
CAPACITY APPROACHING CODES DESIGN AND IMPLEMENTATION
SPECIAL SECTION

Fountain codes

D.J.C. MacKay

Abstract: Fountain codes are record-breaking sparse-graph codes for channels with erasures, such
as the internet, where files are transmitted in multiple small packets, each of which is either received
without error or not received. Standard file transfer protocols simply chop a file up into K packet-
sized pieces, then repeatedly transmit each packet until it is successfully received. A back channel is
required for the transmitter to find out which packets need retransmitting. In contrast, fountain
codes make packets that are random functions of the whole file. The transmitter sprays packets at
the receiver without any knowledge of which packets are received. Once the receiver has received
any N packets, where N is just slightly greater than the original file size K, the whole file can be
recovered. In the paper random linear fountain codes, LT codes, and raptor codes are reviewed.
The computational costs of the best fountain codes are astonishingly small, scaling linearly with the
file size.

1 Erasure channels

Channels with erasures are of great importance. For
example, files sent over the internet are chopped into
packets, and each packet is either received without error or
not received. Noisy channels to which good error-correcting
codes have been applied also behave like erasure channels:
much of the time, the error-correcting code performs
perfectly; occasionally, the decoder fails, and reports that it
has failed, so the receiver knows the whole packet has been
lost. A simple channel model describing this situation is a
q-ary erasure channel (Fig. 1), which has (for all inputs in
the input alphabet f0; 1; 2; . . . ; q� 1g) a probability 1�f
of transmitting the input without error, and probability f of
delivering the output ‘?’. The alphabet size q is 2l, where l is
the number of bits in a packet.

Common methods for communicating over such chan-
nels employ a feedback channel from receiver to sender that
is used to control the retransmission of erased packets. For
example, the receiver might send back messages that
identify the missing packets, which are then retransmitted.
Alternatively, the receiver might send back messages that
acknowledge each received packet; the sender keeps track of
which packets have been acknowledged and retransmits the
others until all packets have been acknowledged.

These simple retransmission protocols have the advan-
tage that they will work regardless of the erasure probability
f, but purists who have learned their Shannon theory will
feel that these protocols are wasteful. If the erasure
probability f is large, the number of feedback messages
sent by the first protocol will be large. Under the second
protocol, it is likely that the receiver will end up receiving
multiple redundant copies of some packets, and heavy use is
made of the feedback channel. According to Shannon, there
is no need for the feedback channel: the capacity of the

forward channel is (1�f)l bits, whether or not we have
feedback. Reliable communication should be possible at
this rate, with the help of an appropriate forward error-
correcting code.

The wastefulness of the simple retransmission protocols is
especially evident in the case of a broadcast channel with
erasures; channels where one sender broadcasts to many
receivers, and each receiver receives a random fraction
(1�f) of the packets. If every packet that is missed by one
or more receivers has to be retransmitted, those retransmis-
sions will be terribly redundant. Every receiver will have
already received most of the retransmitted packets.

So, we would like to make erasure-correcting codes that
require no feedback or almost no feedback. The classic
block codes for erasure correction are called Reed–Solomon
codes [1, 2]. An (N, K) Reed–Solomon code (over an
alphabet of size q¼ 2l) has the ideal property that if any K
of the N transmitted symbols are received then the original
K source symbols can be recovered (Reed–Solomon codes
exist for Noq). However, Reed–Solomon codes have the
disadvantage that they are practical only for small K, N,
and q: standard implementations of encoding and decoding
have a cost of order K(N�K) log2N packet operations.
Furthermore, with a Reed–Solomon code, as with any
block code, one must estimate the erasure probability f and
choose the code rate R¼K/N before transmission. If we are
unlucky and f is larger than expected and the receiver
receives fewer than K symbols, what are we to do? We
would like a simple way to extend the code on the fly to
create a lower-rate (N0, K) code. For Reed–Solomon codes,
no such on-the-fly method exists.

There is a better way, pioneered by Michael Luby
(2002) [3, 4].

2 Fountain codes

The encoder of a fountain code is a metaphorical fountain
that produces an endless supply of water drops (encoded
packets); let us say the original source file has a size of Kl
bits, and each drop contains l encoded bits. Now, anyone
who wishes to receive the encoded file holds a bucket under
the fountain and collects drops until the number of drops in

The author is with Cavendish Laboratory, University of Cambridge,
Cambridge, UK

E-mail: mackay@mrao.cam.ac.uk

r IEE, 2005

IEE Proceedings online no. 20050237

doi:10.1049/ip-com:20050237

Paper received 23rd May 2005

1062 IEE Proc.-Commun., Vol. 152, No. 6, December 2005

the bucket is a little larger than K. They can then recover the
original file.

Fountain codes are rateless in the sense that the number
of encoded packets that can be generated from the source
message is potentially limitless; and the number of encoded
packets generated can be determined on the fly. Fountain
codes are universal because they are simultaneously near-
optimal for every erasure channel. Regardless of the
statistics of the erasure events on the channel, we can send
as many encoded packets as are needed in order for the
decoder to recover the source data. The source data can be
decoded from any set of K0 encoded packets, for K0 slightly
larger than K. Fountain codes can also have fantastically
small encoding and decoding complexities.

To start with, we will study the simplest fountain codes,
which are random linear codes.

3 The random linear fountain

Consider the following encoder for a file of size K packets
s1; s2; . . . ; sK . A ‘packet’ here is the elementary unit that is
either transmitted intact or erased by the erasure channel.
We will assume that a packet is composed of a whole
number of bits.

At each clock cycle, labelled by n, the encoder generates
K random bits {Gkn}, and the transmitted packet tn is set to
the bitwise sum, modulo 2, of the source packets for which
Gnk is 1.

tn ¼
XK

k¼ 1

skGkn ð1Þ

This sum can be done by successively exclusive-or-ing the
packets together. You can think of each set of K random
bits as defining a new column in an ever growing binary
generator matrix, as shown at the top of Fig. 2.

Now, the channel erases a bunch of the packets; a
receiver, holding out his bucket, collects N packets. What is
the chance that the receiver will be able to recover the entire
source file without error? Let us assume that he knows the
fragment of the generator matrix G associated with his
packets, for example, maybe G was generated by a
deterministic random-number generator, and the receiver
has an identical generator that is synchronised to the
encoder’s. Alternatively, the sender could pick a random

key, kn, given which the K bits fGkngK
k¼ 1 are determined by

a pseudo-random process, and send that key in the header

of the packet. As long as the packet size l is much bigger
than the key size (which need only be 32 bits or so), this key
introduces only a small overhead cost. In some applications,
every packet will already have a header for other purposes,
which the fountain code can use as its key. For brevity, let’s
call the K–by–N matrix fragment ‘G ’ from now on.

Now, as we were saying, what is the chance that the
receiver will be able to recover the entire source file without
error?

If NoK, the receiver has not got enough information to
recover the file. If N¼K, it is conceivable that he can
recover the file. If the K–by–K matrix G is invertible
(modulo 2), the receiver can compute the inverse G�1 by
Gaussian elimination, and recover

sk ¼
XN

n¼ 1

tnG�1nk ð2Þ

So, what is the probability that a random K–by–K binary
matrix is invertible? It is the product of K probabilities, each
of them the probability that a new column of G is linearly
independent of the preceding columns. The first factor, is
(1�2�K), the probability that the first column of G is not the
all-zero column. The second factor is (1�2�(K�1)), the
probability that the second column of G is equal neither
to the all-zero column nor to the first column of G, what-
ever non-zero column it was. Iterating, the probability

of invertibility is ð1� 2�KÞð1� 2�ðK�1ÞÞ � � � � � ð1� 1
8
Þ

ð1� 1
4
Þð1� 1

2
Þ, which is 0.289, for any K larger than 10.

That is not great (we would have preferred 0.999!) but it is
promisingly close to 1.

1− f

f
000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

?

Fig. 1 An erasure channel – the 8-ary erasure channel
The eight possible inputs f0; 1; 2; . . . ; 7g are here shown by the binary
packets 000; 001; 010; . . . ; 111

N

K

K

original generator matrix

received packets

transmitted packets

Fig. 2 The generator matrix of a random linear code
When the packets are transmitted, some are not received, shown by
the grey shading of the packets and the corresponding columns in the
matrix. We can realign the columns to define the generator matrix,
from the point of view of the receiver (bottom)

IEE Proc.-Commun., Vol. 152, No. 6, December 2005 1063

What if N is slightly greater than K? Let N¼K+E,
where E is the small number of excess packets. Our question
now is, what is the probability that the random K–by–N
binary matrix G contains an invertible K–by–K matrix? Let
us call this probability 1�d, so that d is the probability that
the receiver will not be able to decode the file when E excess
packets have been received. This failure probability d is
plotted against E for the case K¼ 100 in Fig. 3 (it looks
identical for all K410). For any K, the probability of failure
is bounded above by

dðEÞ � 2�E ð3Þ
This bound is shown by the thin dotted line in Fig. 3.

In summary, the number of packets required to have
probability 1�d of success is ’K þ log2 1=d. The expected
encoding cost per packet is K/2 packet operations, since on
average half of the packets must be added up (a packet
operation is the exclusive-or of two packets of size l bits).
The expected decoding cost is the sum of the cost of the
matrix inversion, which is about K3 binary operations, and
the cost of applying the inverse to the received packets,
which is about K2/2 packet operations.

While a random code is not in the technical sense a
‘perfect’ code for the erasure channel (it has only a chance
of 0.289 of recovering the file when K packets have arrived),
it is almost perfect. An excess of E packets increases the
probability of success to at least (1�d), where d¼ 2�E.
Thus, as the file size K increases, random linear fountain
codes can get arbitrarily close to the Shannon limit. The
only bad news is that their encoding and decoding costs are
quadratic and cubic in the number of packets encoded. This
scaling is not important if K is small (less than one
thousand, say); but we would prefer a solution with lower
computational cost.

4 Intermission

Before we study better fountain codes, it will help to solve
the following exercises. Imagine that we throw balls
independently at random into K bins, where K is a large
number such as 1000 or 10000.

1. After N¼K balls have been thrown, what fraction of the
bins do you expect have no balls in them?

2. If we throw three times as many balls as there are bins, is
it likely that any bins will be empty? Roughly how many
balls must be thrown for it to be likely that every bin has
a ball?

3. Show that in order for the probability that all K
bins have at least one ball to be 1�d, we require
N’K logeðK=dÞ balls.

Rough calculations like these are often best solved by
finding expectations instead of probabilities. Instead of
finding the probability distribution of the number of empty
bins, we find the expected number of empty bins. This is
easier because means add, even where random variables are
correlated.

The probability that one particular bin is empty after N
balls have been thrown is

1� 1

K

� �N

’ e�N=K ð4Þ

So when N¼K, the probability that one particular bin is
empty is roughly 1/e, and the fraction of empty bins must be
roughly 1/e too. If we throw a total of 3K balls, the empty
fraction drops to 1/e3, about 5%. We have to throw a lot of
balls to make sure all the bins have a ball! For general N,
the expected number of empty bins is

Ke�N=K ð5Þ
This expected number is a small number d (which roughly
implies that the probability that all bins have a ball is (1�d))
only if

N4K loge
K
d

ð6Þ

5 The LT code

The LT code retains the good performance of the random
linear fountain code, while drastically reducing the encoding
and decoding complexities. You can think of the LT code as
a sparse random linear fountain code, with a super-cheap
approximate decoding algorithm.

5.1 Encoder
Each encoded packet tn is produced from the source file
s1; s2; s3; . . . sK as follows:

1. Randomly choose the degree dn of the packet from a
degree distribution r(d); the appropriate choice of r
depends on the source file size K, as we will discuss later.

2. Choose, uniformly at random, dn distinct input packets,
and set tn equal to the bitwise sum, modulo 2, of those dn

packets.

This encoding operation defines a graph connecting
encoded packets to source packets. If the mean degree �d
is significantly smaller than K then the graph is sparse. We
can think of the resulting code as an irregular low-density
generator-matrix code.

5.2 Decoder
Decoding a sparse-graph code is especially easy in the case
of an erasure channel. The decoder’s task is to recover s
from t ¼ sG , where G is the matrix associated with the
graph (just as in the random linear fountain code, we
assume the decoder somehow knows the pseudorandom
matrix G).

The simple way to attempt to solve this problem is by
message passing. We can think of the decoding algorithm as

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10

pr
ob

ab
ili

ty
 o

f f
ai

lu
re

number of redundant packets

100

10−1

10−2

10−3

10−4

10−5

10−6

10−7
0 5 10 15 20

Fig. 3 Performance of the random linear fountain
The solid line shows the probability that complete decoding is not
possible as a function of the number of excess packets, E. The thin
dashed line shows the upper bound, 2�E, on the probability of error

1064 IEE Proc.-Commun., Vol. 152, No. 6, December 2005

the sum–product algorithm [5, Chaps. 16, 26 and 47] if we
wish, but all messages are either completely uncertain or
completely certain. Uncertain messages assert that a
message packet sk could have any value, with equal
probability; certain messages assert that sk has a particular
value, with probability one.

This simplicity of the messages allows a simple descrip-
tion of the decoding process. We will call the encoded
packets tn check nodes.

1. Find a check node tn that is connected to only one source
packet sk (if there is no such check node, this decoding
algorithm halts at this point, and fails to recover all the
source packets).

(a) Set sk¼ tn.

(b) Add sk to all checks tn0 that are connected to sk:

tn0 :¼ tn0 þ sk for all n0 such thatGn0k ¼ 1:

(c) Remove all the edges connected to the source
packet sk.

2. Repeat (1) until all sk are determined.

This decoding process is illustrated in Fig. 4 for a toy case
where each packet is just one bit. There are three source
packets (shown by the upper circles) and four received
packets (shown by the lower check symbols), which have
the values t1; t2; t3; t4 ¼ 1011 at the start of the algorithm.

At the first iteration, the only check node that is
connected to a sole source bit is the first check node (panel

a). We set that source bit s1 accordingly (panel b), discard
the check node, then add the value of s1 (1) to the checks to
which it is connected (panel c), disconnecting s1 from the
graph. At the start of the second iteration (panel c), the
fourth check node is connected to a sole source bit, s2. We
set s2 to t4 (0, in panel d), and add s2 to the two checks it is
connected to (panel e). Finally, we find that two check
nodes are both connected to s3, and they agree about the
value of s3 (as we would hope!), which is restored in panel f.

5.3 Designing the degree distribution
The probability distribution r(d) of the degree is a critical
part of the design: occasional encoded packets must have
high degree (i.e., d similar to K) in order to ensure that there
are not some source packets that are connected to no-one.
Many packets must have low degree, so that the decoding
process can get started, and keep going, and so that the
total number of addition operations involved in the
encoding and decoding is kept small. For a given degree
distribution r(d), the statistics of the decoding process can
be predicted by an appropriate version of density evolution,
a technique first developed for low-density parity-check
codes [5, p. 566].

Before giving Luby’s choice for r(d), let us think about
the rough properties that a satisfactory r(d) must have. The
encoding and decoding complexity are both going to scale
linearly with the number of edges in the graph, so the
crucial quantity is the average degree of the packets. How
small can this be? The balls-in-bins exercise helps here: think
of the edges that we create as the balls and the source
packets as the bins. In order for decoding to be successful,
every source packet must surely have at least one edge in it.
The encoder throws edges into source packets at random,
so the number of edges must be at least of order K loge K.
If the number of packets received is close to Shannon’s
optimal K, and decoding is possible, the average degree of
each packet must be at least loge K, and the encoding and
decoding complexity of an LT code will definitely be at
least K loge K. Luby showed that this bound on complexity
can indeed be achieved by a careful choice of degree
distribution.

Ideally, to avoid redundancy, we would like the received
graph to have the property that just one check node has
degree one at each iteration. At each iteration, when this
check node is processed, the degrees in the graph are
reduced in such a way that one new degree-one check node
appears. In expectation, this ideal behaviour is achieved by
the ideal soliton distribution,

rð1Þ ¼ 1=K

rðdÞ ¼ 1

dðd � 1Þ for d ¼ 2; 3; . . . ; K
ð7Þ

The expected degree under this distribution is roughly
loge K.

This degree distribution works poorly in practice, because
fluctuations around the expected behaviour make it very
likely that at some point in the decoding process there will
be no degree-one check nodes; and, furthermore, a few
source nodes will receive no connections at all. A small
modification fixes these problems.

The robust soliton distribution has two extra parameters,
c and d; it is designed to ensure that the expected number of
degree-one checks is about

S � c logeðK=dÞ
ffiffiffiffi
K
p

ð8Þ
rather than 1, throughout the decoding process. The
parameter d is a bound on the probability that the decoding

s1

0 1

1 1

1 1

1

1

0

1 1

1

01

1

c

d

e

f

a

b

01

01

s2 s3

++

++

+ ++

+ ++

+ +++

1

1

0

1

Fig. 4 Example decoding for a fountain code with K¼ 3 source
bits and N¼ 4 encoded bits
From [5]

IEE Proc.-Commun., Vol. 152, No. 6, December 2005 1065

fails to run to completion after a certain number K0 of
packets have been received. The parameter c is a constant of
order 1, if our aim is to prove Luby’s main theorem about
LT codes; in practice however it can be viewed as a free
parameter, with a value somewhat smaller than 1 giving
good results. We define a positive function

tðdÞ ¼

s
K
1

d
for d ¼ 1; 2; . . . ; ðK=SÞ � 1

s
K
logðS=dÞ for d ¼ K=S

0 for d4K=S

8>>><
>>>:

ð9Þ
(see Fig. 5) then add the ideal soliton distribution r to t and
normalise to obtain the robust soliton distribution, m:

mðdÞ ¼ rðdÞ þ tðdÞ
Z

ð10Þ

where Z ¼ SdrðdÞ þ tðdÞ. The number of encoded
packets required at the receiving end to ensure that the
decoding can run to completion, with probability at least
1� d, is K 0 ¼ KZ.

Luby’s analysis [3] explains how the small-d end of t has
the role of ensuring that the decoding process gets started,
and the spike in t at d¼K/S is included to ensure that every
source packet is likely to be connected to a check at least
once. Luby’s key result is that (for an appropriate value of
the constant c) receiving K 0 ¼ K þ 2 logeðS=dÞS checks
ensures that all packets can be recovered with probability at
least 1�d. In the illustrative Figures (Figs. 6a and b) the
allowable decoder failure probability d has been set quite
large, because the actual failure probability is much smaller
than is suggested by Luby’s conservative analysis.

In practice, LT codes can be tuned so that a file of
original size K ’ 10 000 packets is recovered with an
overhead of about 5%. Figure 7 shows histograms of the
actual number of packets required for a couple of settings of
the parameters, achieving mean overheads smaller than 5%
and 10% respectively. Figure 8 shows the time-courses of
three decoding runs. It is characteristic of a good LT code
that very little decoding is possible until slightly more than

K packets have been received, at which point, an avalanche
of decoding takes place.

6 Raptor codes

You might think that we could not do any better than LT
codes: their encoding and decoding costs scale as K loge K,
where K is the file size. But raptor codes [6] achieve linear
time encoding and decoding by concatenating a weakened
LT code with an outer code that patches the gaps in the LT
code.

LT codes had decoding and encoding complexity that
scaled as loge K per packet, because the average degree of
the packets in the sparse graph was loge K. Raptor codes
use an LT code with average degree �d about 3. With this
lower average degree, the decoder may work in the sense
that it does not get stuck, but a fraction of the source
packets will not be connected to the graph and so will
not be recovered. What fraction? From the balls-in-bins

exercise, the expected fraction not recovered is ~f � e��d ,
which for �d ¼ 3 is 5%. Moreover, if K is large, the law of
large numbers assures us that the fraction of packets not
recovered in any particular realisation will be very close to
~f . So, here is Shokrollahi’s trick: we transmit a K-packet file

by first pre-coding the file into ~K ’K=ð1� ~f Þ packets with
an excellent outer code that can correct erasures if the

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

rho

tau

Fig. 5 The distributions r(d) and t(d) for the case K¼ 10 000,
c¼ 0:2, d¼ 0.05, which gives S¼ 244, K/S¼ 41, and Z’1:3
The distribution t is largest at d¼ 1 and d/K¼S. From [5]

0

20

40

60

80

100

120

140

10−110−2

10−110−2

delta = 0.01

delta = 0.1

delta = 0.9

10 000

10 200

10 400

10 600

10 800

11 000

c

delta = 0.01

delta = 0.1

delta = 0.9

a

b

Fig. 6 The number of degree-one checks S and the quantity K0

against the two parameters c and d, for K¼ 10 000
a Number of degree-one checks S
b Quantity K0

Luby’s main theorem proves that there exists a value of c such that,
given K0 received packets, the decoding algorithm will recover the K
source packets with probability 1�d. From [5]

1066 IEE Proc.-Commun., Vol. 152, No. 6, December 2005

erasure rate is exactly ~f ; then we transmit this slightly
enlarged file using a weak LT code that, once slightly more

than K packets have been received, can recover ð1� ~f Þ~K of
the pre-coded packets, which is roughly K packets; then we
use the outer code to recover the original file (Fig. 9).

Figure 10 shows the properties of a crudely weakened LT
code. Whereas the original LT code usually recovers
K¼ 10000 packets within a number of received packets
N¼ 11000, the weakened LT code usually recovers 8000
packets within a received number of 9250. Better per-
formance can be achieved by optimising the degree
distribution.

For our excellent outer code, we require a code that can
correct erasures at a known rate of 5% with low decoding
complexity. Shokrollahi uses an irregular low-density
parity-check code. For further information about irregular
low-density parity-check codes, and fast encoding algo-
rithms for them, see [5, pp. 567–572] and [7, 8].

7 Applications

Fountain codes are an excellent solution in a wide variety of
situations. Here we mention two.

10 000 10 500 11 000 11 500 12 000

10 000 10 500 11 000 11 500 12 000

10 000 10 500 11 000 11 500 12 000
a

b

c

Fig. 7 Histograms of the actual number of packets N required in
order to recover a file of size K¼ 10 000 packets
a c¼ 0.01, d¼ 0.5 (S¼ 10, K/S¼ 1010, and Z’1:01)
b c¼ 0.03, d¼ 0.5 (S¼ 30, K/S¼ 337, and Z’1:03)
c c¼ 0.1, d¼ 0.5 (S¼ 99, K/S¼ 101, and Z’1:1)
From [5]

0

2000

4000

6000

8000

10 000

0 2000 4000 6000 8000 10 000 12 000

nu
m

be
r

de
co

de
d

Fig. 8 Practical performance of LT codes
Three experimental decodings are shown, all for codes created with the
parameters c¼ 0.03, d¼ 0.5 (S¼ 30, K/S¼ 337, and Z’1:03) and a
file of size K¼ 10000. The decoder is run greedily as packets arrive.
The vertical axis shows the number of packets decoded as a function of
the number of received packets. The right-hand vertical line is at a
number of received packets N¼ 11000, i.e., an overhead of 10%

0

2000

4000

6000

8000

10 000

0 2000 4000 6000 8000 10 000 12 000

max degree 8
max degree K

Fig. 10 The idea of a weakened LT code
The LT degree distribution with parameters c¼ 0.03, d¼ 0.5 is
truncated so that the maximum degree to be 8. The resulting graph has
mean degree 3. The decoder is run greedily as packets arrive. As in
Fig. 8, the thick lines show the number of recovered packets as a
function of the number of received packets. The thin lines are the
curves for the original LT code from Fig. 8. Just as the original LT
code usually recovers K¼ 10000 packets within a number of received
packets N¼ 11000, the weakened LT code recovers 8000 packets
within a received number of 9250

N = 18

K = 16

+ + + + + + + + + + + + + + + + + +

Fig. 9 Schematic diagram of a raptor code
In this toy example, K¼ 16 source packets (top row) are encoded by

the outer code into ~K ¼ 20 pre-coded packets (centre row). The
details of this outer code are not given here. These packets are encoded
into N¼ 18 received packets (bottom row) with a weakened LT code.
Most of the received packets have degree 2 or 3. The average degree is
3. The weakened LT code fails to connect some of the pre-coded
packets to any received packet – these 3 lost packets are highlighted in
grey. The LT code recovers the other 17 pre-coded packets, then the
outer code is used to deduce the original 16 source packets

IEE Proc.-Commun., Vol. 152, No. 6, December 2005 1067

7.1 Storage
You wish to make a back-up of a large file, but you are
aware that your magnetic tapes and hard drives are all
unreliable: catastrophic failures, in which some stored
packets are permanently lost within one device, occur at a
rate of something like 10�3 per day. How should you store
your file?

A fountain code can be used to spray encoded packets all
over the place, on every storage device available. To recover
the file, whose size was K packets, one simply needs to find
K 0 ’K packets from anywhere. Corrupted packets do not
matter; we simply skip over them and find more packets
elsewhere.

This method of storage also has advantages in terms of
speed of file recovery. In a hard drive, it is standard practice
to store a file in successive sectors of a hard drive, to allow
rapid reading of the file; but if, as occasionally happens, a
packet is lost (owing to the reading head being off track for
a moment, giving a burst of errors that cannot be corrected
by the packet’s error-correcting code), a whole revolution of
the drive must be performed to bring back the packet to the
head for a second read. The time taken for one revolution
produces an undesirable delay in the file system. If files were
instead stored using the fountain principle, with the digital
drops stored in one or more consecutive sectors on the
drive, then one would never need to endure the delay of re-
reading a packet; packet loss would become less important,
and the hard drive could consequently be operated faster,
with higher noise level, and with fewer resources devoted to
noisy-channel coding.

7.2 Broadcast
Imagine that ten thousand subscribers in an area wish to
receive a digital movie from a broadcaster. The broadcaster
can send the movie in packets over a broadcast network, for
example, by a wide-bandwidth phone line, or by satellite.
Imagine that f¼ 0.1% of the packets are lost at each house.
In a standard approach in which the file is transmitted as a
plain sequence of packets with no encoding, each house
would have to notify the broadcaster of the fK missing
packets, and request that they be retransmitted. And with
ten thousand subscribers all requesting such retransmis-
sions, there would be a retransmission request for almost

every packet. Thus the broadcaster would have to repeat
the entire broadcast twice in order to ensure that most
subscribers have received the whole movie, and most users
would have to wait roughly twice as long as the ideal time
before the download was complete.

If the broadcaster uses a fountain code to encode the
movie, each subscriber can recover the movie from any
K 0 ’K packets. So the broadcast needs to last for only, say,
1.1K packets, and every house is very likely to have
successfully recovered the whole file.

Another application is broadcasting data to cars. Imagine
that we want to send updates to in-car navigation databases
by satellite. There are hundreds of thousands of vehicles,
and they can only receive data when they are out on the
open road; there are no feedback channels. A standard
method for sending the data is to put it in a carousel,
broadcasting the packets in a fixed periodic sequence. ‘Yes,
a car may go through a tunnel, and miss out on a few
hundred packets, but it will be able to collect those missed
packets an hour later when the carousel has gone through a
full revolution (we hope); or may be the following day y’.

If instead the satellite uses a fountain code, each car needs
to receive only an amount of data equal to the original file
size (plus 5%).

8 References

1 Berlekamp, E.R.: ‘Algebraic coding theory’ (McGraw-Hill, New York,
1968)

2 Lin, S., and Costello, D.J. Jr.: ‘Error control coding: fundamentals and
applications’ (Prentice-Hall, Englewood Cliffs, New Jersey, 1983)

3 Luby, M.: ‘LT codes’. Proc. 43rd Ann. IEEE Symp. on Foundations
of Computer Science, 16–19 November 2002, pp. 271–282

4 Byers, J., Luby, M., Mitzenmacher, M., and Rege, A.: ‘A digital
fountain approach to reliable distribution of bulk data’. Proc. ACM
SIGCOMM’98, 2–4 September 1998

5 MacKay, D.J.C.: ‘Information theory, inference, and learning
algorithms’ (Cambridge University Press, 2003), Available from
www.inference.phy.cam.ac.uk/mackay/itila/

6 Shokrollahi, A.: ‘Raptor codes’. Technical report, Laboratoire
d’algorithmique, !Ecole Polytechnique F!ed!erale de Lausanne,
Lausanne, Switzerland, 2003. Available from algo.epfl.ch/

7 Richardson, T., Shokrollahi, M.A., and Urbanke, R.: ‘Design of
capacity-approaching irregular low-density parity check codes’, IEEE
Trans. Inf. Theory, 2001, 47, (2), pp. 619–637

8 Richardson, T., and Urbanke, R.: ‘Efficient encoding of low-density
parity-check codes’, IEEE Trans. Inf. Theory, 2001, 47, (2), pp. 638–656

1068 IEE Proc.-Commun., Vol. 152, No. 6, December 2005

