SFIO progress on Swiss-TX
Swiss-Tx progress meeting September 25, 2000

Emin Gabrielyan

EPFL, Computer Science Dept.
Peripheral Systems Lab.
{Emin.Gabrielyan,RD.Hersch}@epfl.ch

e SFIO on Swiss-T1

* New optimizations of SFIO read/write opera-
tions

e SFIO on top of MPICH, performance on T1
« SFIO on top of FCI, performance on T1
e Conclusion

e Future work

SFIO is ported to Swiss-T1

e The SFIO library imports the application
environment from CODINE in order to
dynamically specify the set of 1/0O nodes

e Detection of a bug in MPICH on T1 (version
1.1 and 1.2.0): reception of data from the net-
work into fragmented memory pointed by
MPI derived datatype.

e SFIO is modified to avoid this bug when run-
ning under MPICH.

 Additional SFIO interface functions to
dynamically access to the list of 1/0O nodes

Optimisation of SF1O read/write operations
for consecusive single block requests

 Control information transfer optimisation for
SFIO read and write operations. Control data
transmitted in buffered asynchronous mode.

 Optimisation of transmission of data together
with control information. Fragmented data
together with controlling arrays are grouped
Into single datatype.

« Asynchronous optimisation of data reception
at Compute Node for SFIO read operation.

» Modifications of the SFIO library architec-
ture.

e A graphical demonstration of data flow of
optimized SFIO read operation.

Performance improvement by optimisation of control data transmission
Consecutive accesses to a SFIO 10MB/500B/810 file on Swiss-T0/Hub

%w\m_\,,_av IndyBnouyy peay

000005

00000¢

Performance improvement by grouping control data with access data

Aw\mr_.\zv Indybnouy) peay

“1\. -- 000005

ze (b;tes)

00000T

00005

0000¢

user block s

0000T

000005
000002
00000Eg
D
=
00005 >

N—r

oooom. n_m

Consecutive accesses to a SFIO 10MB/500B/810 file on Swiss-T0/Hub

(s/d) Indybnouyy peay
2 2 8 8 o

(90] N 4 o

00000S

o
o
o
o
o
N

000007

0000S

0000¢

user block size (bytes)

0000T

)
C
£
L ®© mw [5)
3 x-S OF
S o SoB
O nh N n=2=
ES g &Lk
s 28 823
mw o o 8o mw
C -0 <Lm
TS c omd
O = -
E c o 52 &
_ = 20 &
o nha 8 1;.M
C © o »0O
S>3 STe
oo < OxS

@ (mread() CmreadlD mwritec
cyclic er

distribution
sfp_rflush ' sfp_wflush '
sfp writec
Y Y

flushcache
mkbset ;
sfp_waitall sfp_readb "
SFP CMD SFP CMD SFP_CMD SFP_CMD
READ WRlTE _BREAD _BWRITE

6|O0N O/1 e Compute Node g

phase 0

phase 1

phase 2

phase 3

phase 4

phase 0

phase 1

SFIO Blocking Read, blocking implementation

Compute Node

MPI Network
m -request
i i E— { data
%) request
rr i ‘ g e data
[
= request
T T T = | g
<
request
LI T data
user memory U
SFIO Blocking Read, non-blocking implementation
MPI Network
Compute Node 7N
wn
L
o
C
O
T 1 T

user memory

C

data

S3PON O/I

Il

S9PON O/I

CO@ com Com Com
pute pute pute o
1o I/(;I 1/0 1/O
. J l]

tonep0 tonepl tonep2 tonep3

. Network

* SFIO All-to-All concurent write access from
all compute nodes to all 1/0 nodes

 Global File size is 2000MByte

e Stripe unit size is 200Byte only

SFI10 all-to-all 1/0 performance on
Swiss-T1’s Fast Ethernet and Tnet

SF10 on top of MPICH

70
}7_7 number of compute and 1/O nodes 0
Tgl i 250
T | % 40
L :
I R I 30
\||\|\| L i ||1 ||{||r||f||[||f|| |ﬂ| |r =
102030405060708091011121314151617181920212223242526272829 31
0
SF10 on top of MPI- -FCI 200
number of compute and 1/0 nodes £
il I # 600
wn F :
T i b : # H 500
2 1M il H I ;400
11 300
200
H s
el AL
91011121 31415 171819202122232 2572

1020 304050607080

 Superlinear speedup of SFIO/FCI due to augmentation of
cache effect when increasing the number of 1/0 nodes.

Conclusion

e SFIO is portable, highly scalable, and ready
for the distribution.

Future work

» SFIO performance benchmarking on the large
supercomputer of Sandia National Laboratory.

» Adapt from TO to T1 the modifications of
MPICH/ADIO which provide a routing of a sub-
set of MPI-1/0O operations to the SFIO.

» Performance measurements of MPI-1/O inter-
faced to SFIO through MPICH/ADIO.

 Possibly, creation of a portable MPI1-1/O interface
library to SFIO.

» Asynchronous implementation of blocking write
operation. Pipelining on the 1/0 node.

