number of detectors and filters to clusters of processing
nodes [I].

The aggregate throughput of a collective communication
pattern (traffic) depends on the underlying network topology.
The amount of data that has to pass across the most loaded links
of the network, called bottleneck links, gives their utilization
time. The total size of a trafiic divided by the utilization time of
the bottleneck links gives an estimation of the liquid
throughput, which corresponds to the flow capacity of a non-
compressible fluid in a network of pipes [IO]. Both in
wormhole switching networks and in Wavelength Division
Multiplexing (WDM) optical networks, due to possible link or
wavelength allocation conflicts, not any combination of transfer
requests may be carried out simultaneously. The objective is to
minimize the number of timeslots andor wavelengths required
to carry out a given set of transfer requests. Each transfer shall

Fig. 1. Examplc of a nchvork topology,

We denote transfers symbolically to mark out the occupied
network links. For example the transfer from 14 to r3 is
symbolically represcnted as :f#, the transfer from t l to r2 as
+a. We may also represent a set of transfers carried out
simultaneously, e.g. a traffic transferring messages
simultaneously from 14 to r3 and from / I to r2 by Ydij.

Let each sending processor have messages to be transmittcd
to each receiving processor and let all messages have identical
sizes [111. Thus, in the present example, we have 25 transfers to
cany out. Each of the ten links / r , ... I,, carries 5
transfers and the two links /",, I , , must each cany 6 transfers.
Therefore the links lab, Iba are the network bottlenecks and
have the longest active time. If the duration of the whole
collective communication is as long as the active time of the

, L , L

0-7803-8783-X/04/$20.00 0 2004 IEEE 760

bottleneck links, we say that the collective communication Fig. 2 shows a traffic for a collective data exchange carried
reaches its liquid throughput. In that case the bottleneck links out on the network of Fig. 1. The bottleneck links of the
are obviously kept busy all the time along the duration of the network are marked in bold. The exchange shown in Fig. 2 is a
communication traffic. Assuming in this example a single link particular case of a traffic. Any collective exchange comprising
throughput 1 Gbps , the liquid throughput offered by the transfers between possibly overlapping sets of sending and

%

network is (25/6)x IGbps = 4.17Gbps . Under identical
packet size and link throughputs (kept all along this paper for
the sake of simplicity) the liquid throughput of a traffic X is the
ratio #(X)/A(X) multiplied by the single link throughput,
where #(X) is the total number of transfers and A(X) is the
number of transfers carried out by one bottleneck link.

Now let us see if the order in which the transfers,are carried
out in this wormhole network has an impact on the collective
communication performance. A straight forward schedule to
carry out these 25 transfers is the round-robin schedule,
according to which at first each transmitting processor sends the
message to the receiving processor staying in front of it, then to
the receiving processor staying at the next position, etc. Such a
round robin schedule consists of 5 hases.

The transfers of the first $&, second ## and fifth
phases of the round-robin schedule may be camed out

wq, YH} contains t ransfers congest ing with the
forth phase {w, ?w, 4G4, ##, *&}, e.g. link
I , , (marked thick) can not be simultaneously used by the two
transfers and :#W. None of these two phases can be
carried ont in less than two time frames and therefore the whole
schedule lasts 7 time frames, instead of seemingly 5 . Therefore
the performance of our collective communication carried out
according to the round-robin schedule corresponds to the
throughput of 25/7 = 3.57 messages per time frame or
(2 5 / 7) x IGbps = 3 .57Gbps , which is less than the liquid
throughput.

Nevertheless, a solution exists to schedule the 25 transfers
within 6 time frames. The se uence of time frames {#(, w, H, #$ >&, *H} is an example of the
liquid schedule for the 25-transfer collective communication
request.

simu v taneously, but the third phase {$@#, 3#$, $H,

3. DEFINITIONS

The method we propose allows us to efficiently build liquid
schedules for non-trivial network topologies. Thanks to liquid
schedules we may considerably increase the collective data
exchange throughputs, compared with traditional topology
unaware schedules such as round-robin or random schedules.
The present section introduces the definitions that will he
further used for describing the liquid schedule construction
method.

A single “point-to-point” transfer is represented by the set of
communication links forming the network path between a
transmitting and a receiving processor according to a given
routing schema. A transfer is a set of links (i.e. the path
between a sending processor and a receiving processor). A
traffic is a set oftransfers (i.e. a collective data exchange).

’ {‘t l i ‘r l) , {‘tl,‘r2}> {‘tL?‘r312 { ’ t 1 2 f a b ? ‘ r 4 } , {’11.fob.‘r5)

{ I t29‘ ,1)2 { / t22/ ,2)2 {‘,2,’?3)3 { ‘ t 2 ? f a b , / r 4 1 2 { ‘ r 2 , f a 6 x ’ r 5)

{ ’ , 3 , ’ ~ 1 } , { ‘ , ~ , ‘ ~ 2) , { ~ , 3 , ‘ , 3 } , (‘ , 3 , f ~ b , ‘ , 4) , { ’ , 3 , f ~ b , ‘ ~ 5 }

{‘t4xfba9‘rl12 { ‘ t4 , fba, ’ ,21, i ‘ , 4 , f b a , / r 3 } 2 {‘,42’r4)2 { / , 4 2 / ~ 5)

. { / , s 3 f b @ ‘ , l) 9 { ‘ ,s3fb@l,21% (/ , s , f b @ ‘ , 3) 2 { ‘ , S ? ‘ r 4) > { ‘ , s , 1 , 5 j

76 I

Recall that in a traffic X , any mutually non-congesting
combination of transfers is a simultaneity. A full simultaneity is
a combination of non-congesting transfers taken from X , such
that its complement inXcontains only transfers congesting with
that simultaneity.

We can categorize full simultaneities according to the
presence or absence of a given transfer x. A full simultaneity is
x-positive if it contains transfer x. If it does not contain transfer
x, it is x-negative. Thus the set of full simultaneities %(a is
partitioned into two non-overlapping subsets: an x-positive and
x-negative subset of %(A‘). For example, if y is another
transfer, the set of x-positive full simultaneities may be further
partitioned into y-positive and y-negative subsets. Iteration of
this concept allows us to recursively traverse the whole set of
all full simultaneities %(a, one by one, without repetitions.

Let us define a category of full simultaneities of X as an
ordered triplet (excluder, depot, includer), where the includer is
a simultaneity of X (not necessarily full), the excluder contains
some transfers of X non-congesting with the includer and the
depot contains all the remaining transfers non-congesting with
the includer.

A category, defined by the transfers of its includer and
excluder, constrains a subset of full simultaneities. We therefore
say that a full simultaneity is covered by a category R, if the full
simultaneity contains all the transfers of the category’s includer
and does not contain any transfer of the category’s excluder.
Consequently, any full simultaneity covered by a categoly is the
categoly’s includer together with some transfers taken from the
category’s depot. The collection of all full simultaneities of
Xcovered by a category R is defined as the coverage of R. We
denote the coverage ofR as b(R) .

Transfers of a category’s includer form a simultaneity (not
full). By adding different variations of transfers from the depot,
we may obtain all possible full simultaneities covered by the
category.

The category (0, X, 0) is aprim-category since it covers all
full simultaneities ofX, i.e. $(0, X , 0) = B(a.

By taking an arbitrary transfer x from the depot of a category
R , we partition the coverage of R into x-positive and x-negative
subsets. The respective x-positive and x-negative subsets of a
coverage of R are coverages of two categories derived from R: a
positive subcategoly and a negative subcategory of R.

The positive subcategory R,, is formed from the category R
by adding transfer x to its includer, and by removing from its
depot and excluder’ all transfers congesting with x. The
negative subcategory R-, is formed from the category R by
moving transfer x from its depot to its excluder. The
replacement of a category R by its two sub categories R,, and
R, is defined as afission of the category. Fig. 3 and Fig. 4
show an example of fission of a category into positive and
negative sub categories.

I. Sincc transfers congcsting with x arc naturally excludcd from a
full simultaneity covcrcd by R,, , wc may safcly rcmovc thcm
from #he sncluder (and avoid redundancy in thc cxciuion con-
straint)

includer depot excluder
Fig. 3. An initial category beforc fission, where symbol E, rcprcscnts any

transfcr that is in congestion with x and symbol @ represents any
transfer which is simultaneous with x.

Fig. 3 shows an example of a category R and Fig. 4 shows the
resulting two sub categories obtained from the initial category
by a fission relatively to a transferx taken from the depot.

{el I {hl, 5*, 02) {E,, e3,x)
includer depot excluder

Fig. 4. Fission of the categxy of Fig. 3 into its positive and negative sub
catcgorics.

The coverage of R is partitioned by the coverages of its sub
categories R,, and R,, i.e. the coverage of a category is the
union of coverages of its sub categories:
Q(R+,) U $(R,) = $(R), and the coverages of the sub
categories have no common transfers, ~+B(R+.~) ‘I +(R,) = 0.

A singular category is a category that covers only one full
simultaneity. That full simultaneity is equal to the includer of
the singular category. The depot and excluder of a singular
category are empty.

We apply the binary fission to the prim-category and split it
into two categories. Then, we apply the fission to each of these
categories. Repeated fission increases the number of categories
and narrows the coverage of each category. Eventually, the
fission will lead to singular categories only, i.e. categories
whose coverage consists of a single full simultaneity. Since at
each stage we have been partitioning the set of full
simultaneities, at the final stage we know that each full
simultaneity is covered by one and only one singular category.

The algorithm recursively carries out the fission of categories
and yields all full simultaneities without repetitions.

There is a further optimization to be considered. Take a
category. A full simultaneity must contain no transfer from that
category’s excluder in order to be covered by that category. In
addition, since the full simultaneity is full, it is in congestion
with all transfers that it does not contain. Obviously any full
simultaneity covered by some category must congest with each
member of that category’s excluder. Therefore, transfers
congesting with the transfers of the excluder must hc available
in the depot of the categoly2. If the excluder contains at least
one transfer, for which the depot bas no congesting transfer,
then this category is blank. The induder of a blank category,
cannot he further extended by the transfers of the depot to a
simultaneity which is full (and congests with every remaining

2. Thc eategoly’s excluder, according to the fission aigoithm, kceps
no transfcr congcsting with the includcr.

0-7803-8783-x/04/$20.00 0 2004 IEEE 762

transfer of the excluder). The coverage of a blank category is
therefore empty and there is no need to pursue its fission.

Let us now instead of retrieving all full simultaneities retrieve
all full teams (i.e. those full simultaneities, which ensure the
utilization of all bottleneck links).

A categoly within X is idle if its includer and its depot
together don't use all bottlenecks of X. This mean that we can
not grow the current simultaneity (i.e. the includer of the
category) into a full simultaneity, which will use all bottlenecks.
The coverage of an idle category does therefore not contain a
full simultaneity, which is a team. Idle categories allow us to
prune the search tree.

Carrying out successive fissions, stating from the prim-
category and continuously removing all the blank and idle
categories ultimately leads to all full teams.

5. SPEEDING UP THE SEARCH FOR FULL TEAMS

This section presents an additional method for speeding up
the search for all full teams 3 (X) of an arbitrary traffic X.

Let us consider from the original traffic Xonly those transfers
that use bottlenecks of X and call this set of transfers the
skeleton ofX. We denote the skeleton ofXas <(A'). Obviously,

Fig. 5 shows the relative size of skeletons compared with the
size of the corresponding traffic, for 362 different traffic
patterns within the TI 32 node cluster computer (see Fig. 10, in
section 7). The skeleton sizes are on average 31.5% of the
corresponding traffic sizes.

5(X) C X .

Ihe skeleton content oftraffic

Fig. 5. Proportion of the number of transfers within a skcleton, compared with
the number of transfers of the corresponding traffic.

When considering the skeleton of a traffic X as another
traffic, the bottlenecks of the skeleton of a traffic are the same
as the bottlenecks of the traffic. Consequently, a team of a
skeleton is also a team of the original traffic.

We may first obtain all full teams of the traffic's skeleton by
iteratively applying the fission algorithm and by eliminating the
idle categories. Then, a full team of the original traffic may he
obtained by adding a combination of non-congesting transfers
to a team ofthe traffic's skeleton.

We therefore obtain the set of a traffic's full teams 3(X) by
carrying out the following steps:

1. Obtain the set ofthe skeleton's full teams 3(s(X)) by applying

2. Create for each skeleton's full team a category by:
the fission algorithm.

2.1. Initializing the induder with the transfers of the skeleton's

2.3. Initializing the excluder as empty:
2.2. And putting into the depot all transfers ofX non-congesting

full team;

with the includer.
3. Apply the fission to each category, discarding the check for idle

categories, since the includer is already a team, i.e. it uses all
bottlenecks.

By first applying the fission to the skeleton and then
expanding the skeleton's full teams to the traffic's full teams,
we strongly reduce the processing time and at the same time we
obtain all full teams of the original traffic without repetitions.

We measured the reduction in search space according to the
different search space reduction methods we propose. We
consider 23 different traffic patterns within the T1 cluster
computer (see section 7). The search space is given by the
number of categories that are being iteratively traversed by the
fission algorithm. Fig. 6 shows the obtained search space
reductions compared with a naive algorithm that would build
full teams according to a coverage partitioning strategy, i.e. by
constructing categories thanks to the fission algorithm, hut
without any of the proposed optimizations.

idle+skeleton+blank

3 j o ,.

Fig. 6. Search space reduction obtaincd by idletskeletoncblank optimization
stcps.

The skeleton algorithm together with the idle and blank
optimizations reduces on average the search space to 10.6%, i.e.
full teams are computed 9.43 times faster than without search
space reduction techniques. Note that in the above comparison
even the naive algorithm is smart enough to avoid repeatedly
exploring the full simultaneities.

6. CONSTRUCTION OF LIQUID SCHEDULES

Having the capability of building full teams, this section
presents the general method for building liquid schedules on
irregular topologies for any collective communication pattern.

763

~

Fig. 7. Thc timc framcs of a liquid schedule of the collective traffic shown in
Fig. 1.

The necessary and sufficient condition for the liquidity of a
schedule is that all bottlenecks be used by each time frame of
the schedule. Since a simultaneity of X is defined as a team of
X , if it uses all bottlenecks ofX, an equivalent condition for the
liquidity of a schedule a o n x i s that each time frame of a be a
team of X.

A liquid schedule is optimal, hut the inverse is not always
true, meaning that a traffic may not have a liquid schedule. Fig.
8 shows a simple traffic with three bottleneck links.

'{',I, 'mh, '"4 }

{ ' r z . ' r d

{'*3,',3)

I {',5,'"j)

1'14,'h.s. ',I }

{I,,, I,,, lea) , this traffic has 110 team and therefore no liquid
schedule.

6. I . Liquid schedule naive search algorithm

We first propose a simple technique for the construction of a
liquid schedule and then introduce an optimization improving
the efficiency of liquid schedule construction.
Our strategy for finding a liquid schedule relies on partition-

ing the traffic into a set of teams forming the sequence of time
frames. Associate to the traffic X all its possible teams
A , , A,, _ . . , A n which could he selected as the schedule's first
time frame. X- A ,, X- A,, . . . is the variety of possible suhtraf-
fics remaining after the choice of the first time frame. Each of the
possible subtraffics Xi remaining after the selection of the first
time frame has its own set of possibilities for the second time
frame K (X J = {Ai, I , A i , 2 , A i , 3, ...} . The choice of the sec-
ond team for the second time frame yields a further reduced sub-
traffic (see Fig. 9).

X X(x) = l A l , A 2 , A 3 , ...)

Fig. 8. This traffic has no team and no liquid schedule. Fig. 9. Liquid schedule search tree. X j , j > , , , j , r dcnotcs a reduccd subtraffic at
thelayern + 1 ofthenecand Aiki2.,. i , , i ,,-, dcnotcs acandidate forthc

that can use simultaneously all the bottleneck links time frame n + 1 . Thc opcrator X applied to a subtraffic XTz,6 yiclds
thc sct ofall possiblc candidates for a timc framc.

Since there is no combination of non-congesting transfers

I . Theduration o f a trafficXis thc load ofil l bottlenecks

0-7803-8783-X/oj/$20.00 0 2004 IEEE 764

Dead ends are possible if there are no choice for the next time
frame, i.e. no team ofthe original traffic may he formed from the
transfers of the reduced traffic. A dead end situation may occur,
for example, when the remaining subtraffic appears to he like the
one shown in Fig. 8. Once a dead end is faced, backtracking oc-

The construction recursively advances and backtracks until a
valid liquid schedule is formed. A valid liquid schedule is oh-
tained, when the transfers remaining in the reduced traffic form
one single team for the last time frame of the liquid schedule.

We use the search tree shown in Fig. Y and assume that at any
stage the choice K(Xsub) for the next time frame is among the
set of the original trafic's teams 3'(X), i.e.
K(Xaub) = {A E 3 ' (X) (A C X ~ ~ ~) . In the next subsections
we reduce the search space by considering newly emerging hot-
tlenecks at successive time frames.

6.2. Search space reduction by considering newly emerging
bottlenecks and by considering onlyfull teams

We observe in Fig. 7 that when we step from one time frame
to the next, additional new bottleneck links emerge, e.g.' from
time frame 3 on, links I,, and lr3 appear as new bottlenecks.

In the construction strategy presented in the previous suhsec-
tion we considered as a possible time frame any team of the orig-
inal traffic X that can he built from the transfers of the reduced
suhtraffic. We have shown [4] that for the liquidity of a schedule,
it is necessary for each time frame to he not only a team of the
original traffic but also a team of the reduced subtraffic. If a is
a liquid schedule on Xand A is a timeframe of a, then a - {A }
is a liquid schedule on X- A ,

Thus a liquid schedule may not contain a time frame which is
a team of the original traffic hut is not a team of a subtraffic
obtained by removing some of the other time frames. Therefore
we can limit at each iteration our choice to the collection of
only those teams of the original traffic which are also teams of
the current reduced subtraffic. Since the reduced suhtraffic
contains additional bottleneck links, there are less teams in the
reduced suhtraffic than teams remaining from the original
traffic.

By considering in each time frame all occumng bottlenecks,
we considerably reduce the search space without affecting the
solution space, i.e. h'(XZub) = 3'(X,,,,).

A further optimization consists in building a liquid schedule
by limiting the choice of teams of the reduced subtraffic to its
full teams, see [4]. The choice of the teams in the construction
may he narrowed from the set of all teams to the set of full
teams only, i.e. h'(Xsub) = 3 (X s u b) .

The expression below summarizes the search space
reduction.

curs.

{,4 E 3'(X)IA Cx,,61 "(x,,b) 3(xst,b)

7. EXPERIMENTAL VERIFICATION

As basic network topology for our testhed, we use the Swiss-
TI cluster (called TI, see Fig. IO). The network of the TI forms

a K-ring [Y] and has a static routing scheme. The throughputs of
all links are identical and equal to 86MB/s [SI. The cluster
consists of 32 nodes, each one comprising 2 processors, i.e. 64
processors, [12], [SI.

Fig. 10.Architecture of the TI cluster computcr interconnected by a high
p e r f o m n c c wormhole switch fabric.

The sample traffic pattems are selected from different
configurations of half-to-half collective data exchanges
between a set of sending and a set of receiving processors,
where each sending processor carries out a transmission to each
receiving processor. We identified for TI architecture 362
different collective communication patterns [4].

The 362 different traffic patterns were scheduled both by our
liquid scheduling algorithms and according to topology-
unaware round-robin schedule. Overall throughput results for
each method are measured and presented in Fig. 11 for
comparison. The values of the theoretical liquid throughput are
also given.

Round-robin and l iquid schedules

1 8 0 0 c ~~~~~~~...........~~~~~~... I--:

s ._ theoretical liquid throughput
o measured round-robin throughput

measured liquid throughput

Fig. 11. Theoretical liquid throughputs and measured throughputs for traffics

Each black dot represents the median of 7 overall throughput
measurements carried out according to liquid schedules.
Processor to processor transfers have a size of 5MB. The
measured aggregate throughputs (black dots) are very close to
the theoretically expected values of the liquid throughput (light
gray area). For many topologies, liquid scheduling allows to

scheduled according to round-robin and liquid schcduics.

765

increase the aggregate throughput by a factor of two compared
with topology-unaware round-robin scheduling (dark gray
dots).

Thanks to the presented search space reduction algorithms,
the computation time of a liquid schedule takes for more than
91% of the considered topologies less than 1 / 10 of a second
on one Compaq Alpha 5OOMHz computer.

8. CONCLUSIONS
In high performance networks based on cut-through

wormhole switch fabrics or on wavelength division
multiplexing optical networks, significant performance drops
may be observed due to congestions between transfers sharing
common resources. We propose a method for scheduling
collective communications which avoids congestions. The
proposed scheduling method yields an aggregate throughput
equal to the network‘s theoretical upper limit, i.e. its liquid
throughput. Efficient computation of the liquid schedule is
achieved by breaking the overall traffic request into time frames
within which all the transfers of the traffic are allocated. To
ensure a liquid schedule, the time frames must incorporate as
many transfers as possible and utilize all bottleneck links. In
order to compute the liquid schedule we propose a method for
traversing efficiently and without redundancy all candidate
subsets of simultaneous transfers.

We obtained a considerable speed up in the construction of
liquid schedules by carrying out the following optimizations.

Full teams are enumerated by partitioning the solution space
using inclusion and exclusion constraints. The blank
optimization identifies empty partitions, which do not need to
be further evaluated. The idle optimization identifies partitions
containing no full teams, which do not need to be further
evaluated. The skeleton optimization speeds up the retrieval of
full teams, first by considering only the transfers necessary to
keep all bottleneck links busy and then by adding up non-
congesting transfers.

We construct liquid schedules by partitioning the traffic into
teams. The construction of the liquid schedule is accelerated by
limiting at each time frame the choice to teams, .which use also
the newly emerging bottleneck links, i.e. teams of the reduced
traffic. Choosing only full teams of the reduced traffic further
speeds up the construction of the liquid schedule.

Measurements on the traffic carried out on various sub-
topologies ofthe Swiss TI cluster computer have shown that for
most of the sub-topologies we are able to increase the collective
communication throughput by a factor between 1.5 and 2. In
congestion sensible coarse-grain transmission networks, i.e.
wireless networks, wormhole or lightpath switching networks,

liquid scheduling may considerably improve the utilization of
transmission resources such as communication links,
wavelengths and orthogonal frequency spectra. Liquid
schedules avoid congestions and minimize the overall
transmission time for collective communications.

In the future, we intend to develop multipath routing
solutions, which increase the traffic’s fault-tolerance against
link failures and at the same time keep the throughput liquid.

9. REFERENCES

[I]

[2]

Large Hadron Collider, Computer Grid project, CERN, 2004,
http://lcg. web.cern.cWLCG/
S.-H.G Chan, “Operation and cost optimization of a distributed
sewer architecture for on-demand video services”, IEEE Com-
munications Letters, Vol. 5, No. 9, Sept. 2001,384-386
Siemens Carrier Networks, EWSD Digital Switching System,
April 2004, http://mvw icn.siemens.com/carri=~~~od~cts/swit=h-
ing/ews&w. html
Emin Gabrielyan, Roger D. Hersch, Network Topology Aware
Scheduling of Collective Communications, ET03 - 10th Intema-
tional Conference on Telecommunications - 2003, 1051-1058,
http://ieeexplore. ieee. n.g/

[5] Ralf Gruber, “Commodity computing results from the Swiss-Tx
project Swiss-Tx Team”, Grid Computing Meeting, 2000

[6] H.323 Standards, htrp://~.openh323.org/standa~&.h/ml
[7] Paul R. Halmos, Noive Set neory, Springer-Verlag New York

Inc, ISBN 0-387-90092-6, 1974, 26-29
[XI R. Horst, “TNet: A Reliable System Area Network”, IEEE

Micro, vol. 15, no. I , Februaly 1995, pp. 37-45.
[9] P. Kuonen, “The K-Ring: a versatile model for the design of

MIMD computer topology”, Proc. of the High-Performance
Computing Conference (HPC‘99). San Diego, USA, 381-385,
April 1999

[I O] Benjamin Melamed, Khosrow Sohraby, Yorai Wardi, “Measure-
ment-Based Hybrid Fluid-Flow Models for Fast Multi-Scale
Simulation”, DARPAINMS BAA 00-18 AGREEMENT No.
F30602-00-2-0556, Sept. 2000, hrtp://204.194.72. IOl/pub/
nms2000sep/UMissouri-KC.pdf

[I I] M. Naghshineh, R. Guerin, “Fixed versus variable packet sizes in
fast packet-switched networks”, Proc.Twelfth Annual Joint Con-
ference of the IEEE Computer and Communications Societies
WOCOM ‘93., Networking: Foundation for the Future, IEEE
Press,Vol. I, 1993,217-226.

[I21 Pierre Kuonen, Ralf Gruber, “Parallel computer architectures for
commodity computing and the Swiss-TI machine”, EPFL Super-
computing Review, Nov 1999, pp. 3-1 I , http://sawv.epflch/
SIC/SA/publicatinns/SCR99/scrll -puge3. hrml

131

[4]

[131 SIP Forum, http://www.sipforum.org/
[I41 Dinkar Sitaram, Asit Dan, Multimedia Servers, Morgan Kauf-

mann Publishers, San Francisco Califomia, 2000,69-73, ISBN l-
55860430-8

0-7803-878i-x/04/$20.00 0 2004 IEEE 166

http://lcg
http://mvw
http://ieeexplore
http://sawv.epflch
http://www.sipforum.org

