We are trying to build (11, 7), (10, 6) and (9, 5) MDS codes

Given are:
- 7, 6 or 5 information packets
- 4 redundant packets
- Packet sizes are identical and are divisible by 3, minimum 3 bits
- Information must be retrieved if number of losses does not exceed 4

We must check for which numbers of information packets we can build an MDS code.

Let \((a, b, c)\) be a packet where \(a\), \(b\) and \(c\) are its first, second and third portions. Let \(f\) be a function which applied to a packet \((a, b, c)\) forms another packet of the same size, whose first, second and third elements are XOR results of some subsets given from \(\{a, b, c\}\). Example: \(f(x, y, z) = (x+y, z, x+z)\), where operation + is XOR.

We are interested in only invertible functions. There are 168 such functions producing 168 invertible packets. Each function can be represented by a binary 3 by 3 matrix.

Four redundant packets are constructed as follows

\[
\sum_{i=1}^{k}(x_i, y_i, z_i) \\
\sum_{i=1}^{k}f_i(x_i, y_i, z_i) \\
\sum_{i=1}^{k}g_i(x_i, y_i, z_i) \\
\sum_{i=1}^{k}h_i(x_i, y_i, z_i)
\]

where \(k\) is the number of information packets, i.e. is equal to 7, 6 or 5. \(f\), \(g\) and \(h\) are vectors whose elements are from the list of 168 invertible functions.

Restoring two information packets from \((1, f), (1, g)\) and \((1, h)\)

In case, two information packets \(i, j\) are lost and we received the first and the second redundant packet (the other two are also lost). Then if \(f_i^{-1} \cdot f_j (x_j, y_j, z_j) + (x_j, y_j, z_j)\) is invertible for any pair of \(i\) and \(j\) we can restore \((x_j, y_j, z_j)\) and successively \((x_i, y_i, z_i)\).
Similarly for the cases when two information packets must be restored from the first and third \((g\text{-redundant})\) packets or from the first and fourth \((h\text{-redundant})\) packets.

In the set of 168 invertible functions, there are 4032 subsets of the size of 5-functions, 1344 subsets of the size of 6-functions and 192 subsets of the size of 7-functions, for which the above condition \((f_i^{-1} \cdot f_j + 1)\) is invertible.

Restoring two information packets from \((f, g)\)

Let us now examine valid combinations of \(f\) and \(g\) vectors. For the sizes of 5, 6 and 7 functions there are \(4032 \times 4032 \times 5!, \ 1344 \times 1344 \times 6!\) and \(192 \times 192 \times 7!\) possible pairs of \(f\) and \(g\) vectors. An \((f, g)\) pair is valid only if for any two \(i\) and \(j\) (the lost packets) the following function:

\[
f_i^{-1} \cdot f_j + g_i^{-1} \cdot g_j
\]

is invertible.

Restoring three information packets from \((1, f, g)\)

Additionally, an \((f, g)\)-pair is valid only if it can retrieve, together with the first redundant packet, any three lost information packets.

For that the following function must be invertible for any \(i, j\) and \(k\):

\[
(f_i^{-1} \cdot f_j + 1)^{-1} \cdot (f_i^{-1} \cdot f_k + 1) + (g_i^{-1} \cdot g_j + 1)^{-1} \cdot (g_i^{-1} \cdot g_k + 1)
\]

Instead of examining all possible pairs of vectors:
- \(4032 \times 4032 \times 5!\) – for 5 information packets (codeword length = 9)
- \(1344 \times 1344 \times 6!\) – for 6 information packets (codeword length = 10)
- \(192 \times 192 \times 7!\) – for 7 information packets (codeword length = 11)

We fixed the \(f\)-vector on the first candidate:
- \((11, 73, 140, 167, 198)\) – for 5 information packets
- \((11, 73, 140, 167, 198, 292)\) – for 6
- \((11, 73, 140, 167, 198, 292, 323)\) – and for 7

Thus we limited our choice by the following number of pairs:
- \(4032 \times 5!\) – for 5 information packets
- \(1344 \times 6!\) – for 6
- \(192 \times 7!\) – and for 7

for 7 information packets we have found 1680 valid \((f, g)\)-pairs
for 6 information packets we have found 1680 valid \((f, g)\)-pairs as well
and for 5 information packets also we have found 1680 valid \((f, g)\)-pairs

Thus \((10, 7)\)-code exists, which is an MDS code.
Choosing h-redundant packet, restoring two information packets from (g, h) and three information packets from $(1, g, h)$

For any of 1680 valid (f, g)-pairs we must examine a valid (f, h)-pair, thus there are $1680 \times (1680 - 1)/2$ possible (f, g, h) combinations to examine.

(g, h)-pair is valid only if:

$$g_i^{-1} \cdot g_j + h_i^{-1} \cdot h_j$$

is invertible for any two i and j (the case when two information packets must be retrieved from the g and h-redundant packets)

and if:

$$(g_i^{-1} \cdot g_j + 1)^{-1} \cdot (g_i^{-1} \cdot g_k + 1) + (h_i^{-1} \cdot h_j + 1)^{-1} \cdot (h_i^{-1} \cdot h_k + 1)$$

is also invertible for any three lost information packets i, j and k (the case when three information packets must be retrieved from the first redundant packets and from the g and h-redundant packets).

there are 28224 valid (g, h)-pairs for 7 information packets
there are also 28224 valid (g, h)-pairs with 6 information packets
and there are 56448 valid (g, h)-pairs with 5 information packets

Restoring three information packets from (f, g, h) and four information packets from $(1, f, g, h)$

Three lost information packets can be retrieved from f, g and h-redundant packets if the following function is invertible

$$(f_i^{-1} \cdot f_j + g_i^{-1} \cdot g_j)^{-1} \cdot (f_i^{-1} \cdot f_k + g_i^{-1} \cdot g_k) + (f_i^{-1} \cdot f_j + h_i^{-1} \cdot h_j)^{-1} \cdot (f_i^{-1} \cdot f_k + h_i^{-1} \cdot h_k)$$

for any three lost information packets i, j and k

Among 28224 (g, h)-pairs with 7 information packets and 28224 (g, h)-pairs with 6 information packets there were none, satisfying the above constraint, thus:

$(11, 7)$ MDS code does not exist and
$(10, 6)$ MDS code does not exist (at least with this method)

Additionally vector h is valid only if we can also restore any four i, j, k and l lost information packets from the four redundant packets. From the four redundant packets we can obtain these three (by eliminating (x_i, y_i, z_i) cospan):
\begin{align*}
(g_i^{-1} \cdot g_j + 1)(x_j, y_j, z_j) + \\
(g_i^{-1} \cdot g_k + 1)(x_k, y_k, z_k) + \\
(g_i^{-1} \cdot g_l + 1)(x_l, y_l, z_l) \\
(h_i^{-1} \cdot h_j + 1)(x_j, y_j, z_j) + \\
(h_i^{-1} \cdot h_k + 1)(x_k, y_k, z_k) + \\
(h_i^{-1} \cdot h_l + 1)(x_l, y_l, z_l)
\end{align*}

From them we can obtain these two by eliminating the \((x_j, y_j, z_j)\) composant:

\begin{align*}
((f_i^{-1} \cdot f_j + 1)^{-1} \cdot (f_i^{-1} \cdot f_k + 1) + (g_i^{-1} \cdot g_j + 1)^{-1} \cdot (g_i^{-1} \cdot g_k + 1))(x_k, y_k, z_k) + \\
((f_i^{-1} \cdot f_j + 1)^{-1} \cdot (f_i^{-1} \cdot f_l + 1) + (g_i^{-1} \cdot g_j + 1)^{-1} \cdot (g_i^{-1} \cdot g_l + 1))(x_l, y_l, z_l)
\end{align*}

\begin{align*}
((f_i^{-1} \cdot f_j + 1)^{-1} \cdot (f_i^{-1} \cdot f_k + 1) + (h_i^{-1} \cdot h_j + 1)^{-1} \cdot (h_i^{-1} \cdot h_k + 1))(x_k, y_k, z_k) + \\
((f_i^{-1} \cdot f_j + 1)^{-1} \cdot (f_i^{-1} \cdot f_l + 1) + (h_i^{-1} \cdot h_j + 1)^{-1} \cdot (h_i^{-1} \cdot h_l + 1))(x_l, y_l, z_l)
\end{align*}

From the above two, we can eliminate \((x_k, y_k, z_k)\) and obtain the below function applied to \((x_i, y_i, z_i)\). If this function is invertible then we can retrieve \((x_i, y_i, z_i)\) and consecutively all other information packets.

\begin{align*}
((f_i^{-1} \cdot f_j + 1)^{-1} \cdot (f_i^{-1} \cdot f_k + 1) + (g_i^{-1} \cdot g_j + 1)^{-1} \cdot (g_i^{-1} \cdot g_k + 1))^{-1} \cdot \\
((f_i^{-1} \cdot f_j + 1)^{-1} \cdot (f_i^{-1} \cdot f_l + 1) + (g_i^{-1} \cdot g_j + 1)^{-1} \cdot (g_i^{-1} \cdot g_l + 1))
\end{align*}

\begin{align*}
((f_i^{-1} \cdot f_j + 1)^{-1} \cdot (h_i^{-1} \cdot h_j + 1)^{-1} \cdot (h_i^{-1} \cdot h_k + 1))^{-1} \cdot \\
((f_i^{-1} \cdot f_j + 1)^{-1} \cdot (f_i^{-1} \cdot f_l + 1) + (h_i^{-1} \cdot h_j + 1)^{-1} \cdot (h_i^{-1} \cdot h_l + 1))
\end{align*}

Among 56448 \((g, h)\)-pairs we have found 28224 valid \((f, g, h)\)-triplets with 5 information packets.

Thus (9, 5) MDS code exists with four redundant packets

All valid \((1, f, g, h)\) redundant packets are presented here.

AMPL programs:
Trying to find (11, 7)-code
- step 1
- step 2
- step 3
- step 4
- step 5 and conclusions

Trying to find (10, 6)-code
- step 1
- step 2
- step 3
- step 4

Finding (9, 5) MDS code
- step 1
- step 2
- step 3
- step 4
- step 5

* * *

US – Mirror
CH – Mirror

© 2005, Switzernet (www.switzernet.com)

Relevant links:

051025-erasure-resilient
051027-erasure-9-2-resilient
051031-erasure-10-3-resilient
051101-erasure-9-7-resilient
051102-erasure-10-7-resilient
051103-erasure-9-5-resilient