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Abstract — We exhibit a class of universal Raptor
Codes: for a given integer k, and any real ε > 0, Rap-
tor Codes in this class produce a potentially infinite
stream of symbols such that any subset of symbols of
size k(1 + ε) is sufficient to recover the original k sym-
bols, with high probability. Each output symbol is
generated using O(log(1/ε)) operations, and the orig-
inal symbols are recovered from the collected ones
with O(k log(1/ε)) operations.

I. Introduction

Raptor Codes are an extension of LT-Codes [1]. The pa-
rameters of a Raptor Code of length k over a field F are given
by a pre-code C of dimension k and block-length n over F,
and a probability distribution Ω on F

n. Given k source sym-
bols x1, . . . , xk, the pre-code first encodes these symbols into
a codeword (y1, . . . , yn) of length n; the symbols belong to a
finite dimensional vector space over F. Each output symbol
is obtained by sampling from the distribution Ω to obtain a
vector (v1, . . . , vn). The value of the output symbol is then
obtained as

∑n
i=1 viyi.

The case of primary interest is when F = F2, and Ω is a
distribution which is constant on words of equal weight. In
this case, Ω can be described by the numbers Ω1, . . . , Ωn such
the probability of a vector x ∈ F

n under Ω is Ωw/
(

n
w

)
, where

w is the Hamming weight of x. In this case, we identify Ω with
the generating polynomial Ω(x) =

∑n
i=1 Ωix

i; the parameters
of the Raptor Code then become (k, C, Ω(x)). Note that a
Raptor Code does not have a fixed block-length. In applica-
tions, x1, . . . , xk can be packets to be sent over a computer
network. The Raptor Code can be used to produce a poten-
tially limitless stream of output symbols (i.e., packets). The
design problem in this case consists of choosing the parame-
ters of the Raptor Code in such a way that efficient decoding
is possible after reception of k(1 + ε) output packets, for ε
arbitrarily close to zero. We call such a decoding algorithm
an algorithm overhead ε.

An encoding algorithm is called linear time if the pre-code
can be encoded in linear time, and the average number of op-
erations to produce an output symbol is a constant. A decod-
ing algorithm is called linear time if, after collecting a certain
number of output symbols, it can decode the k source symbols
in time O(k). We will solve the asymptotic design problem for
Raptor Codes by showing that, for any given ε, an appropri-
ate choice of the pre-code and the output degree distribution
will result in the Belief Propagation (BP) Decoding algorithm
to be linear time and of overhead ε.

II. Asymptotic Analysis

Let ε > 0, and let Cm be a sequence of codes of block-length n
such that the rate R of Cm is (approximately) (1 + ε/2)/(1 +
ε), and such that the BP decoder can decode Cm on a BEC
with erasure probability δ = (ε/4)/(1 + ε) = (1 − R)/2 with

O(n log(1/ε)) arithmetic operations. Further, let D := �4(1+
ε)/ε� and define

ΩD(x) =
1

µ + 1

(
µx +

D∑
i=2

xi

i(i − 1)
+

xD+1

D

)
,

where µ = (ε/2) + (ε/2)2.
Theorem 1. Let R = (1 + ε/2)/(1 + ε), and Cm be the
family of codes of rate R and dimension k with the proper-
ties described above. Then the Raptor code with parame-
ters (k, Cn, ΩD(x)) has a linear time encoding algorithm, and
BP decoding is a linear time decoding of overhead ε for the
code. More precisely, it can be shown that the average num-
ber of operations to produce an output symbol is O(log(1/ε)),
and the average number of operations to recover the k source
symbols is O(k log(1/ε)). The theorem is proved using a com-
bination of density evolution techniques from [2] and Luby’s
techniques [1].

III. Finite Length Design
We have developed efficient techniques to design Raptor Codes
of small length for which the BP decoder has provable guaran-
tees on its error performance. The design consists of a design
problem for the output degree distribution Ω(x), and the de-
sign problem for the pre-code C. For lack of space, we will not
discuss the details of our approach, and confine ourselves to
mentioning an example only. In this example, we assume that
k > 64536. First, we encode the k source symbols using an
extended Hamming Code to produce k̃ symbols. The value of
k̃ is roughly k + �log2(k)�. Next, we use a random left-regular
LDPC code with k̃ + 1000 message symbols and 580 check
symbols in which the message symbols are all of degree 4, and
the neighbors of each message symbol are chosen randomly.
Using this code, we encode the k̃ symbols into k̃ + 1000 input
symbols. This completes the description of the pre-code. For
the output degree distribution Ω(x) we choose

Ω(x) = 0.008x + 0.494x2 + 0.166x3 + 0.073x4+
0.083x5 + 0.056x8 + 0.037x9 + 0.056x19+
0.025x65 + 0.003x66.

Then we can show that the error probability of the BP decoder
on this Raptor Code is at most 1.71 × 10−14. The proof of
this assertion is based on a novel analysis tool for finite length
LT Codes [3], combined with an efficient method to analyze
right-Poisson LDPC codes on the BEC.
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