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e SFIO on Swiss-T1

* New optimizations of SFIO read/write opera-
tions

e SFIO on top of MPICH, performance on T1
« SFIO on top of FCI, performance on T1
e Conclusion

e Future work



SFIO is ported to Swiss-T1

e The SFIO library imports the application
environment from CODINE in order to
dynamically specify the set of 1/0O nodes

e Detection of a bug in MPICH on T1 (version
1.1 and 1.2.0): reception of data from the net-
work into fragmented memory pointed by
MPI derived datatype.

e SFIO is modified to avoid this bug when run-
ning under MPICH.

 Additional SFIO interface functions to
dynamically access to the list of 1/0O nodes



Optimisation of SF1O read/write operations
for consecusive single block requests

 Control information transfer optimisation for
SFIO read and write operations. Control data
transmitted in buffered asynchronous mode.

 Optimisation of transmission of data together
with control information. Fragmented data
together with controlling arrays are grouped
Into single datatype.

« Asynchronous optimisation of data reception
at Compute Node for SFIO read operation.

» Modifications of the SFIO library architec-
ture.

e A graphical demonstration of data flow of
optimized SFIO read operation.



Performance improvement by optimisation of control data transmission
Consecutive accesses to a SFIO 10MB/500B/810 file on Swiss-T0/Hub
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Performance improvement by grouping control data with access data
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Consecutive accesses to a SFIO 10MB/500B/810 file on Swiss-T0/Hub
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SFIO Blocking Read, blocking implementation
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* SFIO All-to-All concurent write access from
all compute nodes to all 1/0 nodes

 Global File size is 2000MByte

e Stripe unit size is 200Byte only



SFI10 all-to-all 1/0 performance on
Swiss-T1’s Fast Ethernet and Tnet

SF10 on top of MPICH
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 Superlinear speedup of SFIO/FCI due to augmentation of
cache effect when increasing the number of 1/0 nodes.



Conclusion

e SFIO is portable, highly scalable, and ready
for the distribution.



Future work

» SFIO performance benchmarking on the large
supercomputer of Sandia National Laboratory.

» Adapt from TO to T1 the modifications of
MPICH/ADIO which provide a routing of a sub-
set of MPI-1/0O operations to the SFIO.

» Performance measurements of MPI-1/O inter-
faced to SFIO through MPICH/ADIO.

 Possibly, creation of a portable MPI1-1/O interface
library to SFIO.

» Asynchronous implementation of blocking write
operation. Pipelining on the 1/0 node.



