
SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE N° 12 – NOV. 2000

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

 Pictorial representation of the nine Fluent 5 benchmark test cases (see article on page 13)

http://www.epfl.ch/bienvenue.html

2Nov. 2000

Editorial
L’inauguration de la Swiss T1 du 23 août dernier à l’EPFL

a démontré que l’utilisation d’un ordinateur parallèle basé sur
une grappe constituée de composants standard du marché est
une solution viable pour des calculs à haute performance. Les
résultats obtenus par les différents utilisateurs sur cette ma-
chine et présentés durant cette journée ont montré qu’effecti-
vement, le développement ainsi que l’exploitation des applica-
tions parallèles sur la Swiss T1 sont possibles dans le domaine
de calculs à haute performance (HPC), ceci grâce à l’utilisation
généralisée de la bibliothèque standard MPI (Message Passing
Interface) qui permet d’écrire des codes portables et perfor-
mants.

Sur les sept articles de cette édition du Supercomputing
Review, cinq présentent les résultats obtenus sur la Swiss T1.
En particulier, l’article de J. Vos montre l’efficacité de la Swiss
T1 à travers une comparaison détaillée des performances de
calcul et du surcoût dû aux communications entre différents
ordinateurs. En dehors des calculs purement techniques, il faut
relever l’article de E. Gabrielyan proposant une solution
efficace pour effectuer des entrées-sorties parallèles, possibilité
qui est d’ailleurs prévue dans le nouveau standard de MPI-2.
Dans les deux autres articles (Application de la méthode de
Smoothed Particle Hydrodynamics à la simulation des écou-
lements industriels de M. Sawley et. al. et Stabilité et confine-
ment des particules α dans le concept des réacteurs du type
Sphellamak de W.A. Cooper et. al.) les auteurs décrivent des
modèles de simulation particulièrement gourmands en res-
sources de calculs et potentiellement candidats pour une implé-
mentation sur des ordinateurs parallèles.

Editorial
The Swiss T1 inauguration day on the 23rd August at the

EPFL has demonstrated that the utilization of a computer
cluster made of computer commodities is an efficient solu-
tion for High Performance Computing (HPC). Indeed,
results obtained by several Swiss T1 users show that
development as well as the exploitation of parallel applica-
tions are possible in HPC, using the code portability and
efficiency of the MPI (Message Passing Interface) standard.

Five out of the seven articles presented in this edition of
the Supercomputing Review are dedicated to results obtained
on the Swiss T1. More specifically, J. Vos shows the efficiency
of Swiss T1 through a detailed comparison of performance
and communication overhead between different computers.
Beside the purely technical computations, E. Gabrielyan
proposes a performant solution for the parallel IO, a feature
already included in the new MPI-2 . In the two remaining
articles (Using Smoothed Particle Hydrodynamics for Industrial
Flow Simulations from M. Sawley et. al. and Stability and α-
particle Confinement in the Sphellamak Reactor Concept
from W.A. Cooper et. al.) , the authors describe simulations
requiring especially large computer resources and thus are
good candidates for an implementation on parallel computers.

Contents

Table des matières

Using Smoothed Particle Hydrodynamics for
Industrial Flow Simulations

Application de la méthode de Smoothed Particle
Hydrodynamics à la simulation des
écoulements industriels

Mark L. Sawley, Paul W. Cleary & Joseph Ha 3

Visualization Tools and Environments
for Very Large Data

Outils et environnements de visualisation pour
des très grands volumes de données

Jean M. Favre 9

The Fluent 5 Benchmark Results
on the Swiss-T1

Résultats du benchmark de Fluent 5
sur la Swiss-T1

Mark L. Sawley, Trach-Minh Tran
& Tom L. Tysinger 13

SFIO,Parallel File Striping for MPI-I/O

SFIO, Système de fichiers distribués pour
MPI-I/O

Emin Gabrielyan 17

Stability and α-particle Confinement in the
Sphellamak Reactor Concept

Stabilité et confinement des particules α
dans le concept des réacteurs du type
Sphellamak

W. Anthony Cooper & Olivier Fischer 22

HPC in Computational Structural Mechanics

HPC en mécanique des structures

Pieter Volgers 29

Flow Simulations on High Performance
Computers using the NSMB flow solver

Simulation des écoulements sur des ordinateurs à
haute performance utilisant le solveur NSMB

Jan B. Vos 32

3 Nov. 2000

La simulation numérique des écoulements indus-
triels par la méthode de smoothed particle
hydrodynamics est présentée. Cette technique
lagrangienne, qui s’applique sans maillage, se montre
bien adaptée aux applications impliquant des géomé-
tries et surfaces libres complexes. Ces avantages sont
illustrés par l’application aux deux procédés industriels
suivants : le moulage mécanique sous haute pression et
le moulage des pièces composites par transfert de résine.

The application of the smoothed particle
hydrodynamics method to numerical flow simula-
tions of industrial interest is presented. Such a meshless,
Lagrangian technique is shown to be particularly well
adapted to applications involving complex geometries
and free surfaces. The advantages of this method are
illustrated by its application to two industrial processes:
high pressure die casting and resin transfer moulding.

INTRODUCTION

Smoothed particle hydrodynamics (SPH) is a meshless
Lagrangian method for modelling mass flow and heat
transfer. Material properties are approximated by their
values at a discrete set of disordered points, or SPH particles.
SPH is directly based on the resolution of the macroscopic
governing equations, such as the Navier-Stokes equations.
These equations are written as a set of ordinary differential
equations for the mass and heat flux of the SPH particles.
The SPH method has been developed over the past two
decades, primarily for astrophysical applications [1]. More
recently, the method has been extended to incompressible
enclosed flows [2],[3].

This article presents the results of a study into the
application of the SPH method to the simulation of industrial
flow problems. SPH has a number of properties that make
it well suited to complex flow simulations:
❚ momentum-dominated flows are particularly adapted

to such a Lagrangian technique,
❚ complex physics, such as multi-phase flow, realistic

equations of state, heat transfer and solidification/curing,
can be included in a rigorous manner,

❚ complex geometries - in particular, complex free surfaces
- can be handled in a simple manner,

❚ extension from two- to three-dimensional flows is
straightforward.

Two specific industrial applications are considered in
this article: high pressure die casting (HPDC) and resin
transfer moulding (RTM). These applications illustrate the
use of different aspects of the SPH method. HPDC involves
momentum-dominated flows with highly complex free
surface behaviour, which are extremely difficult to simulate
with conventional numerical methods. RTM involves
relatively slow resin flow through a geometrically complex
porous medium; SPH is used to provide a mesoscopic-level
approach to the numerical simulation of this process.

Being a Lagrangian method, SPH shares with other
particle-based methods the characteristic of being compute
intensive. Various means to alleviate computational
requirements, involving algorithmic improvements and
parallel simulation, are briefly presented.

SMOOTHED PARTICLE
HYDRODYNAMICS

In the SPH method, the interpolated value of any field
A at position r is approximated by

A m A
W hb

b

bb

((,)r r- r) =∑ bρ (1)

where the value of A associated with particle b at rb is
denoted by Ab. The mass and density of particle b are
denoted by mb and ρb, respectively. W(r,h) is a spline-based
interpolation kernel of radius twice the interpolation
length h. The kernel is a C2 function that approximates the
shape of a truncated Gaussian function with support radius
2h; the sum in Eq. (1) is thus restricted to all particles b
within a radius 2h of rb.

The use of an interpolation kernel allows smoothed
approximations to the physical properties of the material to
be calculated from the particle information. The smoothing
formalism also provides a means to determine gradients of
material properties. The gradient of the function A is given
by

∇ = ∇∑A m A W hb
b

bb

((,)r r-r) bρ (2)

In this way, the SPH representation of the hydrodynamic
governing equations can be built from the Navier-Stokes
equations.

The most appropriate choice of SPH continuity equation
is

USING SMOOTHED PARTICLE HYDRODYNAMICS FOR
INDUSTRIAL FLOW SIMULATIONS

MARK L. SAWLEY, PAUL W. CLEARY & JOSEPH HA,
 CSIRO MATHEMATICAL & INFORMATION SCIENCES, CLAYTON, AUSTRALIA

4Nov. 2000

d
d

a
b a b ab

b
t

m W= − ∇∑ ()v vρ
(3)

since it is Galilean invariant, has good numerical conservation
properties and can be applied to free surfaces. The following
form of the SPH momentum equation is used

d
dt
v

f

v r

r

a = − +










−
+ +

m
P P

b
b

b

a

a

a b

a b

a b

ab ab

ab

ξ

2 2

2

4

()

.
22









 ∇

∑

Wab

b

,ρ ρ

ρρ

µµ
µµ η

(4)

where rab = ra – rb, f is a body force (per unit mass), µ the
dynamic viscosity, and ξ and η are constants. The above
formulation automatically ensures continuity of stress across
material interfaces, and allows multiple materials with
highly varying viscosities to be simulated accurately.

SPH is currently implemented as a quasi-compressible
method, with the pressure given by the equation of state

P P=








 −













0
0

1
γ

ρ
ρ

(5)

where P0 is the magnitude of the pressure and ρ0 is the
reference density. For the present study, the ratio of specific
heats γ = 7 is used. The speed of sound cs in the material is
given by

c P
Vs

2 0

0

2= =
γ
ρ α

(6)

where V is the characteristic or maximum fluid velocity.
Typically, α is chosen to be around 100, which ensures that
the density variation is less than 1% and the flow can be
regarded as incompressible.

Two types of boundary conditions have been used in the
present study. Periodic boundaries are applied by simply
replacing SPH particles that move outward across the
boundary by inward moving particles at the corresponding
opposite boundary. External solid walls are modelled by
placing boundary particles along the boundary. These particles
exert Leonard-Jones forces on the SPH particles in the
normal direction; appropriate interpolation of these forces
produces arbitrary, smoothly-defined boundaries. In the
tangential direction, the particles are included in the
summation for the shear force to give non-slip boundary
conditions at the walls. Note that the solid walls need not
necessarily be stationary; a moving wall is used, for example,
to model flow ahead of a piston injecting molten metal into
a die. The above set of ordinary differential equations is
integrated in time using an explicit predictor-corrector
scheme, which has a time step limited by the Courant
condition.

Further details of the numerical implementation of the
SPH method can be found in [3],[4].

It is important to note that the SPH method does not
require a computational mesh. The SPH particles contain
all the computational information and are free to move
throughout the computational domain.

HIGH PRESSURE DIE CASTING

High pressure die casting (HPDC) is a widely used
manufacturing process for mass production of components
of aluminium and magnesium alloys, such as automotive
transmission housings and gearbox parts. Molten metal is
injected at high speed (50 to 100 m s-1) and under very high
pressures into a die through a complex gate and runner
system. The geometrical complexity of the die leads to
strongly three-dimensional fluid flow. Within the die cavity,
jetting and splashing results in liquid droplet and possibly
atomised spray formation. Crucial to the production of
homogeneous cast components with minimal entrapped
voids is the order in which the various parts of the die fill and
the positioning of the gas exits. This is determined by the
design of the gate configuration and the geometry of the die.

The geometry of the die, the gate, the runner and the
cylindrical shot sleeve considered in the present study is
shown in Fig. 1. The fluid initially fills the cylindrical
column and is pushed downward by a plunger at the
top of the fluid moving at 15 m s-1. The fluid has a density
ρ = 1000 kg m-3 and a dynamic viscosity µ = 0.08 Pa s. The
Reynolds number at the gate is about 2700, with reference
to the gate height of 5 mm. (Simulations have also been
performed for Reynolds numbers of 500 and 2.7x104.) In
these simulations, a resolution of 1 particle/mm was used
giving a total of 292,931 particles.

Fig. 1 – Die for a slotted guide, including attached
cylindrical shot sleeve and fanned runner and gate

Two perspective views of the filling pattern at different
times are shown in Fig. 2. The first frame at 4 ms shows the
system after the runner has been filled and the fluid is just
entering the die. The second frame at 6 ms shows the fluid
entering the vertical cylindrical section. These frames indicate
that the leading material consists of fast moving fragments
and droplets generated by splashing as the fluid flows
around the distinct features of the die cavity. The final two
frames, at times 8 and 10 ms, show the fluid converging into
the slotted section of the die. Despite the geometrical

USING SMOOTHED PARTICLE HYDRODYNAMICS FOR INDUSTRIAL FLOW SIMULATIONS

5 Nov. 2000

symmetry of the die, the flow is observed to be asymmetric.
In addition, the jetting of fluid with a high velocity through
the gate gives rise to a small unfilled cavity on each side of
the die; this cavity remains one of the last regions to be filled.

The extreme complexity of the filling of this relatively
simple die geometry illustrates the severe demands imposed
on a numerical method by HPDC simulation. The present
meshless SPH method excels under such conditions, where
the flow is strongly momentum dominated. While this
study has been concerned solely with the die filling, it
should be noted that other physical phenomena associated
with HPDC (eg thermal effects, solidification [5]) can also
be incorporated into the SPH methodology in a relatively
straightforward manner.

 Further details concerning the application of SPH to
HPDC, including the results of validation studies, can be
found in [5]-[7].

RESIN TRANSFER MOULDING

The resin transfer moulding (RTM) process is used to
manufacture polymer composite components [8]. Liquid
resin is forced under pressure into a mould containing a
preform. The preform is chosen according to the desired
properties of the resulting composite component, and

generally consists of woven fibres. A number of other factors
are also important, including the dynamics of the resin flow.
Small clearances may exist between the fibre preform and
the mould edges due to the unravelling of fibre bundles
during the cutting of the preform, imperfect fitting or
deformation of the preform. Such defects influence the
resin flow, with high permeability regions leading to race-
tracking; these edge effects can result in the production of
unsatisfactory composite components.

RTM involves the flow in a finite unsaturated porous
medium. Before examining such a process, a preliminary
investigation was undertaken for flow in an infinite saturated
porous medium. The creeping flow of an incompressible,
isothermal, single-phase fluid through a porous medium is
governed by the well-known Darcy law [9]. A body force f
applied to a Newtonian fluid completely filling a porous
medium with permeability K gives rise to drift velocity uD
given by

K
u fD =µ

(7)

Here K is a second-order symmetric tensor, which may
have non-zero off-diagonal elements if the porous medium
is anisotropic. Equation (7) is a formulation of the Darcy
law, and is valid provided that viscous forces dominate over
the inertia forces, i.e.

USING SMOOTHED PARTICLE HYDRODYNAMICS FOR INDUSTRIAL FLOW SIMULATIONS

Fig. 2 – Plan and side views at selected times during the filling of the slotted guide die

6Nov. 2000

Rep
p pu d

= < 1
ρ

µ (8)

where up is the average pore velocity and dp is a characteristic
length scale of the pores.

Within the framework of the SPH methodology, a
porous medium can be modelled by the inclusion of a
number of fixed particles within the flow domain. These
particles provide a similar contribution to both the continuity
and momentum equations as the mobile SPH particles.
However, fixed particles are not influenced by the resulting
forces, and remain stationary (it being implicitly assumed
that the porous medium structure provides the necessary
counteracting force).

Since there is considerable freedom in the choice of the
number, location and clustering of the fixed particles, such a
model allows a large degree of flexibility to tailor the
properties of the porous medium. In addition, the
interpolation kernel W used in the SPH formalism can be
modified to alter the specific nature of the inter-particle
interactions. Such flexibility is of particular importance for
the modelling of a wide range of porous media flow conditions.

In a saturated porous medium, the entire (non-isolated)
pore volume is filled with fluid. A convenient means to
construct initial conditions for the SPH modelling of such
a medium is to establish an array of particles, of which an
appropriate number are randomly assigned as fixed particles.
The porosity ε of the medium can be defined by

= −1 number of fixed particles
total number of particles

ε (9)

It should be noted that the present model is not intended
to give an accurate representation of the microscopic pore-
scale behaviour of the flow. Except for certain academic
examples, such a microscopic representation would involve a
very complex fluid-solid interface to represent the detailed
pore structure. Rather, the present SPH model is intended as
an intermediate level, mesoscopic-scale representation. The
model aims to provide the correct global behaviour of the
flow, while also enabling the possibility to include more fine-
scale details that are not available from a macroscopic model.

An example of such a model of a two-dimensional
isotropic saturated porous medium is shown in Fig. 3, using
a medium constructed from an 80x80 array of particles. A
constant body force f = f0 x (from left to right) is applied to
the medium. Periodic boundary conditions are imposed at
each of the four edges of the array.

Fig. 3 shows that the body force produces a movement
of the mobile SPH particles through the void regions
surrounding the fixed particles. The preferred path of the
mobile particles across the medium has a tortuosity
determined by the placement of the fixed particles. While
the local velocity of the individual particles contains time-
varying x and y components, the y component of the time-
averaged drift velocity is found to be negligible.

A series of simulations has been undertaken to provide
a more quantitative analysis of the induced drift velocity.
Parametric studies have been undertaken varying the
following quantities:

❚ spatial resolution (ie number of SPH particles);
❚ porosity (ie percentage of fixed particles);
❚ porous medium properties (ie layout of fixed particles);
❚ fluid properties (eg viscosity);
❚ magnitude of applied body force.

Fig. 3 – Example of flow in a 2D porous medium with
ε = 0.8 and f0 = 1. Fixed particles are coloured white,
while mobile particles are coloured by their velocity

magnitude (Flow is from left to right)

Such studies have enabled a detailed analysis of the
properties of our mathematical model of porous media.

As an example of the results obtained, Fig. 4 presents the
calculated time-averaged drift velocity as a function of the
amplitude of the applied force, for ε = 0.8, ρ = 1000 kg m-3

and µ = 0.1 Pa s. These results show that for low applied
force (for which the inequality (8) is satisfied), the induced
drift velocity is proportional to the force. Since the porosity
(and hence the permeability) of the medium and the fluid
viscosity were constant for the simulations, these results are
thus in agreement with the Darcy law, Eq. (7). For higher
applied force, corresponding to a Rep greater than unity, a
nonlinear relationship is observed between the force and the
resulting drift velocity.

While flow in an infinite saturated porous medium may
be a valid approximation for some problems, in a number
of applications - such as RTM - the time-dependent filling
of the porous medium is of critical importance. For such
applications it is necessary to model the finite extent of the
porous medium and the propagation of the fluid free
surface. Our studies to date have considered a very simplified
model of mould filling in the RTM process. Important
effects such as fibre wetting, the removal of entrapped air,
and resin curing are not considered. However, it should be
noted that many of these more complex phenomena can be
incorporated in a straightforward manner into the SPH
methodology.

USING SMOOTHED PARTICLE HYDRODYNAMICS FOR INDUSTRIAL FLOW SIMULATIONS

7 Nov. 2000

<Vx>

f0

0.12

0.10

0.08

0.06

0.04

0.02

0.00
0 5 10 15 20

<Vx>

f0

1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

0 200 400 600 800 1000

Fig. 4 – Dependence of the drift velocity <Vx> on the
applied force f0 for (top) low values and (bottom) wide

range of values of applied force

A preliminary study of mould filling, including edge
effects, has been undertaken. The geometry considered is
presented schematically in Fig. 5, and consists of a two-
dimensional rectangular channel of length 220 mm and
width 80 mm. The preform, comprised of an isotropic
porous material, occupies the entire channel except for a
5 mm gap at one side. Numerical simulations have been
undertaken for a number of preform porosities, ranging
from ε = 0.3 to 0.9. The fluid (liquid resin) is injected into
one end of the channel, ahead of a piston moving at
0.1 m s-1. The resin has a density ρ = 1200 kg m-3 and a
dynamic viscosity µ = 0.2 Pa s.

220 mm

resin preform
5 mm gap 80

mm

Fig. 5 – Schematic diagram of geometry used for the
resin transfer moulding study (The left side section of

the resin has been truncated for clarity)

For the SPH simulation of the mould filling process, the
porous preform was constructed by randomly removing
particles from an array of Nf = 16,200 particles, the resulting
number of fixed particles being given by (1-ε)Nf . In the
initial state, the preform was considered to be empty,
containing only fixed particles (with no enclosed mobile
SPH particles). The resin was modelled by 11,770 SPH
particles, corresponding to a resolution of 1 particle/mm. A
moving wall condition was applied at the left boundary,
which forced the mobile SPH particles into the inter-
particle spaces of the porous preform. Fixed wall conditions
are applied at the horizontal upper and lower boundaries.

Fig. 6 – SPH particle locations, coloured by velocity, at
selected times (top to bottom: 0.32, 0.68, 1.03, 1.39,
1.74, 2.10, 2.45 s) during the mould filling for a preform

porosity of ε = 0.5 (Flow is from left to right)

Figure 6 shows, for a preform porosity of ε = 0.5, the
location of the fluid particles at selected times during the
mould filling. The filling of the mould is observed to give
rise to two-dimensional flow. The free surface of the resin
is initially convex, due to the Poiseuille-like flow that is
established in the channel before the resin reaches the
preform. As the resin enters the region partially filled by the
preform, the free surface rapidly becomes concave in shape,
due to the permeability in the preform being lower than in
the gap. As the resin is forced further into the channel, its
free surface appears to reach a steady-state shape. This

USING SMOOTHED PARTICLE HYDRODYNAMICS FOR INDUSTRIAL FLOW SIMULATIONS

8Nov. 2000

USING SMOOTHED PARTICLE HYDRODYNAMICS FOR INDUSTRIAL FLOW SIMULATIONS

predicted behaviour of the resin flow in the unsaturated
porous preform material appears to be in qualitatively good
agreement with available experimental data [10].

COMPUTATIONAL REQUIREMENTS

Like most particle-based methods, SPH simulations
generally require significant computational resources,
particularly for large-scale 3D applications with complex
physical modelling. As an example, the modest-size 3D die
casting simulation described in this article was performed on
a single 667 MHz Alpha ev67 processor of a Compaq ES40
system, and required about 90 MB and 3.5 days to complete.

Two complementary approaches are being pursued to
alleviate computational resource requirements: improved
numerical algorithms (eg fully incompressible method,
implicit time integration) and code parallelisation. Two
different approaches to parallel simulation are being
considered:
❚ parallel computation involving extensive code

parallelisation to distribute each individual simulation
over multiple processors. This can be achieved in a
generally straightforward manner for a particle-based
method such as SPH, and is presently under consideration
using message passing (MPI library). Such a technique
will be essential for the simulation of full-scale industrial
applications.

❚ computation in parallel involving the distribution across
multiple processors of several instances of the same
(sequential) computation with different input data.
Such an approach, which requires only minor code
modification, has been used for the above-mentioned
parametric studies of flow in a saturated porous medium.
The Swiss-T1 parallel machine (during its installation
and testing phase when only the Fast Ethernet
interconnect was available) was employed for these
studies, generally using 16 processors. Due to the high
level of efficiency of these essentially embarrassingly
parallel computations, a very high throughput was
achieved.
For large-scale industrial simulations, availability of

computer resources may impose limits on the simulation
size; such limitations, however, tend to diminish rapidly
with the ever-increasing computational power available. It
is generally considered that limitations associated with
realistic physical modelling are more severe. While complex
physical modelling has not been considered in detail in this
article, additional investigations (see eg [3],[5]-[7]) indicate
that the SPH method provides a convenient framework for
implementation of the necessary advanced physical models.

CONCLUSIONS

The two examples considered in the present study
illustrate that the SPH method can be effectively employed
for the numerical simulation of complex industrial

applications. Such a meshless Lagrangian method excels in
the simulation of the complex free surfaces that arise in
HPDC due to the high velocity injection of molten metal
into a die cavity. The treatment of an extremely fine-detail
geometry, such as necessary in a mesoscopic-level simulation
of the flow in a porous medium and its application to RTM,
has also been demonstrated using SPH.

The computational resources required for this particle-
based method may be substantially greater than for
conventional mesh-based approaches. However, this is
more than counter-balanced by the greater flexibility of the
SPH method to handle in a simple manner not only
complex geometries but realistic physical modelling.

ACKNOWLEDGEMENTS

The authors wish to thank François Debroux for his
assistance in the visualisation of the 3D HPDC simulation
results. The Service Informatique Central of the Ecole
Polytechnique Fédérale de Lausanne is acknowledged for
providing access to the Swiss-T1 machine. The HPDC
study was funded by the Cooperative Research Centre for
Alloy and Solidification Technology (CAST).

Further information and application examples regarding
this work can be found at www.cmis.csiro.au/cfd .

REFERENCES

[1] J.J. Monaghan, Smoothed particle hydrodynamics, Annual
Review of Astronomy and Astrophysics, 30 (1992) 543-574.

[2] J.J. Monaghan, Simulating free surface flows with SPH,
Journal of Computational Physics, 110 (1994) 399-406.

[3] P.W. Cleary, Modelling confined multi-material heat and
mass flows using SPH, Applied Mathematical Modelling, 22
(1998) 981-993.

[4] P.W. Cleary and J.J. Monaghan, Boundary interactions and
transition to turbulence for standard CFD problems using
SPH, Proc. 6th International Computational Techniques
and Applications Conference, Canberra (1993) 157-165.

[5] P.W. Cleary and J. Ha, Effect of heat transfer and solidifica-
tion on high pressure die casting, Proc. 13th Australasian
Fluid Mechanics Conference, Melbourne (1998) 679-682.

[6] P.W. Cleary, J. Ha and V. Ahuja, High pressure die casting
simulation using smoothed particle hydrodynamics, Interna-
tional Journal of Cast Metals Research, 12 (2000) 335-355.

[7] W. Thorpe, V. Ahuja, M. Jahedi, P. Cleary, J. Ha and
N. Stokes, Simulation of fluid flow within the die cavity in
high pressure die casting using smoothed particle hydrodynamics,
Proc. 20th International Die Casting Congress and Expo-
sition, Cleveland (1999) Paper T99-014.

[8] K. Potter, Resin transfer moulding, Chapman & Hall (1997).
[9] M. Kaviany, Principles of heat transfer in porous media,

Springer-Verlag, 2nd ed. (1995).
[10] W.-B. Young and C.-L. Lai, Analysis of the edge effect in resin

transfer moulding, Composites Part A, 28A (1997) 817-
822. ■

http://www.cmis.csiro.au/cfd/

9 Nov. 2000

La facilité avec laquelle les simulations et expérien-
ces génèrent des données a souvent surpassé la capacité
des outils de représentation graphique disponibles dans
les centres de calcul à haute performance. Cela est en
train de changer, alors que la visualisation scientifique
devient un élément à part entière du calcul à haute
performance. Dans cet article, nous étudions quelques
systèmes et techniques disponibles pour la compréhen-
sion et la représentation de bases de données très larges
et décrivons les meilleures méthodes de la chaîne de
production de la visualisation scientifique. La gestion
de données de la part des serveurs de fichiers, le calcul des
représentations graphiques, et le rendu 3D avancé
forment les éléments essentiels de cette activité.

The facility with which computational scientists
and experiments can generate data has often out-
paced the capacity of the post-processing tools available
in High Performance Computing environments. This
is changing however, as scientific visualization is
becoming itself an HPC activity. In this article, we
wish to review systems and techniques which are
becoming feasible for the ingestion and graphical
display of very large data sets. Based on our experience
and a review of current practices, an attempt is made
to describe the best visualization methods. From data
management issues on the files servers, to information
extraction, to data processing and advanced 3D
graphics, we propose a journey through the data
production and visualization events, reviewing some
of the latest technologies available.

INTRODUCTION

Data visualization is reaching an all-time high. How
many times have we heard this statement in the last few
years? Year 2000 is already marked by the first publicized
11.5 billion cell visualization [1], and the trend shows no
signs of slowing down. Large-scale environments that
attempt to optimize the use of resources at all levels of the
data visualization chain are supplanting the traditional
desktop graphics workstation. File access and data retrieval
are the first essential links of this infrastructure. When a
dataset does not fit in local memory, or in the local disk
space available, a set of non-trivial techniques must be put
in place to accelerate its retrieval. Second, comes the

information extraction, the essence of data visualization.
Parallel or distributed implementations are now possible,
paving the way towards computational-steering
architectures.

Parallelism has also moved to the graphics hardware
systems, with the multi-pipe rendering servers and the large
displays. These computational servers can offer a tight
coupling between simulation and visualization, or they can
be used to generate remote graphics, leaving no much work
on the client side but the display of static images. To offer
interactivity using remote rendering requires a minimum of
10 frames per second, using potentially over 30 Mbytes per
second of bandwidth for full-screen uncompressed images.
Generally though, visualization must provide the interactive
means to explore data and their representations. To accelerate
this process, we will see how improvements in 3D graphics
technology are contributing to handling objects made of
millions of graphics primitives.

The images and movies produced during visualization
remain static snapshots of the dataset under study. An
additional added value of a visualization environment is its
ability to reproduce results, and to facilitate side-by-side
comparisons. To this effect, we will see the role played by
scripting languages in visualization. They provide the
indispensable programs necessary such that the deployment
of a complete visualization chain becomes less tedious.

FILE, DATA AND PROCESS MANAGEMENT

The need for some form of Data Management for
efficient data access becomes obvious when dealing with
datasets beyond a few hundreds of megabytes. Data access
should be optimized on a variable basis, on a computational
block basis, and at specific time-steps for transient solutions
analysis. Such access should be provided without the need
for searching. It should provide support for self-descriptive
and context-free data manipulation. For example, MemCom
[2] is a data management system that has been specifically
designed for engineering applications, like computational
solid mechanics, computational fluid dynamics, and coupled
multi-disciplinary applications. MemCom consists of a
wide range of functions for data definition and data
manipulation, as well as auxiliary tools. The data
manipulation functions are not tied to specific applications
and APIs for C, C++, Fortran, as well as a CORBA interface
exist. Access to large collections of data has been optimized
in MemCom, and it fits very well the concept of load-on-
demand.

VISUALIZATION TOOLS AND ENVIRONMENTS FOR
VERY LARGE DATA

JEAN M. FAVRE, SATHYA KRISHNAMURTHY, CSCS, SWISS CENTER FOR SCIENTIFIC COMPUTING

10Nov. 2000

A user-defined reader created to provide a native interface
to MemCom databases for the EnSight software
(www.ensight.com) was created at the Swiss Center for
Scientific Computing (CSCS) [3], and took advantage of
the very explicit and clear hierarchies of template sub-
routines specified by the EnSight environment which
matches extremely well the part, block, variable, and time-
step access sub-routines offered by MemCom.

OPTIMIZED FILE ACCESS

Waiting to load data into memory when it is needed is
just one facet of optimizing access. To handle very large data
sequences, a user should also take into account the non-
uniform access times of different storage technologies. If
data have to be retrieved across a network from magnetic
storage, it is advisable to stage the data, i.e. to perform a pre-
fetch operation that will get the files ready when they are
required. We have run such a visualization script at CSCS
for the simulation of a large laminar-to-turbulent transition
in a supersonic boundary layer [4, 5]. A file server moves
data files from a slow storage area (Timberline, Redwood or
Eagle tape drives at a maximum speed of 12 Mbytes/sec) to
a RAID5 disk array (disks can now be found which operate
between 120 and 350 Mbytes/sec). To optimize data reading
without filling up the RAM, files can also be memory-
mapped. We have made use of special features of the AVS/
Express software (www.avs.com) to accomplish this. Often,
though, many UNIX shell commands are also necessary to
facilitate file management, and it is important to have the
ability to execute and synchronize shells scripts from within
the visualization softwares.

DATA-STREAMING AND DATA PARALLELISM

With data larger than RAM, there is the option of
streaming the data, i.e. partitioning it into smaller and
independent subsets that can be processed one at a time.
The pv3 system pioneered this technique in an application
allowing a network of heterogeneous computers to process
data in chunks, sending them to a collector process
responsible for gathering the final image. The Vtk software,
an object-oriented library of data and visualization classes
improves on this model by providing application-
independent components that support multi-threaded Data
Streaming [6]. However, it is currently limited to handle
only structured data (images or volumes) which are cleanly
separable, and where the result is independent of the
number and size of the data chunks.

Data parallelism is essential for contemporaneously
processing independent subsets of data. In Vtk, the
implementation of data parallelism does not require any
additional changes to the toolkit. To write a program that
expresses data parallelism:
❚ copies of the same modules are run in each process,
❚ these data parallel modules process independent subsets

of data,
❚ the results of the last data parallel module are usually

merged to create a single process result.

TASK PARALLELISM

Client-server applications are the first examples of
distributed computing. They are generally found under the
following three scenarios.

TRANSFERRING DATA TO THE CLIENT

The network serves as a data communication medium
where the data is tagged to use the MIME-typing concept
to divert it to a particular application. Here, the software
must be installed and run on every user’s desk. The idea has
been explored in the Vis5D system [7]. Meteorological data
can be tagged with MIME-type ‘application/vis5d’, and a
browser configured to pass data of that MIME-type to
Vis5D. The user then selects the options in Vis5D to create
whatever visualization is required.

TRANSFERRING SOFTWARE

This is a Java based approach whose origins are traced to
early examples such as the NPAC Visible Human Viewer.
These examples were designed for cases where the data was
closely associated with the software, and indeed located on
the same server. However for many applications this is
inappropriate - the data usually is associated with the user
rather than the software provider.

TRANSFERRING GRAPHICS

This idea originated with the server-based systems. It is
a very general approach, and several similar systems have
been proposed. A logical extension of this approach in the
case of Modular environments is to split their operation
into two parts: a windowed front-end that can execute on
the client, and a pipeline from the server, which connects
with the client. EnSight, IRIS Explorer, IBM Data Explorer
etc. use this principle. Most softwares use the X-server and
the Java networking methods for this communication.
Others (e.g. EnSight) connect through a proprietary network
connection mechanism. Another interesting example is the
Visapult [8] system; it has a decoupled computational back-
end that performs parallel software volume rendering using
MPI and a front-viewer communicating over a custom IPC
layer built using TCP sockets. The viewer is itself a parallel
application programmed with OpenGL and pthreads.

In another development, the Vtk visualization library is
also extended to support multiple processes [9]. A system
process object encodes whether the system is distributed
(via MPI), or shared memory (via pthreads or sprocs). In
many of the recent visualization softwares, execution is
based on the data-flow approach. To make parsimonious
use of the computing resources when confronted with large
data, it is then recommended to drive the execution in an
event-driven fashion. Multiple visualization parameters
and queries can then be grouped before requesting the data
required. This is in contrast to environments which are
demand-driven, and whose performance under heavy loads
suffers from too many update requests.

VISUALIZATION TOOLS AND ENVIRONMENTS FOR VERY LARGE DATA

http://www.ensight.com
http://www.avs.com

11 Nov. 2000

DOWN THE GRAPHICS PIPELINE

Visualization is traditionally achieved by the creation of
geometric representations, or of pixel-based imagery. Many
opportunities exist to optimize this graphical data display.
OpenGL offers now many features useful for the display of
engineering data. Vertex arrays for example, are a recent
feature (OGL 1.1) which allows to send entire list of
primitives (triangles, or quadrilaterals for example) by a
single call to the rendering API, specifying at once, all the
pointers where coordinates, colors, textures can be found in
block-optimized regions of memory on the client side.
Others ways to minimize data exchange between the
OpenGL client and its server process are display lists, or
textures objects.

To improve interactivity, one may also use different
levels of detail (LOD) — bounding boxes, clouds of points,
surface decimations with a smaller number of primitive cells
or higher order representations such as parametric surface
hulls — for interactive display, switching then to full
resolution graphics for static image production.

VOLUME RENDERING

The visualization technique where the best contributions
from hardware rendering and the newest features of OpenGL
are evident is Volume Rendering. It is a technique used to
display 3-D data without the intermediate step of deriving
a geometric representation like a solid surface. The graphical
primitives being characteristic for this technique are called
voxels, derived from volume element and analog to the
pixel. However, voxels describe more than just color, and in
fact can represent opacity or shading parameters as well.
The data structures employed to manipulate volumetric
data come in two flavors:
❚ the data may be stored as a 3-D grid, or
❚ it may be handled as a stack of 2-D images.

The computational demands of volume rendering require
the use of a high degree of hardware parallelism. In addition,
volume rendering is a memory intensive operation; the
design of the memory system is critical in volume rendering
architectures. Texture mapping hardware, which is a
common feature of modern 3D graphics accelerators, can
be exploited for volume rendering by applying a method
called planar texture resampling. The volume is stored in
3D texture memory and resampled during rendering by
extracting textured planes parallel to the image plane.
Lookup tables map density to RGBA color and opacity.
The resulting texture images are combined in back_to_front
visibility order using compositing. There are certain
limitations that are encountered while going from 2D-
texture to the 3-D texture approach:
❚ the memory required by the triple image stack is a factor

of three larger than the original data set, which can be
critical for large data sets as they are common in medical
imaging or microscopy,

❚ the geometry sampling of the volume must be aligned
with the 2-D textures concerning the depth, i.e. arbitrary
surfaces constructed from a triangle mesh cannot easily

be colored depending on the properties of a surrounding
volume.
For this reason, advanced rendering architectures support

hardware implementations of 3-D textures (e.g. Mitsubishi’s
VolumePro Hardware board [10]). The correspondence
between the volume to be rendered and the 3-D texture is
obvious. Any 3-D surface can serve as a sampling device to
monitor the coloring of a volumetric property. I.e., the final
coloring of the geometry reflects the result of the intersection
with the texture. Following this principle, 3-D texture
mapping is a fast, accurate and flexible technique for
looking at volumetric data. It is now part of the OpenGL
1.2 specification [11].

MULTI-PIPE RENDERING ENVIRONMENTS

Going one step further is to include parallelism into the
graphics rendering hardware, as found in the Silicon Graphics
Onyx2. Parallelism is now found in the geometry engines
and raster managers responsible for lighting calculations,
geometric transformations, image-processing functions such
as convolution and histogram equalization, and represent a
more effective approach than multiple CPUs. Pixel
operations, including z-buffer testing, color and transparency
blending, texture mapping, and multisample anti-aliasing
are then possible at interactive rates. While the cost of
parallel graphics hardware remains high, there are several
utilities developed to deliver these advanced visualization
capabilities and performance to the desktop. The OpenGL
Vizserver enables the SGI Onyx2 visualization workstation
as a graphics server, transmitting to remote desktops, over
standard high-speed networks, the compressed images from
the Onyx2 frame buffer [12]. A similar system developed at
Sandia National Laboratories provides a four-way parallel
remote console system, by splitting, compressing and
delivering the high-resolution displays of a visualization
server over an ATM network [13].

Transition for code development between workstation
and multi-pipe renderings architectures can be done with
the Multi-pipe Utility www.devprg.sgi.de.devtools/tools/
MPU), a programming interface for OpenGL. It allows the
development for large-scale environments such as CAVEs,
Power-Walls, ImmersaDesks and the like. As an example,
it allows a multiprocessor, multi-pipe application to be
developed and tested on a single-graphics board desktop
workstation, without recompilation. Another library
developed at Lawrence Livermore National Laboratories is
the Virtual Display Library, VDL [14]. VDL provides a
simple API for threaded, multi-pipe rendering through
basic display management services, such as window and
thread creation, and double-buffer window synchronization.

Programming these graphics supercomputers is thus
becoming much easier, and more affordable, since their
power can be harnessed and shared by remote users.

PROGRAMMING SUPPORT FOR SCRIPTING

Controlling the execution of visualization softwares
remains an important issue. Many softwares were traditionally
created for interactive usage. Journaling is often available,

VISUALIZATION TOOLS AND ENVIRONMENTS FOR VERY LARGE DATA

http://www.devprg.sgi.de.devtools/tools/MPU
http://www.devprg.sgi.de.devtools/tools/MPU

12Nov. 2000

recording every mouse click and menu selection to a file for
later replay, but this often creates a very large amount of
transient UI events that can be difficult to edit.

Scripting is important for rapid prototyping before
compiling an application, for batch mode submission when
software rendering is possible, or to be able to repeat the
same image creation with a new dataset. The programmer
can be confronted with proprietary scripting languages (e.g.
AVS5, AVS/Express, EnSight) that are more difficult to
comprehend. Other approaches offer interface via a language
that is more widespread like Tcl (e.g. Vtk, ICEM Visual3).
Important in all scripting support, is the ability to write
loops and control flow structures, and to favor code reuse
for callable macros containing common sets of instructions.
A difficulty of editing journal files is also that they can be
very state-dependent. Execution must be carried in a specific
order, often dependent also on the number and names of
the variables created. Finally, not all commands available
through the User Interface are always possible to script. For
example, in EnSight, the selection of parts can be done via
the common UNIX syntax of wildcard naming. Yet, this is
translated into a script command explicitly selecting parts
by names, and it cannot be programmed directly via a
helper application. When one of the difficulties of handling
large data is also due to the large number of computational
blocks and their derived graphics representations, using a
helper application to automatically write the script is also
critical. A program of this kind was created to support
visualization of MemCom databases in aerodynamics [3].
The NSMB code development for example generates
between 100-1000 blocks for detailed simulations of aircrafts
[15]. Surface extraction and other routine data extraction
must be completely automatized to save time and reduce
scripting errors (fig. 1).

Fig 1 – Flow simulation around the F18 of the Swiss Army,
by Alain Gehri and Jan Vos, CFS Engineering, Lausanne.
An EnSight script automatically queried a MemCom
database storing 194 computational zones for 4.4 million
nodes. The graphics is delivered via a 100Mbytes/sec line
from a multi-CPU file server to a graphics workstation.

Interactive queries are carried over TCP sockets.

CONCLUSION

Scientific visualization is no longer constrained to small
data handling. From PC-based consumer boards which can
process volumetric data in real-time, to large HPC

environments including data access, visualization extraction,
and graphical representation, all processed in parallel, the
environments available today can easily process distributed
data and deliver 3D results to remote desktops. A mix of
expensive hardware and many advanced software
developments can make the visualization of tera-bytes of
data a common feat. Yet, other emerging activities will
clearly complement the advanced environments of today.
Feature detection for automatic searches through very large
Fluid Dynamics databases is becoming available in
commercial products for the identification of vortex cores,
shock waves, separation lines and surface flow topology
[16]. These will replace the very tedious and error-prone
interactive queries that can render visualization systems
completely ineffective. Data Mining and Knowledge
Discovery are also contributing to gaining insight from
large protein databases and others huge data depositories.
In this context, and for very large data handling, visualization
will perhaps turn back to a batch-oriented activity trained
to deliver only the quintessential features of large data
banks.

REFERENCES

[1] www.ensight.com/11.5billioncells.htm
[2] www.smr.ch/Products/memcom.html
[3] Jean M. Favre, An EnSight native reader interface for MemCom

databases, Swiss-Tx project, in preparation.
[4] Jean M. Favre, Towards Efficient Visualization Support for

Single-block and Multi-block Datasets, IEEE Visualization
1997 Proceedings.

[5] Ch. Mielke, et al., Laminar-turbulent transition in a supersonic
boundary layer, Phys. Fluids, Vol. 11, Nr. 9, 1999, pp. S10

[6] C. Law et al., A Multi-Threaded Streaming Pipeline Archi-
tecture for Large Structured Meshes, IEEE Visualization
1999 Proceedings.

[7] Ken Brodlie, et al., Harnessing the Web for Scientific
Visualization, VisFiles By Bill Hibbard, February, 2000

[8] Wes Bethel, Visualization Dot Com, Visualization
Viewpoints, IEEE CG&A, vol. 20, no. 3, August 2000.

[9] J. Ahrens et al., A Parallel Approach for Efficiently Visualizing
Extremely Large, Time-Varying Datasets, Los Alamos Natio-
nal Laboratory, Technical Report #LAUR-00-1620.

[10] Hanspeter Pfister, Architectures for Real-time Volume
Rendering, Future Generation Systems, Vol. 15, 1999

[11] www.opengl.org/Documentation/OpenGL12.html
[12] www.sgi.com/software/vizserver/
[13] J. Friesen and T. Tarman, Remote High-Performance

Visualization and Collaboration, IEEE CG&A, vol. 20, no.
4, August 2000.

[14] D. Schikore et al., High-resolution Multiprojector Display
Walls, IEEE CG&A, vol. 20, no. 4, August 2000.

[15] www.cerfacs.fr/cfd/research/aerodyn/aerodyn_home_
page.html#NSMB

[16] R. Haimes and D. Kenwright, On the Velocity Gradient
Tensor and Fluid Feature Extraction, AIAA Conference,
Norfolk, VA, July 1999, 99-3288 ■

VISUALIZATION TOOLS AND ENVIRONMENTS FOR VERY LARGE DATA

http://www.ensight.com/11.5billioncells.htm
http://www.smr.ch/Products/memcom.html
http://www.opengl.org/Documentation/OpenGL12.html
http://www.cerfacs.fr/cfd/research/aerodyn/aerodyn_home_ page.html#NSMB
http://www.cerfacs.fr/cfd/research/aerodyn/aerodyn_home_ page.html#NSMB

13 Nov. 2000

THE FLUENT 5 BENCHMARK RESULTS
ON THE SWISS-T1

MARK L. SAWLEY, VISITING SCIENTIST, FLUID MECHANICS LABORATORY, DGM - EPFL & TRACH-MINH TRAN,
SERVICE INFORMATIQUE CENTRAL EPFL & TOM L. TYSINGER, FLUENT INC. USA

Les résultats de performance obtenus pour la suite de
benchmarks Fluent 5 sur le Swiss-T1 sont présentés et
analysés. Ces résultats démontrent la capacité d’un tel
système parallèle de calculer un éventail de problèmes
d’écoulements industriels. On observe que l’utilisation
du réseau d’interconnexion performant TNet fournit
une amélioration de performance significative compa-
rée à un réseau standard Fast Ethernet.

The performance results obtained for the Fluent 5
benchmark suite on the Swiss-T1 are presented and
analysed. These results demonstrate the capacity of
such a commodity cluster to compute a wide range of
industrial flow problems. Use of the high-bandwidth,
low-latency TNet interconnect is observed to provide
significant performance improvement compared to a
standard Fast Ethernet switched network.

INTRODUCTION

Performance benchmarking is commonly used to assess
the ability of a computer system to undertake particular
tasks, such as computation, input/output and visualisation
[1]. Frequently, benchmark results obtained for relatively
simple computational tasks (eg, solving a dense system of
linear equations, as in the LINPACK benchmark [2]) are
extrapolated to provide performance estimation for
significantly more complex problems (eg complex multi-
physics simulations). Clearly, the more representative is the
benchmark test case of the real problems to be solved, the
more useful the benchmark results will be.

Fluent 5 is a state-of-the-art commercial software package
for modelling fluid flow and heat transfer in complex
geometries [3]. The governing equations are resolved on an
unstructured mesh. A number of different mesh types are
supported (2D triangular / quadrilateral, 3D tetrahedral /
hexahedral / pyramid / wedge, as well as hybrid meshes and
mesh refinement). A wide variety of numerical (segregated
implicit / coupled explicit / coupled implicit) and physical
models (including incompressible / compressible, inviscid
/ laminar / turbulent, convective / conductive / radiative
heat transfer, chemical reactions / combustion, two-phase
and free-surface flows) are available to adapt to the extensive
range of simulation problems that can be addressed. Due to
this large degree of flexibility and applicability, Fluent 5 has
been chosen as a standard software package at the EPF-

Lausanne; it is installed on a number of computer systems,
and used by researchers in a number of different laboratories.

Fluent 5 is written in the C language, and makes use of
such features as dynamic memory allocation, efficient data
structures and flexible solver control. A client / server
architecture permits the separation of interactive control
and visualisation (generally performed on a desktop
workstation) from the solver computation (which can be
performed on a remote compute server). In addition,
computations can be performed in parallel; a distributed-
memory model based on domain decomposition is used,
with message passing via the MPI library for inter-processor
communication. Such a model can be employed on a wide
range of computer platforms, including both shared-memory
and distributed-memory systems.

To obtain a valid assessment of the performance of such
an extensive software package on different computer
platforms is not a simple task. Indeed, any performance
evaluation must address the specific needs of the particular
user. To assist in such an assessment, a series of benchmark
test cases has been defined by Fluent Inc. [4]. These test
cases consist of industrial problems that have been chosen,
not because they perform well using Fluent 5, but rather
because they represent a broad range of simulations typical
of those investigated by the user community.

The purpose of the study reported here is to assess
Fluent 5 on the Swiss-T1 parallel commodity cluster installed
at the EPF-Lausanne. The compute nodes of the Swiss-T1
consist of 32 Compaq DS20e bi-processor (500 MHz
Alpha EV6, 2*L1 cache of 64 kB) boxes, each with an L2
cache of 4 MB and a main memory of 1 GB. The boxes are
connected via two networks: a conventional Fast Ethernet
switched network, and a high-bandwidth, low-latency TNet
network developed by Supercomputing Systems, Zurich.
Compaq Tru64 UNIX 5.0 is the operating system used on
the compute nodes, while the Codine load management
software of Gridware Inc. is used for the submission of
batch jobs. (See [5] for more details regarding the Swiss-
T1.)

Fluent 5 has been ported to the Swiss-T1 by re-compiling
using the appropriate MPI include file and linking with the
necessary libraries. Fluent 5 can run on the Swiss-T1 using
either the freely-available MPICH library [6] via the Fast
Ethernet network, or a proprietary MPI library implemented
on top of the FCI communication library which uses TNet.
This enables a direct comparison between the performance
obtained on a commodity cluster having communication
characteristics similar to a Beowulf cluster [7] and that of a
system with an enhanced communication interconnect.

14Nov. 2000

Class Test case Cells Mesh Models Solver Description

small
FL5S1 32,000 hexahedral ke segregated implicit turbulent flow in a bend
FL5S2 32,000 hexahedral ke coupled implicit turbulent flow in a bend

FL5S3 89,856 hexahedral ke coupled implicit flow in a compressor,
rotor 37

medium

FL5M1 155,188 tetrahedral

ke
6spe
react
DPM

P1

coal combustion in a boiler,
with particle tracking

FL5M2 242,782 hybrid,
hanging-node ke turbulent flow in

an engine valve port

FL5M3 352,800 hexahedral
ke

6spe
react

combustion in
a high velocity burner

large

FL5L1 847,746 hexahedral ke coupled explicit transonic flow around
a fighter

FL5L2 3,618,080 hybrid RNG ke segregated implicit external aerodynamics
around a car body

FL5L3 9,792,512 hexahedral RSM turbulent flow in a
transition duct

segregated implicit

segregated implicit

segregated implicit

segregated implicit

Table 1 – Detailed properties of the nine benchmark test cases

THE FLUENT 5 BENCHMARK RESULTS ON THE SWISS-T1

THE FLUENT 5 BENCHMARKS

The test cases defined in the Fluent 5 benchmark suite
cover a wide spectrum of application problems, as shown
pictorially in the figure on the cover of this issue. These test
cases can be characterised by:
❚ problem size (number of mesh cells);
❚ mesh type (hexahedral, tetrahedral, hybrid);
❚ numerical method (segregated/coupled solver);
❚ physical modelling (turbulence, combustion).

The test cases are divided into 3 classes: small, medium
and large, depending on the number of mesh cells employed;
each class contains 3 different cases. A detailed presentation
of the nine benchmark test cases is given in Table 1.

Due to the large computational requirements of these
application problems, a fixed number of iterations was
generally used for the benchmark results. Care was taken to
select an iteration interval representative of the overall
performance of the flow simulation. To facilitate the
comparison of different computer systems, Fluent Inc. has
defined the following global performance measures:

Rating – Rating is the primary metric used, and is
defined as the number of times the test case can be run on
a given machine (in sequence) in a 24-hour period. It is
computed by dividing the number of seconds in a day by the
number of seconds required to run the benchmark. A
higher rating means faster performance.

Redzone – The redzone is the region of greater than 66%
efficiency. It is arbitrarily selected as the region that is
favourable to perform a production run (to limit the amount
of time a processor is idle while waiting, for example, for the
communication phase of the calculation to complete).

Redzone Rating – The redzone rating is defined as the
maximum rating achieved with a parallel run of a given
benchmark and platform that occurs within the redzone.

Peak Rating – The peak rating is defined as the maximum
rating achieved for a parallel run of a given benchmark and
platform with any number of processors.

For convenience, the benchmark suite is run via a
standard shell script. Various output files are generated,
such as a log file and a results file containing the above-
mentioned performance measures. While measurements
are also made of input/output performance, in this study we
have concentrated solely on computational performance.
The performance quoted in this article is thus for the core
solver only, and neglects overhead in the simulation due to
job spawning on multiple processors, or reading to / writing
from disk.

SWISS-T1 PERFORMANCE RESULTS

The benchmark results on the Swiss-T1 reported here
were obtained during the first week of August 2000, using
version 5.4.7 of Fluent 5. While the machine was fully
functional at this time, some of the system software (such as
the Codine batch system) was still in an experimental state.
In addition, while significant performance optimization of
the MPI/FCI library had already been undertaken, some
planned additional optimizations (particularly for global
communications) were still to be completed.

The performance rating measured for each of the nine
test cases using both TNet and Fast Ethernet are presented
in Fig. 2. The Fast Ethernet interconnect was used for up to
32 processors, while up to 64 processors were used with

15 Nov. 2000

THE FLUENT 5 BENCHMARK RESULTS ON THE SWISS-T1

TNet. For the largest problem sizes (FL5L2 and FL5L3),
the memory requirement forced swapping to disk when a
small number of processors was used; since this resulted in
significant performance degradation, the results for these
cases are therefore not taken into consideration. The values
of the above-defined global performance measures
determined for the Swiss-T1 using both TNet and Fast
Ethernet are presented in Table 2.

A number of observations can be made from the
performance results of Fig. 2 and Table 2.

The performance of Fluent 5 is strongly dependent on
the characteristics of the test case, in particular, the number
of mesh cells and the complexity of the physical modelling.

The number of processors required to obtain peak
performance increases - and consequently the scalability
improves - as the problem size increases, due to the increased
ratio of computation to communication. An associated
increase in the redzone is also generally observed with
increasing problem size.

For the small class test cases, peak performance is
achieved for a relatively low number of processors. Increasing
the number of processors beyond this value results in a
substantial decrease in performance, associated in part with
the increased overhead of global communications.

For the large class test cases, performance scalability is
obtained using TNet for a substantial range of the available
processors. (The decrease in performance for the FL5L3 test
case using 64 processors is attributed to a non-optimal mesh
partitioning for this particular case.)

Peak performance for test case FL5M1 is obtained for a
relatively small number of processors. This case couples a
continuous gas phase calculation with a discrete phase (particle)
calculation. Contrary to the continuous phase (as described
above), the discrete phase is parallelised in Fluent 5 using a
shared-memory model. This provides for only very limited
parallel speedup on the Swiss-T1 (which is based on bi-
processor boxes), and therefore severely limits the maximum
parallel performance that can be achieved by Fluent 5 for this
test case. (A distributed-memory parallelisation of the discrete
phase is planned for a future code version.)

Comparing test cases FL5S1 and FL5S2 shows that the
coupled numerical method performs better than the
segregated method for this relatively simple problem.

For all test cases, the use of the higher performance TNet
interconnect results in a significant improvement of the
benchmark performance; this improvement is generally
observed even for a small number of processors (ie nproc ≥ 4).
For example, for the small class test cases, peak performance

0

200

400

600

800

1000

0 8 16 24 32 40 48 56 64

FL5L1

0

100

200

300

400

500

0 8 16 24 32 40 48 56 64

FL5L2

0

40

80

120

160

200

0 8 16 24 32 40 48 56 64

FL5L3

0

200

400

600

800

0 8 16 24 32 40 48 56 64

FL5M1

0

1000

2000

3000

4000

0 8 16 24 32 40 48 56 64

FL5M2

0

100

200

300

400

500

600

0 8 16 24 32 40 48 56 64

FL5M3

0

1000

2000

3000

4000

0 8 16 24 32 40 48 56 64

FL5S1

0

1000

2000

3000

4000

5000

0 8 16 24 32 40 48 56 64

FL5S2

0

1000

2000

3000

4000

0 8 16 24 32 40 48 56 64

FL5S3

Pe
rf

or
m

an
ce

 ra
ti

ng

Number of processors Number of processors Number of processors

Pe
rf

or
m

an
ce

 ra
ti

ng
Pe

rf
or

m
an

ce
 ra

ti
ng

Fig. 2 – Performance rating measured for the nine test cases for different number of processors, using TNet
(orange circles) and Fast Ethernet (blue squares)

16Nov. 2000

THE FLUENT 5 BENCHMARK RESULTS ON THE SWISS-T1

TNet (MPI/FCI) Fast Ethernet (MPICH)
Redzone Peak Redzone

Test
case

FL5S1

FL5S2

FL5S3

FL5M1

FL5M2

FL5M3

FL5L1

FL5L2

FL5L3

1 cpu

564.7

484.8

293.8

152.8

261.3

44.5

41.3

-

-

2054.6

2889.6

1863.1

421.6

3094.0

377.9

481.5

-

-

3125.8

4379.6

3275.8

675.8

3501.5

511.8

937.3

453.4

162.8

848.8

1399.3

869.9

284.8

825.8

138.1

123.7

-

-

1316.5

1515.9

1359.6

546.5

1550.5

167.7

266.6

226.6

-

4
91%
8

84%
8

79%
4

69%
16

74%
12

71%
16

73%
-
-
-
-

12
46%
24

33%
32

35%
32
14%
32

42%
32

36%
64

35%
32
-

48
-

2
75%

4
72%

4
74%

2
93%

4
79%

4
78%

4
75%

-
-
-

Peak
4

58%
8

44%
8

58%
16

22%
16

37%
8

47%
32

20%
16
-
-
-

-

Table 2 – Global performance measures determined for each of the nine test cases using both TNet and Fast
Ethernet. In the small boxes are noted the number of processors required to obtain the redzone or peak ratings

and the corresponding parallel efficiency.

commonly used in Beowulf clusters [7]) does not provide
adequate communication performance for a significantly
large number of processors. The superior capability of the
TNet interconnect is reflected in a substantial improvement
of performance for the entire Fluent 5 benchmark suite.

REFERENCES

[1] R.W. Hockney, The science of computer benchmarking,
SIAM (1996).

[2] J.J. Dongarra, C.B. Moler, J.R. Bunch and G.W. Stewart,
LINPACK User’s Guide, SIAM (1979).

[3] Fluent 5 User’s Guide, Fluent Inc. (1998); see also:
www.fluent.com/software/fluent

[4] For full details regarding the Fluent 5 benchmark definitions
and results, see: www.fluent.com/software/fluent/fl5bench

[5] P. Kuonen and R. Gruber, Parallel computer architectures
for commodity computing and the Swiss-T1 machine, EPFL
Supercomputing Review, 11 (1999) 3-11; see: sic.epfl.ch/
publications/SCR99; see also: sewww.epfl.ch/SIC/SE/
servcentraux/generalites.html

[6] W. Gropp, E.L. Lusk, N. Doss and A. Skjellum, A high-
performance, portable implementation of the MPI message
passing interface standard, Parallel Computing, 22 (1996)
789-828; see: www.mcs.anl.gov/mpi/mpich

[7] For detailed information regarding Beowulf clusters, see:
www.beowulf.org ■

occurs using TNet for nproc ≤ 32, but for a significantly
lower number, nproc ≤ 8, using Fast Ethernet. The higher
performance using TNet is also reflected in a considerably
larger redzone for all test cases.

Finally, it should be noted that excellent serial
performance is obtained on the Swiss-T1 (see results presented
in [4]) through the use of high-performance RISC processors,
for which Fluent 5 is particularly well suited.

CONCLUSIONS

Running the Fluent 5 benchmark suite on the Swiss-T1
has enabled an evaluation of such a commodity cluster to
compute a wide range of flow applications. Good
performance scalability has been demonstrated for all test
cases, provided that the number of processors employed
does not exceed a problem-dependent optimal value. It has
been demonstrated that small problems can be computed
an order-of-magnitude faster in parallel on the Swiss-T1
than by serial computation. Large problems that can not be
run on a single-processor workstation (due to memory
limitations) can be computed efficiently using a large
number (up to 64) of processors.

The use of high-performance processors on the Swiss-
T1 to achieve excellent single-processor performance implies
that a high-performance network is required for balanced
parallel computation. The results obtained in the present
study indicate that a Fast Ethernet interconnect (such as

http://www.fluent.com/software/fluent
http://www.fluent.com/software/fluent/fl5bench
http://sewww.epfl.ch/SIC/SE/servcentraux/generalites.html
http://sewww.epfl.ch/SIC/SE/servcentraux/generalites.html
http://www.mcs.anl.gov/mpi/mpich
http://www.beowulf.org

17 Nov. 2000

Cet article présente l'architecture d'un système de
fichiers distribué (SFIO) pour la gestion des entrées/
sorties parallèles dans un environment MPI. Différen-
tes techniques d'optimization des communications et
d'accès aux disques sont présentées. A l’aide de types
dérivés MPI, on peut transmettre sur le réseau des
données fragmentées à écrire sur disque à l'aide d'une
seule commande MPI. Nous présentons les performan-
ces d'entrée/sorties du système de fichiers distribué sur le
superordinateur Swiss-Tx formé de noeuds de calcul et
E/S de type Compaq Alpha.

This paper presents the design and evaluation of a
Striped File I/O (SFIO) library for parallel I/O in an
MPI environment. We present techniques for
optimizing communications and disk accesses for
small striping factors. Using MPI derived datatype
capabilities, we transmit fragmented data over the
network by single MPI transfers. We present first
results regarding the I/O performance of the SFIO
library on Compaq Alpha clusters, both for the Fast
Ethernet and for the TNet Communication networks.

MOTIVATION/INTRODUCTION

For I/O bound parallel applications, parallel file striping
is an alternative to Storage Area Networks (SAN). In particular,
parallel file striping offers high throughput I/O capabilities
at a much cheaper price, since it does not require a special
network for accessing the mass storage sub-system [6].

9
87

654321Sub-file

Strip
e U

nit

Global Logical File

…

Fig. 1 – File striping

Important aspects of parallel I/O systems are highly
concurrent access capabilities to the common datafiles by all
parallel application processes and linear increase in
performance when increasing the number of I/O nodes and
processors. Parallelism for input/output operations can be
achieved by striping the data accross multiple disks so that
read and write operations occur in parallel (see Fig. 1). A
number of parallel file systems where designed ([1], [2], [3],
[5]), which make use of the parallel file striping paradigm.

MPI is currently the most used standard framework for
creating parallel applications running on various types of
parallel computers. A well known implementation of
MPI [9], called MPICH, has been developed by Argone
National Laboratory. MPICH is used on different platforms
and incorporates MPI-1.2 operations [10] as well as the
MPI-I/O subset of MPI-2 ([11], [12], [13]). MPICH is
most popular for cluster architecture supercomputers, based
on Fast or Gigabit Ethernet networks. MPICH’s MPI-I/O
underlying I/O implementation is completely sequential
and is based on NFS ([4], [14]).

Due to the locking mechanisms needed to avoid
simultaneous multiple accesses to the shared NFS file,
MPICH MPI-I/O write operations can be carried out only
at a very slow throughput1.

Other factor reducing peak performance is the read-
modify-write operations useful for writing fragmented data
to the target file. Read-modify-write requires sending the
full data covering the written data fragment over the
network, modifying it and transmitting it back. In the case
of high data fragmentation, i.e. small chunks of data spread
over a large dataspace in the file, network access overhead
may become dominant.

To be able to provide the highest level of parallelization
of access requests as well as a good load balance, small
striping units are required. However low stripe unit size
increases the communication and disk access cost. Our
SFIO parallel file striping implementation integrates the
relevant optimizations by merging sets of network messages
and disk accesses into single messages and single disk access
requests. The merging operation makes use of MPI derived
datatypes.

The SFIO library interface does not provide nonblocking
operations, but internally, accesses to the network and disks
are made asynchronously.

Section 2 presents the overall architecture of the SFIO
implementation as well as the software layers in order to
provide an MPI-I/O interface on top of SFIO. The SFIO

SFIO,PARALLEL FILE STRIPING FOR MPI-I/O
EMIN GABRIELYAN, EPFL, COMPUTER SCIENCE DEPT. PERIPHERAL SYSTEMS LAB., EMIN.GABRIELYAN@EPFL.CH

1 When 7 T1 compute nodes access one shared NFS file in an
interleaved maner, write throughtput performance on MPICH
MPI-IO is 35 KB/s per node

18Nov. 2000

interface description, small examples as well as the details of
the system design, caching techniques and other
optimizations are presented in Section 3. First performance
results are given for various configurations of the Swiss-Tx
supercomputer [7]. Section 5 presents the conclusions and
future work.

GLOBAL ARCHITECTURE ON T1

MPI-I/O Interface

Modified ADIO

Sockets

Ethernet

TCP/IP

MPICH
FCI
MPI

SFIO

MPI-I/O on SFIO

TNet

Fig. 2 – Integration of SFIO

The SFIO library is implemented using MPI-1.2 message
passing calls. It is therefore as portable as MPI-1.2. The
local disk access calls, which depend on the underlying
operating system are non-portable. However, they are
separately integrated into the source for Unix and Windows-
NT versions.

The SFIO parallel file striping library offers a simple
Unix like interface. We also intend to provide an MPI-I/O
interface on top of SFIO. The intermediate level of MPICH’s
MPI-I/O implementation is ADIO [14]. We successfully
modified the ADIO layer of MPICH to route calls to the
SFIO interface.

On the Swiss-T1 machine, SFIO can run on top of
MPICH as well as on top of FCI-MPI using the low latency
and high throughput network TNet [8].

UNIX LIKE INTERFACE FOR PARALLEL STRIPED FILE I/O

INTERFACE

Two functions, mopen and mclose are provided to open
and close a striped file. Note that a file should be opened by
all compute nodes irrespectively of whether that node uses
the file or not. This restriction is placed in order to ensure
correct behavior of future collective parallel I/O functions.
Additionally, the operation of opening as well as of closing
a file, implies a global synchronization point in the program.
The generic functions to read and write to a file are
respectively mreadc and mwritec.

The multiple I/O request specification interface allows
an application program to specify multiple I/O requests
within one call. This permits optimizations which otherwise
would not be possible. The multiple I/O request operations
are mreadb and mwriteb.

The following source gives a simple SFIO example. The
striped file with a stripe unit size of 5 bytes consists of two
sub-files. A single compute node accesses the striped file. It
is assumed that the program is launched with one compute
node MPI process.

#include <mpi.h>

#include "mio.h"

int _main(int argc, char *argv[])

{

 MFILE *f;

 f=mopen

 (

 "t0-p1,/tmp/a1.dat;"

 "t0-p2,/tmp/a2.dat;"

 ,5

);

 mwritec(f,0,"Hello World",11);

 mclose(f);

}

Below is an example of multiple compute nodes accessing
a striped file. Again the striped file with a stripe unit size of
5 bytes consists of two subfiles. It is accessed by three
compute nodes. Each of them writes at different positions
simultaneously.

#include <mpi.h>

#include "../mpi/sfio/mio.h"

int _main(int argc, char *argv[])

{

 MFILE *f;

 f=mopen

 (

 "t0-p1,/tmp/a1.dat;"

 "t0-p2,/tmp/a2.dat;"

 ,5

);

 if(rank()==0)

 {

 mwritec(f,0,"Hello*World,*",13);

 }

 else if(rank()==1)

 {

 mwritec(f,13,"I*am*a*program*",15);

 }

 else if(rank()==2)

 {

 mwritec(f,28,"written*with*SFIO.",18);

 }

 mclose(f);

}

We assume that the program is launched with three
compute and two I/O MPI processes. At the end the global
file contains the text combined from the fragments written
by the first, second and third compute nodes, i. e.
“Hello*World,*I*am*a*program*written*with*SFIO.”
The text is distributed accross the two sub-files. The first
sub-file contains “Hellod,*I*progritten*SFIO”
and the second “*Worlam*a*am*wr*with.” (Fig. 3).

SFIO,PARALLEL FILE STRIPING FOR MPI-I/O

19 Nov. 2000

Hello*World,*I*am*a*program*written*with*SFIO.

Hellod,*I*progritten*SFIO

*Worlam*a*am*wr*with.

Fig.3 – Distribution of striped file accross sub-files

FUNCTION CALLS

In this sub-section we present the SFIO library
application programmer interface.

File management operations are mopen, mclose, mchsize,
mdelete and mcreate.

MFILE* mopen(char *name, int chunk);

void mclose(MFILE *f);

void mchsize(MFILE *f, long size);

void mdelete(char *name);

void mcreate(char *name);

All the presented file management operations are
collective. Operation mopen returns to the compute node a
pointer to the logical striped file descriptor. The striped file
name, required for the mopen, mdelete, mcreate commands
is a string containing the full specification of the number,
sequence, locations and paths of sub-files representing the
global striped file. The format of the name is a sequence of
sub-files, spearated by “;”: “<host>,<path>;<host>,
<path>;<host>,<path>…”. For example “t0-p1,/tmp/
a1.dat;t0-p2,/tmp/a2.dat;”

There are single block and multi-block data access
requests.

void mread(MFILE *f, long offset, char *buffer,

unsigned size);

void mwrite(MFILE *f, long offset, char *buffer,

unsigned size);

void mreadc(MFILE *f, long offset, char *buffer,

unsigned size);

void mwritec(MFILE *f, long offset, char *buffer,

unsigned size);

void mreadb(MFILE *f, unsigned blknum, long

offsets[], char *buffers[], unsigned sizes[]);

void mwriteb(MFILE *f, unsigned blknum, long

offsets[], char *buffers[], unsigned sizes[]);

The data access requests are blocking and non-collective.
mreadc and mwritec functions are the optimized versions of
the mread and mwrite functions.

Error management functions are given by merror and its
collective counterpart merrora.
void merrora(unsigned long *ioerr);

void merror(unsigned long *ioerr);

void prioerrora();

merror and merrora return an array of error statistic
accumulated on all the I/O nodes. At the same time, they

reset the error counters on all the I/O nodes. Statistics are
accumulated for operating system I/O calls and listed
according to open, close, creat, unlink, ftruncate, lseek, write
and read functions. prioerrora is a collective operation
which prints the error statistic to the standart output of the
application.

IMPLEMENTATION DETAILS

In our programming model, we assume a set of compute
nodes and an I/O subsystem. The I/O subsystem is
represented as set of I/O nodes running I/O listener processes.
Both compute nodes and I/O listeners are MPI processes
within a single MPI program. This allows the I/O subsystem
to optimize the data transfers between compute nodes and
I/O nodes using MPI derived datatypes. The user is allowed
to directly use MPI operations only across the compute
nodes for computation purposes. The I/O nodes are available
to the user only through the SFIO interface.

When a compute node invokes an I/O operation, the
SFIO library takes control of that compute node. The
library routes the requests to the corresponding I/O listener
proxy on the compute node, caches the routed requests and
does an optimization of requests queued for each I/O node
in order to minimize the cost of disk accesses and network
communications. After actual transmission of the messages,
the I/O listener(s) prepares a reply which is sent back to the
compute node.

OPTIMIZATION

In order to optimize the disk accesses on the remote
I/O node, the algorithm implemented on the compute
node tries to combine all overlapping or consecutive I/O
requests collected in the cache (Fig. 4). Requests queued for
each I/O node are sorted according of their offsets on the
remote disk subfile.

Disk Access Optimization

2 I/O calls on remote
subfile instead of 7

Compute NodeI/o Node

User Block 2User Block 1

Fig. 4 – Disk Optimization

Queued I/O node access requests cached on the compute
node are launched either at the end of the function call or
when the buffer size reserved on the remote I/O listener for
data reception may become full. Memory is not a problem
on the compute node, since data always stays in user

SFIO,PARALLEL FILE STRIPING FOR MPI-I/O

20Nov. 2000

memory and is not buffered. When launching I/O requests,
the SFIO library performs a single data transmission to each
of the I/O nodes. It creates dynamically a derived datatype
which points to the set of pieces in user space memory
related to the given I/O node and transmits the data in a
single stream without additional copy. The I/O listener at
the same time receives the data as a contiguous block.

PERFORMANCE RESULTS

number of contributing nodesne
tw

or
k

th
ro

ug
hp

ut
 M

B/
s

T1 Ethernet 180
160
140
120
100
80
60
40
20
0

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Fig. 5 – Ethernet scalability
(blue = peak; yellow = average)

number of contributing nodes

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ne
tw

or
k

th
ro

ug
hp

ut
 M

B/
s

T1 TNet 450
400
350
300
250
200
150
100
50
0

Fig. 6 – TNet scalability

Let us explore the scalability of our parallel I/O
implementation (SFIO) as a function of the number of
contributing I/O nodes. Performance results have been
measured on the Swiss-T1 machine [7]. Swiss-T1 consists
of 64 Alpha processors grouped in 32 nodes. Two types of
networks are used, TNet and Fast Ethernet. To have an idea
about the network capabilities, throughput as a function of

number of nodes is measured by a simple MPI program for
both networks. The nodes are equally divided into
transmitting and receiving nodes and maximal all-to-all
traffic is created.

Figure 5 demonstrates cluster throughput scalability
with a Fast Ethernet Network and Fig. 6 with TNet. With
Fast Ethernet, each node is connected to a Fast Ethernet
crossbar switch. The underlying topology of TNet consists
of eight 12-port full crossbar switches. The blue graphs
show the peak performances and the yellow graphs the
average performances.

Let us now analyze the performances of the SFIO library
on the Swiss-T1 machine for MPICH on Fast Ethernet and
FCI-MPI on TNet. Let us assign the first processor of each
compute node to a compute process and the second processor
to an I/O listener (Fig. 7).

Network

I/O

Com
pute

tonep2

I/O

Com
pute

tonep3

I/O

Com
pute

tonep0

I/O

Com
pute

tonep2

Fig. 7 – SFIO Architecture on Swiss-T1

SFIO performance is measured for concurent write
access from all compute nodes to all I/O nodes, the striped
file being distributed over all I/O nodes. The number of
I/O nodes is equal to the number of compute nodes.

70
60
50
40
30
20
10
0Pe

rf
or

m
an

ce
 M

B/
s

01
0203

0405
0607

0809
1011

12 13
14 15

16 17
18 19

2021
2223

2425
2627

2829
3031

32

SFIO on top of MPICH
number of compute and I/O nodes

Fig. 8 – SFIO all-to-all I/O performance on Fast
Ethernet

The size of the striped file is 2Gbyte and the striped unit
size is 200 bytes only. The application’s I/O performance as
a function of the number of compute and I/O nodes is
measured on both Fast Ethernet and TNet and presented in
Fig. 8 and Fig. 9. The blue graphs show the peak
performances and the yellow graphs the average

SFIO,PARALLEL FILE STRIPING FOR MPI-I/O

21 Nov. 2000

performances. We are very surprised with the performance
results of SFIO on top of MPICH. This result needs further
investigation.

800
700
600
500
400
300
200
100
0

Pe
rf

or
m

an
ce

 M
B/

s

SFIO on top of MPI-FCI

01
0203

0405
0607

0809
1011

12 13
14 15

16 17
18 19

2021
2223

2425
2627

2829
3031

32

number of compute and I/O nodes

Fig. 9 – SFIO all-to-all I/O performance on TNet

With MPI-FCI the situation is much better. It is highly
scalable. When more than 23 nodes participate in the I/O
operations, performances may decrease due to TNet’s
particular communication topology. The effect of topology
on the I/O performance will be further studied.

CONCLUSION AND FUTURE WORK

SFIO is a cheap alternative to Storage Area Networks. It
is a light-weight portable parallel I/O system available for
MPI programmers. Integrated into standard MPI-I/O,
SFIO may become a high performance portable MPI-I/O
solution for the MPI community.

We plan to realize SFIO benchmarking and check
scalability for larger numbers of processors on large
supercomputers, e.g. at Sandia National Laboratory.

We intend to implement nonblocking parallel I/O
function calls. Disk access optimizations may also be further
improved.

Finally we are planning to implement the collective
operations as follows: collective operations assume that all
compute nodes issue an I/O request at the same logical step
in the program. The compute nodes, under control of SFIO
library, consult each other to arrive at a common I/O
strategy. The I/O nodes are informed about the strategy by
the compute nodes and SFIO creates the optimized data
flow.

REFERENCES

[1] Sachin More, Alok Choudhray, Ian Foster, Ming Q. Xu,
MTIO a multi-threaded parallel I/O system, Proceedings of
the 11th International Parallel Processing Symposium (IPPS
'97), pages 368-373

[2] Ron Oldfield and David Kotz, The Armada Parallel File
System, Dartmouth College Dpt. of Compute Science,
November 22, 1998, pages 1-14, www.cs.dartmouth.edu/
~dfk/armada/design.html

[3] Benoit A. Gennart, Emin Gabrielyan, Roger D. Hersch,
Parallel File Striping on the Swiss-Tx Architecture, EPFL
Supercomputing Review, Nov. 99, pp. 15-22, sic.epfl.ch/
publications/SCR99/scr11-page15.html

[4] Rajeev Thakur, William Gropp, Ewing Lusk, On
Implementing MPI-IO Portably and with High Performance,
Sixth Workshop on I/O in Parallel and Distributed Systems,
ACM, May 1999, pp. 23-32.

[5] V. Messerli, O. Figueiredo, B. Gennart, R.D. Hersch,
Parallelizing I/O intensive Image Access and Processing Appli-
cations, IEEE Concurrency, Vol. 7, No. 2, April-June
1999, pp. 28-37

[6] Martha Bancroft, Nick Bear, Jim Finlayson, Robert Hill,
Richard Isicoff and Hoot Thompson, Functionality and
Performance Evaluation of File Systems for Storage Area
Networks (SAN), 17-th IEEE Symp. on Mass storage systems,
University of Maryland, March 2000, esdis-it.gsfc.nasa.gov/
msst/conf2000/PAPERS/A05PA.PDF

[7] Pierre Kuonen, Ralf Gruber, Parallel computer architectures
for commodity computing and the Swiss-T1 machine, EPFL
Supercomputing Review, Nov 99, pp. 3-11, sic.epfl.ch/
publications/SCR99/scr11-page3.html.

[8] Stephan Brauss, Communication Libraries for the Swiss-Tx
Machines EPFL Supercomputing Review, Nov 99, pp. 12-
15, sic.epfl.ch/publications/SCR99/scr11-page12.html.

[9] Peter S. Pacheco, Parallel Programming with MPI, by
Morgan Kaufmann Publishers, pages 137-178, 1997

[10] Marc Snir, Steve Otto, Steven Huss-Lederman, David
Walker, Jack Dongarra, MPI - The Complete Reference,
Volume 1, The MPI Core, MIT Press, pages 123-189,
1996

[11] William Gropp, Steven Huss-Lederman, Andrew
Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir,
Marc Snir, MPI - The Complete Reference, Volume 2, The
MPI Extensions, MIT Press, pages 185-274, 1998

[12] William Gropp, Ewing Lusk, Rajeev Thakur, Using MPI-
2 Advanced Features of the Message-Passing Interface, MIT
Press, pages 51-118, 1999

[13] Message Passing Interface Forum, MPI-2 Extentions to the
Message-Passing Interface, University of Tennessee, pages
209-300, 1997

[14] Rajeev Thakur, William Gropp, Ewing Lusk, A Case for
Using MPI’s Derived Datatypes to Improve I/O Performance,
www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/
Thakur447/, pages 1-9, 1998 ■

SFIO,PARALLEL FILE STRIPING FOR MPI-I/O

http://www.cs.dartmouth.edu/~dfk/armada/design.html
http://www.cs.dartmouth.edu/~dfk/armada/design.html
http://sic.epfl.ch/publications/SCR99/scr11-page15.html
http://sic.epfl.ch/publications/SCR99/scr11-page15.html
http://esdis-it.gsfc.nasa.gov/msst/conf2000/PAPERS/A05PA.PDF
http://esdis-it.gsfc.nasa.gov/msst/conf2000/PAPERS/A05PA.PDF
http://sic.epfl.ch/publications/SCR99/scr11-page3.html
http://sic.epfl.ch/publications/SCR99/scr11-page3.html
http://sic.epfl.ch/publications/SCR99/scr11-page12.html
http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/Thakur447/
http://www.supercomp.org/sc98/TechPapers/sc98_FullAbstracts/Thakur447/

22Nov. 2000

Le Sphellamak est un système hybride sans noyau
central composé par des éléments de Tokamak, de
Stellérateur et de Sphéromak. L’absence de colonne
centrale permet la réalisation d’un système toroïdal
compact puisque le manteau de protection interne ne
devient plus nécessaire. Avec un profil de courant piqué,
une séquence d’équilibres Sphellamak de dimension
d'un réacteur est calculée numériquement en variant le
courant des bobines helicoïdales Ihc tout en fixant le
courant toroïdal du plasma Ip=-30 MA ainsi que la
moyenne volumique β=7.3%.Les modes globaux exter-
nes du type kink sont faiblement instables mais suffisent
à garantir la stabilité pour Ihc > 138 MA.

Les critères de stabilité magnétohydrodynamique
idéale locale sont réalisés pour des courants de
42 MA < Ihc < 122 MA. Le courant toroïdal piqué
produit localement des valeurs maximales pour le mo-
dule du champ magnétique dans la région centrale du
plasma ce qui implique des conditions favorables pour
le confinement des particules énergétiques et thermi-
ques. Cette conclusion est confirmée à travers le calcul
d’un taux de perte très faible des orbites du centre de
guidage des particules α.

The Sphellamak is a coreless hybrid system with
Tokamak, Stellarator and Spheromak features. The
absence of a central conductor permits the realisation
of a compact toroidal system as internal shielding
becomes unnecessary. With a peaked toroidal current
profile, a sequence of reactor-sized Sphellamak
equilibria is computed numerically in which the current
in the helical coils Ihc is varied while the toroidal
plasma current Ip=-30 MA and the volume average
β=7.3% remain fixed. Ideal global external kink mo-
des are weakly unstable but indicate stability for
Ihc > 138 MA. The local ideal magnetohydrodynamic
stability criteria are satisfied in the range
42 MA < Ihc < 122 MA. The peaked toroidal current
generates local maxima of the modulus of the magnetic
field strength in the central region of the plasma which
has very favourable implications for energetic and
thermal particle confinement. This is confirmed
through the computation of a very small α-particle
guiding centre orbit loss fraction.

INTRODUCTION

 Magnetic fusion offers the potential of a clean and
everlasting source of energy to satisfy the requirements of
humankind. For a plasma to ignite and burn, typically its
density must be n ~ 1020 particles/m3, its temperature must
reach T ~10keV and the confinement of the thermal
particle energy must approach τ ~ 1s. This is often combined
to yield the criterion nTτ ~ 1021kev - s/m3 for a relevant
power plant. First generation reactors are anticipated to rely
on Deuterium (D 2

1
) and Tritium (T 3

1
) as the reaction

D 2

1
 + T 3

1
 → n1

0
 + He4

2
 + 17.6 MeV (1)

constitutes the easiest to realise experimentally. The energy
carried by the neutron that can be recovered in a blanket
surrounding the discharge chamber amounts to 14.1 Mev
per reaction. The heat generated in the blanket as the
neutron delivers its energy through collisions with the
structure in turn can run a conventional turbine. The
3.5 MeV α particles (the helium nuclei) remain confined in
the plasma as they are electrically charged and provide the
source of energy required to sustain the plasma temperature
through collisional processes with the background plasma
particles and the generation of waves that may also interact
with the plasma fluid.

β = (2)

The cost of a magnetic fusion reactor is closely linked
with the magnetic field required to confine the plasma. The
magnitude of this field, labelled B, depends on the current
that must be driven in the coils which in turn dictates the
size of the coils, the material from which they must be
constructed and the cooling capabilities. Magnetohydro-
dynamic (MHD) instabilities can be triggered whenever the
B-field strength becomes too weak. Specifically, instabilities
can arise when the ratio of the kinetic pressure of the
confined gas to the magnetic pressure of the confining fields
exceeds a critical value. This parameter is defined as β,

(3)

The kinetic pressure p is proportional to the product nT and
the requirement for fusion reaction that this product
approach 1020keV/m3 entails that B must be sufficiently
large to avoid instabilities that can destroy the plasma
column.

STABILITY AND α-PARTICLE CONFINEMENT IN THE
SPHELLAMAK REACTOR CONCEPT

W. ANTHONY COOPER AND OLIVIER FISCHER, EPFL — CENTRE DE RECHERCHES EN PHYSIQUE DES PLASMAS

23 Nov. 2000

It has been demonstrated theoretically and experimentally
in a Tokamak plasma confinement system that the maximum
stable β values that can be achieved increase with decreasing
aspect ratio. The aspect ratio A=R/a is the ratio of the major
radius to the minor radius. The major radius R is the
distance from the major axis to the centre of the plasma
column and the minor radius a is the average radius of the
plasma column. As A → 1, β values in excess of 15% can be
realised. However, in a reactor concept, the necessity to
shield the coil structure and the central column to neutron
bombardment makes any design with low aspect ratio
extremely difficult to fulfill.

Fig. 1 – The coil system of a Sphellamak reactor
concept. The helical coils in red are wound on a

spheroidal surface of 7.5m radius. The coil width is
roughly 0.75m. The vertical field compensation coils
that cancel the current flowing in the arc segments
that connect the helical coil legs are shown in blue.
They carry half the current in the helical coils but in
the opposite direction of that in the arc segments.
The vertical field coils in yellow control the plasma
position. The B2 distribution on the outermost flux

surface appears in shades of green, yellow and red. The
Boozer magnetic coordinate grid is also shown.

The Tokamak systems utilise the coils to produce the
longitudinal magnetic field the long way round the torus
and a plasma current to generate the poloidal field the short
way around the torus. This combination of fields serves to
confine the charged particles in the plasma. The resulting
magnetic field structure maintains a very high degree of
symmetry in the toroidal direction. Stellarator systems can
generate the confining fields entirely with external coils but
usually at the expense of the symmetry in the toroidal
direction. An investigation of α-particle orbits in
nonsymmetric Stellarators reveals that a large fraction of

them are lost almost instantaneously due to enhanced
magnetic gradient and curvature drift effects and thus
cannot contribute to the sustainment of the background
plasma temperature. New Stellarator designs have been
identified which, although three-dimensional (3D) in
physical appearance, can still produce a magnetic field
structure that resembles that of a two-dimensional Tokamak.
These are known as quasiaxisymmetric Stellarators [1].
Furthermore, other 3D systems have been conceived such
as the Wendelstein VII-X in construction in Germany that
guarantee adequate confinement of α-particles through the
poloidal closure of the second adiabatic invariant. These are
referred to as quasi-isodynamic systems [2].

To highlight the principal physics issues in magnetic
fusion reactor systems, MHD instabilities impose a limit on
β which implies that the magnetic field B must have a
minimum value. Furthermore, the confinement of
α particles imposes an adequate level of symmetry properties
in the magnetic field structure in addition to constraints on
the magnitude of B. On the other hand, cost constraints
favour systems that can satisfy the physics criteria (β,
α-particle confinement) at the lowest possible B. One of the
challenges of fusion physicists is to identify configurations
and scenarios that optimally meet these conflicting
conditions.

THE SPHELLAMAK CONCEPT

The Sphellamak concept [3], developed at CRPP/EPFL
in collaboration with T. N. Todd of Culham Laboratories,
UK, is a hybrid system that combines features of a Tokamak,
a Stellarator and a Spheromak. A Spheromak is a coreless
device that carries a toroidal current and relies on plasma
instabilities and turbulence to generate the necessary toroidal
magnetic field for confinement through a process of helicity
conservation called the dynamo action. The Sphellamak,
like the Spheromak, is a coreless concept that employs
Stellarator windings on a spheroidal surface. These coils
produce seed paramagnetism that is significantly amplified
by the toroidal plasma current. As the system is 3D, charge
conservation (∇ • j=0, where j is the plasma current density)
implies that the toroidal plasma current generates not only
the poloidal magnetic field, but also the toroidal magnetic
field without a need for the dynamo effect and the instabilities
associated with it. One of the main attractions of the
Sphellamak is the potential to realise a very low aspect ratio
device in a reactor as the absence of a central column
eliminates the need for internal shielding. A reactor-sized
version of a Sphellamak device is displayed in Fig. 1. The
helical coils are shown in red. The current in them flows up
one leg, across the connecting arc segment near the upper
pole, down the adjacent helical leg and then back across the
arc segment near the lower pole. There are 10 modular coils
in this device. The vertical field coils in blue near the polar
regions carry half the current of the helical coils, but in the
direction opposite that of the flow in the neighbouring arc
segments to cancel the effective vertical fields produced by

STABILITY AND α-PARTICLE CONFINEMENT IN THE SPHELLAMAK REACTOR CONCEPT

24Nov. 2000

the circulation of currents in these arcs. The vertical field
coils in yellow control the plasma position and counteract
the outward hoop force induced by the toroidal current in
the plasma. The distribution of B2 on the outermost flux
surface in shades of yellow, green and red appears within the
coil structure.

MAGNETOHYDRODYNAMIC EQUILIBRIA

The free boundary version of the 3D VMEC equilibrium
code [4] is employed to numerically compute Sphellamak
equilibrium sequences. This code imposes perfectly nested
magnetic flux surfaces like the layers of an onion on a
doughnut shaped system for the equilibria that are calculated.
The input required for this code are the radial, vertical and
toroidal components of the vacuum magnetic fields produced
by the currents in the external coil windings, the pressure
and current profiles. Also required are the magnitudes of the
toroidal magnetic flux 2π Φ (1), the pressure at the magnetic
axis p(0) and the total toroidal current enclosed within the
last flux surface 2π J (1). The contribution of the helical
coils to the vacuum fields are computed using the Biot-
Savart law on a toroidal domain of rectangular cross section
within the helical coils, where each coil is modelled as a
short straight segment. Four filaments, separated by a
distance of 0.75 m are employed to model the finite
dimensions of these coils. The elliptic integral formulation
of the Biot-Savart law is applied to determine the
contributions of the vertical field coils to the vacuum
magnetic field which are composed of four circular filaments
separated by a distance of 0.375m. A sequence of
configurations have been calculated by varying the current
in the helical coils from 42 MA to 122 MA. The outer
vertical field coil currents are adjusted to carry a 1/15 fraction
of the helical coil current.

The VMEC code also requires the pressure profile
which we have prescribed as

p(s) = p (0) (1 – s2)2 (3)

where we have varied p (0) to maintain β =7.3% and the
toroidal current profile

2π J’ (s) = 2π J’ (0) (3 (1 – s)5 + (1 – s5)2)/4 (4)

where 0 ≤ s ≤ 1 is the radial variable that labels the flux
surfaces and is proportional to the volume enclosed. The
value of 2π J’ (0) is chosen such the the total toroidal current
within the plasma is –30 MA. An initial guess is provided
for the shape of the plasma and the toroidal magnetic flux
at the boundary 2π Φ (1) is varied until a converged
equilibrium is obtained.

The plasma volume and the average magnetic energy
density in the plasma are displayed in Fig. 2 for the sequence
of equilibria investigated as a function of the current in the
helical coils Ihc. The plasma volume decreases and the
average magnetic energy increases with increasing helical
coil current.

40 50 60 70 80 90 100 110 120 130
450

500

550

600

650

700

750

Ihc (MA)

Pl
as

m
a

vo
lu

m
e

(m
3)

Ip = 30MA
β = 7.3%

40 50 60 70 80 90 100 110 120 130
5

5.5

6.5

7.5

8.5

9.5

10 x 106

 Ihc(MA)

 B
2 /

2
m

0
 (P

as
ca

ls
)

Fig.2 – The plasma volume in m3 (top) and the average
magnetic energy density in Pascals (bottom) as a
function of the helical coil current Ihc in MA of the

sequence of equilibria explored with toroidal plasma
current Ip =-30 MA and β =7.3%

MAGNETOHYDRODYNAMIC STABILITY

We apply the local and global modules of the 3D ideal
MHD stability code TERPSICHORE [5] to investigate
Mercier, ballooning, internal and external kink modes of
the Sphellamak sequence of equilibrium configurations.
The TERPSICHORE code performs a coordinate
transformation of the VMEC equilibria to Boozer magnetic
coordinates [6]. These coordinates facilitate the evaluation
of stability properties because the magnetic field lines
become straight which simplifies the inversion of the B • ∇
operator and because the parallel current density, which is
an important source of free energy for instabilities, can be
more efficiently calculated.

The local stability modules of TERPSICHORE
determine the Mercier criterion and the Fourier coefficients
of the driving and stabilising terms that determine ballooning
stability. Mercier modes are instabilities that are very localised

STABILITY AND α-PARTICLE CONFINEMENT IN THE SPHELLAMAK REACTOR CONCEPT

25 Nov. 2000

about a magnetic surface but have extended structures
along the magnetic field lines. Ballooning modes form
structures that are localised along magnetic field lines
typically in the region where the directions of the magnetic
field line curvature and the pressure gradient become aligned,
which is usually radially away from the major axis. The
ballooning coefficients are reconstructed along the magnetic
field lines and a shooting method is applied to evaluate the
eigenvalue of the second order ordinary differential equation
that describes ballooning stability. The Mercier criterion
and the ballooning eigenvalue profiles as a function of the
radial variable s are presented for the two limiting
configurations of the sequence in Fig. 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

1.5

1

0.5

0

0.5

1

S

BA
LL

OO
NI

NG
 E

IG
EN

VA
LU

E

UNSTABLE
STABLE

Ihc= 42 MA

Ihc= 122 MA

4

3.5

3

2.5

2

1.5

1

0.5

0

0.5

M
ER

CI
ER

 C
RI

TE
RI

ON

STABLE
UNSTABLE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
S

Ihc= 122 MA

Ihc= 42 MA

Fig. 3 – The ballooning eigenvalue (top) and Mercier
criterion (bottom) profiles for the two limiting

configurations of the sequence of equilibria explored
having Ihc = 42 MA and Ihc = 122 MA, respectively

Ignoring the very edge of the plasma where a slight
flattening of the pressure profile will stabilise the ballooning
eigenvalues, we observe that the Mercier criterion predicts
unstable conditions for the system with helical coil current
Ihc = 42 MA in the central region of the plasma but is
otherwise stable to ballooning modes. On the other hand,
the configuration with Ihc = 122 MA is Mercier stable but
becomes weakly unstable in the region around s ≈ 0.75 (at
3/4 of the plasma volume). The intermediate configurations

of the sequence are all stable. The spikes observed in the
Mercier criterion are not considered as indicative of instability
but rather of conditions whereupon the pressure gradient
drives the formation of magnetic islands. Though this
technically violates the condition of magnetic surface
nestedness, these spikes are sufficiently localised and
nonoverlapping that the assumption that guides the
application of the VMEC code remains valid under these
circumstances.

50 60 70 80 90 100 110 120 130 140 150
1.5

1

0.5

0 x 103

λ

Ip = 30MA
β = 7.3%

Ihc (MA)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

0

1

2

3

4

5

6

7 x 104

S

ξs m

m/n=1/1
m/n=2/1 m/n=3/1

m/n=10/9

Ihc = 102MA

Ip = 30MA
β = 7.3%

Fig. 4 – The global eigenvalue λ corresponding to the
n=–1 family of instabilities as a function of the helical

coil current Ihc of the sequence of Sphellamak equilibria
investigated (top). The marginal point that is

extrapolated has Ihc≈138 MA. The 4 leading Fourier
components of the mode structure corresponding to
the n=–1 instability family as a function of the radial
variable s for the Ihc=102 MA case of the sequence

explored (bottom)

The global stability modules of the TERPSICHORE
code serve to calculate unstable eigenvalues associated with
current driven instabilities and pressure driven ballooning/
interchange modes. Global mode structures are anticipated
to have more deleterious consequences than local modes
because they can produce vortices that connect the central
region of the plasma to the edge and as a result destroy the

STABILITY AND α-PARTICLE CONFINEMENT IN THE SPHELLAMAK REACTOR CONCEPT

26Nov. 2000

plasma column. In Fig. 4, we show the unstable eigenvalue
with respect to the family of unstable n = –1 global
eigenstructures as a functon of Ihc. The sequence we
investigate is unstable in the range 42 MA < Ihc < 122 MA,
but from extrapolation we can predict a nearby case that is
marginally stable at Ihc ≈ 138 MA. We also present in this
Figure the 4 dominant Fourier amplitudes of the radial
component of the displacement vector for the case obtained
with Ihc = 102 MA. The internal region of the plasma is
dominated by the m = 1, n = –1 term, where m is the poloidal
mode number and n = –1 is the toroidal mode number.
However, near the edge of the plasma, the m = 2,3 terms
become important because the m = 1 term becomes nearly
vanishing there. The perturbed magnetic field is related to
the displacement vector through the equation
δB = ∆ × (ξ × B) from which we obtain ,
where √g is the Jacobian, and δBs and ξs are the radial
components of the perturbed magnetic field and the
displacement vector, respectively. The quantity s is
displayed an a flux surface very near the edge of the plasma
for the Ihc = 102 MA case which confirms that a combination
of m/n=2/–1 and m/n= 3/–1 components form the
eigenstructure. It is relevant because magnetic probes external
to the plasma can be used to detect structures of this type.

Fig. 5 – The distribution of √gδ Bs on a flux surface
very near the edge of the plasma for the Ihc =102M A
case of the sequence of Sphellamak reactor equilibria

explored

THE MAGNETIC FIELD STRUCTURE

 In typical Tokamak axisymmetric systems, the magnetic
B-field strength is inversely proportional to the distance
from the major axis. In classical Stellarators, the B-field
strength becomes 3D and the magnetic drifts of trapped
energetic particles cause them to quickly escape the plasma.
In the Sphellamak device, the strong toroidal plasma current
plays a critical rôle in generating the magnetic fields. With
peaked toroidal current profiles, the magnetic field structure
can acquire properties of a maximum-B system which are

characterised by the B-field strength developing a local
maximum in the central region of the plasma. The sequence
of configurations we have investigated do in fact satisfy
these conditions. The distribution of the modulus of
B2 (mod–B2) on three different cross sections of the plasma
(corresponding to the toroidal angles φ = 0, π/20 and
π/10) are displayed in Fig. 6 for the configurations obtained
with Ihc = 42 MA and Ihc = 122 MA. The mod–B2

distribution in the vicinity of the magnetic axis becomes
closely aligned with the magnetic flux surfaces. This
corresponds to a nearly isodynamic system [7] which has
very favourable implications for confinement because the
particle drifts remain confined within the flux surface [8].

Fig. 6 – The B2 distribution on cross sections at the
beginning of a field period φ =0 (top), at one quarter of

a field period φ =π/20 (middle) and at half period
φ =π/10 (bottom) for the two limiting configurations of

the sequence of Sphellamak equilibria explored with
Ihc= 42 MA (left) and Ihc=122 MA (right), respectively

in the Boozer magnetic coordinate frame

STABILITY AND α-PARTICLE CONFINEMENT IN THE SPHELLAMAK REACTOR CONCEPT

27 Nov. 2000

α-PARTICLE GUIDING CENTRE ORBITS

 The motion of electrically charged particles in a magnetic
field is characterised by rapid gyration about a B-field line
and streaming along it, but also by a slower drift across the
field lines due to the inhomogeneity in B. In magnetic
confinement systems where the typical scale length of the
gyro-orbit is much smaller than characteristic scale lengths
of the device, the guiding centre approximation, which
averages over the gyromotion, can be invoked. This is the
case of the Sphellamak equilibria we are considering. Thus
the α-particle guiding centres rather than the exact orbits
are followed. This reduces the problem to a much more
tractable undertaking. The guiding centre motion can be
described through a Hamiltonian formalism in which the
Boozer magnetic coordinates constitute a canonical frame
subject to the condition that the magnetic field is static with
nested surfaces (and that time dependent general
perturbations can be represented as the curl of a scalar
function times the equilibrium magnetic field) [9].
Furthermore, the guiding centre orbit equations expressed
in these coordinates depend on quantities that are constant
on each flux surface and on the magnitude of B. Therefore
all of the geometric effects of shaping on the orbits manifest
themselves only and exclusively through the structure of B.
It thus becomes possible to conceive of confinement systems
with strong 3D geometry but where B becomes independent
of one or possibly both of the angular variables.

0 0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

5

Time [s]

I = 122 [MA]
I = 42 [MA]

α collisionless particles in sphellamak device

%
lo

st
 p

ar
ti

cl
es

Fig. 7 – The fraction (in percent) of α-particle orbits
lost in 0.05s (half of a 3.5MeV α-particle slowing

down time) for the two limiting configurations of the
Sphellamak reactor sequence explored with Ihc=42 MA

(in blue) and with Ihc=122 MA (in red), respectively

We follow the trajectories of 4500 α-particle guiding
centres that are born on the flux surface s ≈ 0.25 (at 1/4 the
plasma volume) with a random distribution of pitch angle
(the ratio of the parallel to the total velocity), poloidal and
toroidal angles using the VENUS code [10]. These
trajectories are followed for up to 0.05 s which corresponds
to half of a slowing down time for a 3.5 MeV α-particle. We

monitor the guiding centre orbits that reach the last closed
magnetic flux surface and consider these as lost. The fraction
of α-orbits that are lost are shown in Fig. 7 for the two
limiting configurations of the sequence examined. We
observe that the α-particle confinement is virtually perfect
for Ihc = 42 MA, while less then 2% of the orbits are lost for
the Ihc = 122 MA case. For this case, the α loss is referred to
as prompt and corresponds to particles that drift rapidly out
of the device. To understand these results, we refer back to
Figs 2 and 6 where we notice that the local maxima of B2

increases with Ihc (B2 ˜ 30T2 → 45T2), while the plasma
volume decreases from 702m3 → 480m3. Though the
distribution of B2 appears similar for the two limiting
configurations of the sequence, the Ihc = 122 MA case
appears to be slightly more 3D than the Ihc = 42 MA case.
The combination of smaller volume and higher 3D shaping
may be just sufficient enough to overcome the larger
magnitude of B to cause the slight deterioration of α
confinement for the Ihc = 122 MA case. Nevertheless, this
level of loss would not compromise the viability of
Ihc ≥ 122 MA configurations as power producing reactor
devices.

COMPUTATIONAL ISSUES

Five programmes have been employed in the
computations presented. The COIL.SPHELL package
evaluates the vacuum magnetic fields from the currents in
the external coil segments using the Biot-Savart law. The
VMEC code numerically determines 3D equilibria. It is
based on an accelerated preconditioned spectral energy
minimisation scheme. The stability code TERPSICHORE
evaluates local and global MHD stability properties. For
the global modes, it solves a special block pentadiagonal
matrix eigenvalue equation using an inverse vector iteration
technique to determine the eigenvalue and the eigenvector.
The VVBAL code uses a shooting method to solve the
ballooning mode eigenvalue. The VENUS code solves the
guiding centre orbit equations using an initial value method
that combines a 4th order Runge-Kutta solver with a 2nd
order version. The time step is typically 10–8s.

The VMEC and TERPSICHORE codes have long
vector lengths for which the use of vector/parallel
supercomputers is most appropriate. Typical VMEC runs
require less than 100Mbytes and take ~ 1000s CPU time
while TERPSICHORE runs require 0.5 to 1.5 Gbytes and
take ~100-200 s CPU time on a NEC/SX4 platform. The
VENUS code is most effectively run on a massively parallel
system as each guiding centre particle can be assigned to a
different processor. A typical run consists of 4500 particles
on 16 processors which takes about 1.5 hours on an
ORIGIN 2000 machine.

All graphics (1D → 3D) are undertaken in a post-
process procedure on a PC utilising mostly MATLAB but
sometimes BASPL routines. The Sphellamak coil system is
designed with a MATLAB programme.

STABILITY AND α-PARTICLE CONFINEMENT IN THE SPHELLAMAK REACTOR CONCEPT

28Nov. 2000

SUMMARY, CONCLUSIONS AND DIS-
CUSSION

The ideal MHD stability and the α particle confinement
properties of a Sphellamak reactor concept have been
investigated. We have concentrated on a sequence of
configurations where we have varied the current Ihc in the
helical coils keeping a peaked toroidal plasma current at
–30 MA and a volume average β = 7.3% fixed. The
magnetic field strength B increases and the plasma volume
decreases with raising Ihc. The local stability criteria improve
with increasing Ihc in the inner half of the plasma volume
and deteriorate in the outer half. The global ideal MHD
kink mode imposed by the n=–1 family of instabilities
becomes less unstable as Ihc is raised predicting a marginal
point for the case Ihc ~ 138 MA. The magnetic field
structure displays local maxima of B in the central region
throughout the range of configurations explored. These
maximum-B equilibria have closed B-contours that become
aligned with the magnetic flux surfaces. This has a very
favourable impact on the confinement of α-particles as the
magnetic drifts out of the flux surfaces are weak as confirmed
by the computation of a very small α-guiding centre orbit
loss fraction of less than 2%.

Although the set of Sphellamak configurations we have
presented appears to constitute a very attractive example for
a reactor system, further improvements in the ideal MHD
stability properties are still required to guarantee a robust
margin of stable operation as this sequence we have identified
is not sufficiently satisfactory.

The very satisfactory α-particle confinement in the
Sphellamak reactor configurations can be attributed to the
maximum-B properties of the magnetic field structure
around the centre of the plasma. This structure is realised
with a peaked toroidal plasma current. One of the principal
technical challenges beyond the scope of this article is how
to generate and sustain such type of current profile and
magnitude of current in the absence of a central column.

The satisfactory resolution of MHD stability and α-
particle confinement is paramount in the evaluation of a
viable reactor concept. However, as confined plasmas are
not in general quiescent, other physics issues must eventually
also be considered. Specifically, we have not addressed the
issue of confinement of thermal particles in the background
of a turbulent plasma that determines the plasma energy
confinement that must approach τ ~ 1s in a reactor. These
turbulent fields may also unfavourably impact the α-particle
confinement.

ACKNOWLEDGMENTS

This research was partially sponsored by the Fonds
National Suisse de la Recherche Scientifique. We thank Dr.
S.P. Hirshman for use of the VMEC equilibrium code. The
numerical calculations on equilibrium and stability presented
in this paper were performed on the NEC-SX4 computer at

the Centro Svizzero di Calcolo Scientifico, Manno,
Switzerland. The guiding centre orbit calculations were
undertaken on the ORIGIN-2000 massively parallel
computer at SIC-EPFL.

REFERENCES

[1] J. Nührenberg, W. Lotz and S. Gori, Quasi-axisymmetric
Tokamaks, in Proc. Joint Varenna-Lausanne Int. Workshop
on Theory of Fusion Plasmas, Editrice Compositori, Bologna
(1994) 3-12.

[2] S. Gori and J. Nührenberg, Quasi-isodynamic stellarators
with magnetic well and positive shear, in Proc. Joint Varenna-
Lausanne Int. Workshop on Theory of Fusion Plasmas,
Editrice Compositori, Bologna (1998) 473-480.

[3] W. A. Cooper, J. M. Antonietti and T. N. Todd, A
Paramagnetic Nearly Isodynamic Compact Magnetic Confi-
nement System in Proc. 17th IAEA Fusion Energy Conf.,
Yokohama, Japan, IAEA-CN-69/EX4/1(R) (1998).

[4] S. P. Hirshman, W. I. Van Rij and P. Merkel, Three-
dimensional free boundary calculations using a spectral Green’s
function method, Computer Physics Communication 43
(1986) 143-155.

[5] D. V. Anderson, W. A. Cooper, R. Gruber, S. Merazzi and
U. Schwenn, Methods for the efficient calculation of the
(MHD) magnetohydrodynamic stability properties of
magnetically confined fusion plasmas, The International
Journal of Supercomputer Applications 4 (1990) 34-47.

[6] A. H. Boozer, Establishment of magnetic coordinates for a
given magnetic field, Physics of Fluids 25 (1982) 520-521.

[7] D. Palumbo, Il Nuovo Cimento X 53B (1968) 507.
[8] L. S. Hall and B. McNamara, Three-dimensinal equilibrium

of the anisotropic, finite-pressure guiding-center plasma: Theory
of the magnetic plasma, Physics of Fluids 18 (1975) 552-
565.

[9] R. B. White and M. S. Chance, Hamiltonian guiding center
drift orbit calculation for plasmas of arbitrary cross section,
Physics of Fluids 27 (1984) 2455-2467.

[10] O. Fischer, W. A. Cooper and L. Villard, Magnetic topology
and guiding centre drift orbits in a reversed shear tokamak,
Nuclear Fusion 40 (2000) 1453-1462. ■

STABILITY AND α-PARTICLE CONFINEMENT IN THE SPHELLAMAK REACTOR CONCEPT

29 Nov. 2000

En mécanique des structures, le calcul haute perfor-
mance n’est pas aussi commun que par exemple en
aérodynamique. Les problèmes étudiés jusqu’à présent
étaient généralement suffisamment petits pour être
traités sur un simple PC voire une grosse station de
travail. C’est seulement récemment que l’intérêt s’est
porté à la simulation numérique de très grands problè-
mes. L’industrie automobile arrive en tête avec des
besoins de simulation à grande échelle de voiture en
situation d’accident. Pour ces nouveaux problèmes, les
micro-ordinateurs ne suffisent plus et il est nécessaire de
se tourner vers les super-ordinateurs. Cet article aborde
quelques-uns des aspects du calcul haute performance
en mécanique des structures et plus particulièrement des
nouvelles méthodes développées dans ce cadre.

High-performance computing in structural
mechanics is not as common as is it in e.g.
aerodynamics. Most of the problems studied so far are
sufficiently small that the ever faster workstations and
PCs were usually powerful enough to solve the
problem. Only recently the interest in large problems,
too big and/or too complex to solve on the desktop,
require the use of super-computers for structural
mechanic problems. The automotive industry is
leading the way with large scale crash simulations. In
this article we will discuss some of the aspects of these
problems and the recently developed methods to deal
with them.

INTRODUCTION

In computational structural mechanics, the use of
numerical techniques, especially the finite element method,
has greatly improved the predictive nature of the analysis of
structures. The finite element method, originating from
civil and aeronautical engineering, has found its way into all
structural analysis fields. In contrast to other numerical
simulation fields, the use of high-performance computers
to solve the problems has not taken a great flight. There are
multiple reasons for this to be found: Firstly, most problems
to be solved could be dealt with using workstations. The
increase of desktop computational power kept trend with
the increasing demand of the structural engineer. Secondly,
the nature of the unstructured method, combined with the
use of shell theory (which assumes one dimension to be
much smaller than the other two) results in linear systems
with very bad conditions for iterative solvers. With the
structural mechanics finite element programs being therefore
limited to direct solvers (LU decomposition), which does

HPC IN COMPUTATIONAL STRUCTURAL MECHANICS

PIETER VOLGERS, EPFL DGC-IMAC

not vectorize well, and no general parallel direct solver
available, the engineer was limited to desktop computing.
And finally, a study of the problems to be solved in
numerical structural mechanics shows that there are basically
two type of problems: Relatively small ones, which are,
especially with todays powerful processors, solvable on the
desktop. And very large problems, which require an
enormous amount of computational power and/or memory.

With new programming techniques and new direct
parallel solvers available, computational structural mechanics
can benefit from the use of high performance computing.
At the Institute of Stress Analysis and Measurement (IMAC)
of the Civil Engineering Department at EPFL new methods
have been evaluated for the use of large scale simulations in
mechanical engineering. They involve different techniques
for two types of problems: Static and dynamic. In this article
we will describe one of them: The use of parallel computing
for dynamic simulations. This is the kind of problem which
requires massive computation power to solve a problem in
a reasonable amount of time. Section Explicit dynamic
simulations gives a brief overview of the explicit finite
element program and its parallel implementation. Section
Performance on Swiss-T1 shows the results of the
benchmarks performed on the Swiss-TI machine here at the
EPFL.

EXPLICIT DYNAMIC SIMULATIONS

Explicit finite element programs are generally used for
the simulation of highly non-linear dynamic phenomena
occurring in a relatively small time interval. The method is
most widely used for the simulation of impact in automotive
and aerospace industry, as well as for sheet metal forming
simulations. Due to the restriction given by the small time
step, forced by the explicit time integration method described
in subsection Background and the very complex element
computations due to the non-linearity, this method does
require extensive computing power. As an example: Standard
crash analysis for the design of a new car requires the multi-
processor computing power of a NEC SX-5 to be solved
overnight. The computational costs and the need to finish
the simulation in approximately 10 hours limit the possible
accuracy of the simulation. Current commercial versions of
explicit finite element programs run only on shared memory
machines and their scalability is poor. This required the
design of a program structure which allows for easy
implementation of parallelisation for distributed memory
computers with good scalability. This was the basis of a
thesis [3] at the IMAC-DGC.

30Nov. 2000

BACKGROUND

Considering the (dynamic) equilibrium of a general
continuous body in space, using the principle of virtual
work and the standard finite element discretisation, we can
write the discretised equilibrium equations as:

MÜ + R = F (1)

where M is the mass matrix, U the vector of unknown
displacements, R the vector of internal forces, F the external
load vector and Ü = ∂2U/∂t2. These equations can be
integrated in time by means of an explicit predictorcorrector
method:

Üi = M–1(Fi – Ri) (2)
Úi+½ = Úi–½ + ∆ti Üi (3)
Ui+1 = Ui + ∆ti+½ + ½ +∆t

2
iÜi (4)

Where Úi–H is the predictor for the velocities. The predictor
expressions are integrated in the total formulation. When
using a lumped mass (diagonal) mass matrix the above
equations are fully decoupled and easily solved in parallel.

PARALLEL IMPLEMENTATION

Although the time-integration equations are coupled,
the computation of the internal forces is done on the
element level, and therefore not decoupled. In order to
minimize inter-process communication, domain
decomposition is used. The decomposed domains are then
distributed over the number of processors available.
However, in the Fortran based existing (commercial)
programs, this is not readily available. Due to the static
nature of the Fortran 77 programming language, the
implementation in existing codes is complicated and time
consuming. Therefore a new program framework has been
designed, based on object-oriented programming principles
and implemented in C++. This structure treats the
subdomains as independent objects. Communication
between the subdomains is implemented in a top-level base
class. This has the advantage that the communication is
completely separated from the finite element computation
and transparent to the programmer. Apart from the
implementation of some very specific features (like the
initial implementation of contact), the programmer is not
bothered with the notion of multiple subdomains. This
also makes the actual implementation independent of
other parts of the program, as everything is concentrated in
the communication class.

PERFORMANCE ON SWISS-T1

A simple benchmark problem has been chosen to evaluate
the performance of the program on the distributed memory
cluster Swiss-T1. This cluster allows the communication to
be over standard Fast Ethernet as well as a custom-build
network called TNet. The benchmark problem, an elastic
free vibration problem, consists of a beam clamped on one
side. The model consists of 64000 elements or approximately
222000 degrees of freedom. The domain composition was

done along the length of the beam, as shown in Fig. 1. The
chosen domain decomposition resulted in a constant amount
of communication for each integration cycle, which allowed
for a theoretical performance analysis. This was done for
both the Fast Ethernet and TNet and compared with actual
measured performance.

Fig. 1 – Benchmark for explicit program

THEORETICAL ANALYSIS

Amdahl’s law [1] gives us the theoretical maximum
speedup of a parallel program, given that all processors are
the same. Including the time spent in communication, we
can write for the speedup Sp of a program on P processors:

1 1 1
— = — + — (5)
Sp P rp

where we introduce the computation to communication
ratio rp:

Tsrp = (6)Tcommp

Using Fast Ethernet, we have a latency of approximately
500µs and a bandwidth of 10 MB/s. TNet gives us a latency
of 20µs and a bandwidth of 50 MB/s. With the measured
serial time per cycle of the benchmark problem Ts = 0.43s
we get for the two communication ratios:

rpEthernet = 80 (7)
rpTNet = 470 (8)

This allows us to compute the theoretical parallel
performance for a given number of processors.

RESULTS

P Sp
measured

Sp
computed

Sp
measured

Sp
computed

2 1.92 1.95 1.98 1.99

4 3.64 3.81 4.04 3.97

8 6.84 7.27 8.53 7.8

16 12.1 13.3 – 15.5

32 19.6 22.8 – 30.0

64 – 35.6 – 56.3

Fast Ethernet T-Net

Table 1 – Measured and computed speedup numbers

The results of the benchmark with the explicit finite
element code are shown in Table l and Figs 2 and 3.
Comparing the theoretical results with the measured
performance shows a good coherence between the two. It

HPC IN COMPUTATIONAL STRUCTURAL MECHANICS

31 Nov. 2000

also demonstrates the advantage of the use of TNet. This is
best expressed in the theoretical maximum speedup for an
infinite number of processors: For Fast Ethernet this is
limited to 80, while for TNet this is 470. This clearly shows
the possibilities of parallel computing for explicit finite
element simulations, given a suitable program structure.

Ideal
MPICH
T-NET

1 10 100

100

10

1

Theorical Performance on Swiss-T1

Nr of processors

S
pe

ed
up

Fig. 2 – Theorical speedup benchmark on Swiss-T1

Ideal
MPICH
T-NET

1 10 100

100

10

1

Performance on Swiss-T1

Nr of processors

S
pe

ed
up

Fig. 3 – Mesured speedup benchmark on Swiss-T1

GELATINE IMPACT

Finally, we will show here one of the applications for the
explicit finite element code which requires substantial
computational resources. It concerns the simulation of an
impact test, performed at the University of Oxford [2]. A
composite plate, clamped on both sides, is impacted by a
gelatine cylinder, as shown in Fig. 4. This simulation takes
several hours to more than one day (depending on the
chosen material parameters and mesh density) on a standard
workstation, so parallel computing is needed in order to
perform this analysis in a reasonable amount of time.

Fig. 4 – Gelatine impacting composite plate – initial
solution

Fig. 5 shows the effect of the gelatine impacting the
plate. The two main problems of this kind of simulations
are clearly the behaviour of the gelatine and the composite

damage material model. The destructive effect of the gelatine
impact is shown in Figures 6 and 7. They show reasonable
correlation between the simulation and actual test.
Improvement of the material parameters should increase
the predictive behaviour of the numerical simulation.

Fig. 5 – Gelatine impacting plate (deformation of plate
not shown for clarity)

IMPACT FIGURES

Fig. 6 – Simulation result: damage on plate at 390 m/s

Fig. 7 – Test result: damage on plate at 390 m/s

ACKNOWLEDGEMENTS

Part of the work described in this article has been
performed for the CTI project Swiss-Tx. The funding of
the CTI is duly acknowledged. The author would also like
to thank SMR Corp., Bienne, Switzerland, for the use and
support of the finite element program B2000 and the data
management system MemCom.

REFERENCES

[1] Almasi G. S., and Gottlieb, A., Highly Parallel Computing,
Benjaming/Cummings Publishing Company, Inc.,
Redwood City, California, 1994.

[2] Harding J., and Petrinic N., Documentation on oxford
highspeed structure tests, Tech. rep., University of Oxford,
Department of Engineering Science, l999.

[3] Volgers P., High-Performance Explicit Transient Strucutral
Analysis, PhD thesis, Ecole Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland, 2000. Thèse no. 2200 ■

HPC IN COMPUTATIONAL STRUCTURAL MECHANICS

32Nov. 2000

On se propose de présenter une vue d’ensemble du
logiciel de calcul d’écoulements NSMB développé dans
le cadre d’un consortium industriel et académique. Les
objectifs de ce consortium sont de développer et d’amé-
liorer un logiciel commun pour le calcul d’écoulements
afin de promouvoir dans l’industrie l’utilisation de la
simulation numérique des équations de Navier-Stokes.
Pour l’industrie, l’un des goulots d’étranglement pour
la résolution numérique de ces équations est le coût élevé
de ce type de simulation.

On présente des résultats de benchmarks du logiciel
NSMB pour 2 cas test effectués sur différents types de
super-ordinateurs, incluant le NEC SX5 de Manno et
le Swiss T1 de l’EPFL.

An overview of the NSMB flow solver wihich is
developed in an academic-industrial consortium is
given. The objectives of this consortium are to develop
and improve a common flow solver called NSMB in
order to advance the use of Navier Stokes simulations
in industry. One of the bottlenecks of the use of
Navier Stokes simulations in industry is the high costs
of these simulations. Benchmark results of NSMB for
2 test cases using different computers including the
NEC SX5 at the CSCS and the Swiss T1 at the EPFL,
are given.

INTRODUCTION

Computational Fluid Dynamics (CFD) is used in
industry since the 1960’s. In the early days of CFD [1],
solving the system of partial differential equations describing
viscous fluid flows (the Navier Stokes equations) was not
possible, and dramatic simplifications to these equations
were made to obtain a system of equations which could be
solved numerically in an acceptable turn around time. CFD
was mainly used to complement experimental or full scale
testing.

With the advent of vector supercomputers (Cray 1,
Cyber 205) by the end of the 1970’s, followed by (massively)
parallel computers by the end of 1980’s, combined with the
progress in development of efficient numerical methods
and the progress in physical modeling, the use of CFD in
industry has grown considerably. Today the Reynolds
Averaged Navier Stokes (RANS) equations are solved on a
routine base, and CFD is used in the early design phases of
many industrial products. In some industries, CFD has

even almost replaced more time consuming and expensive
experimental testing.

An example to illustrate this progress is the simulation
of the flow over the full aircraft configuration AS28G (see
Section AS28G Full Aircraft). In 1995, this simulation
costed on a Cray J916 computer about 250 CPU hours
when running on 1 processor, which in 1996 was reduced
to 50 CPU hours when using 8 processors, and which was
further reduced in 1997 to about 9 CPU hours by using a
more efficient numerical scheme.

 Despite the enormous progress in the last 40 years,
CFD has still limitations:
❚ CAD cleaning and grid generation are time consuming,

and require specialist skills;
❚ the need of fine grids to resolve correctly boundary layers

results in substantial memory and CPU time
requirements;

❚ the need of models to simulate turbulent flows introduces
an uncertainty in the results, which is difficult to quantify.
Complex turbulence models could reduce this
uncertainty and improve the quality of the predictions,
at the expensive of increased costs of the simulation.

To further advance the use of Navier Stokes simulations
in industry towards a virtual design office progress is needed
in the following areas[2]:
❚ more accurate physical models:

❚ turbulence and transition;
❚ chemistry and two phase flow models;
❚ interaction with other physical phenomena (fluid-
structure, fluid heat transfer, etc);

❚ more accurate and robust numerical algorithms:
❚ to get a faster convergence;
❚ to cluster grid points in regions of interest;

❚ better implementation and higher performance on
vector/parallel computers.

Since 1992, a joint project between academic and
industrial partners is being carried out to work on the above
mentioned topics in a common flow solver called NSMB
(Navier Stokes Multi Block). Today, the NSMB consortium
is composed of 3 Universities (ENSAM in Paris, EPFL in
Lausanne, KTH in Stockholm), one research establishment
(CERFACS in Toulouse) and three industrial partners
(Aerospatiale-Matra in Paris and Toulouse, CFS Engineering
in Lausanne, and SAAB Aerospace in Linköping).

 This paper first gives an overview of the NSMB flow
solver, which is followed by the presentation of benchmarks
results of NSMB on different computer platforms, including
the NEC SX5 and the Swiss T1.

FLOW SIMULATIONS ON HIGH PERFORMANCE
COMPUTERS USING THE NSMB FLOW SOLVER

JAN B. VOS, EPFL-DGM FLUID MECHANICS LABORATORY AND CFS ENGINEERING SA

33 Nov. 2000

NSMB OVERVIEW

DESIGN CHOICES AND PROGRAM STRUCTURE

NSMB was initially developed at EPFL in 1991. One of
the principal design choices was to use structured multi
block grids. Structured grids were adopted for their higher
precision in boundary layers, and their simpler data structures
compared to unstructured grids. The multi block approach
was adopted for two reasons, first to facilitate the mesh
generation for complex geometries, and second to permit
an easy use of parallel computers by solving the equations in
different blocks in parallel.

NSMB was developed on top of a data base system,
called MemCom [1]. MemCom is an object oriented data
management system for memory and memory-to-disk data
handling. The main advantage of using a data base system
is that for large scale multi block flow simulations (i.e. more
than 100 blocks and over 1 Million grid points), access to
the independent blocks is extremely fast, and almost
independent of the block number. From the user point of
view, the data base file appears as a single UNIX file, hence
all the information related to the simulation can be directly
saved on an archival system without possible loss of
information.

NSMB is written in Fortran 77, using a Dynamic
Memory Manager (DMM) included in the MemCom
library to allocate at run time the necessary storage of the
arrays in NSMB. When running on distributed memory
computers, the DMM allocates the memory on each node
of the computer. Dynamic memory allocation is since a few
years available in the Fortran 90 programming language,
and it was one of the innovative features of NSMB at the
time NSMB was designed.

NUMERICAL MODELLING

The Navier Stokes equations describe the conservation
of mass, momentum and energy. They are discretized in
space using the finite volume method, which was especially
designed for the discretization of conservation equations.
NSMB includes a variety of schemes to approximate the
inviscid fluxes at the face of a finite control volume[2].
Among them are the classical second order central scheme
with added artificial dissipation, second and third order
upwind schemes (the Roe scheme, schemes of the AUSM
family), and higher order schemes as a fourth order central
scheme and a fifth order WENO scheme.

After space discretization, the Navier Stokes equations
can be written as a system of coupled ordinary differential
equations in time. They are integrated in time using the
explicit Runge Kutta scheme, a scheme widely used in CFD
for its simplicity and good stability properties, or the LU-
SGS semi implicit scheme. Convergence acceleration
procedures as local time stepping, implicit residual
smoothing, multi grid and preconditioning can be used for
steady state calculations, while the dual-time stepping
technique is available for unsteady calculations [4].

 TURBULENCE MODELLING

 One of the major sources of uncertainty in CFD is the
necessity to adopt a turbulence model when simulating
turbulent flows. Although it is believed that the Navier
Stokes equations can describe turbulence, the time and
length scales encountered in turbulence are several orders of
magnitude smaller than the time and length scales
characteristic for practical applications. As example, the
grid needed to capture all the turbulence scales in the flow
around a full aircraft would require about 1015 grid cells,
which is beyond the capacity of any computer in the coming
decades. Moreover, one is not always interested in the
instantaneous values of the flow variables.

Statistical methods are therefore used to describe
turbulent flows, and each flow variable in the conservation
equations is decomposed into an average and a fluctuating
part. The resulting equations are then averaged, and terms
involving products of fluctuating variables are modelled
using a turbulence closure model. Turbulence modelling
has been studied for more than 100 years, and several well
tested turbulence models are available today. NSMB includes
algebraic turbulence models as the Baldwin-Lomax and the
Granville model, the Spalart-Allmaras 1-equation model,
which is very popular in aerospace, and the k – ε and k – ω
two equation models. Algebraic turbulence models do not
require the solution of an additional conservation equation,
while the 1 and 2 equation turbulence models require the
solution of respectively 1 and 2 additional partial differential
equations.

ALE FORMULATION

NSMB includes the possibility to solve the equations on
moving grids using the ALE (Arbitrary Lagrangian-
Eulerian)[5] approach. This possibility has several
applications:
❚ to solve the Navier Stokes equations in a rotating frame

of reference;
❚ to compute the dynamic aerodynamic coefficients,

needed to derive the control laws of aircraft;
❚ buffeting and flutter simulations;
❚ coupled fluid - structure simulations, in which the

movement from the grid is coming from the deformation
of the structure.

PARALLEL COMPUTING

The NSMB code was parallelized in the EC ESPRIT III
project Parallel Aero, which was part of EUROPORT 1,
and finished in 1996 [6]. Two design choices were made in
the development of the parallel version of NSMB: first the
domain partitioning is executed before the execution of
parallel NSMB using the MB-Split decomposition tool,
and second the parallel implementation was based on the
master-slave paradigm using PVM or Parmacs. In the frame
of the CSCS/SCSC-NEC Joint Program in Application
Porting and Development, this latter design choice was
changed to the SPMD paradigm using MPI [7].

FLOW SIMULATIONS ON HIGH PERFORMANCE COMPUTERS USING THE NSMB FLOW SOLVER

34Nov. 2000

Domain Partitioning Tool MB-Split
One of the most important functionalities of a domain

decomposition tool is to distribute the blocks on the parallel
computer such that a good load balance is obtained between
the different processors. The complexity of the domain
decomposition process, especially for large number of blocks,
requires a tool which automatically generates and updates
boundary conditions when splitting a block.

The MB-Split domain decomposition tool [8] was
developed at KTH-Stockholm during the Parallel Aero
project. It is a programme written in C++, which reads a
MemCom data base with an arbitrary number of blocks,
and generates a new MemCom data base with a new
number of blocks such that a balanced calculation is obtained
on a parallel computer. MB-Split automatically corrects the
boundary conditions on blocks which are split, and generates
the boundary conditions on newly created blocks. Blocks
are split using either recursive edge bi-section, or greedy
load balancing. MB-Split can also split a solution saved in
the MemCom data base, and if required, MB-Split can
merge a splitted data base, with solution, back to the
original data base.

Single Processor Optimization

0

100

200

300

400

500

600

700

800

0 5000 10000 15000 20000 25000 30000

CP
U

ti
m

e
(s

ec
s)

Np

AS28G, Spalart, Implicit Scheme, Fine Grid

Swiss T1 FCI
Cray T3E/600
SGI Origin 2000

Fig. 1 – CPU time as function to the number of points
in a block, AS28G Full Aircraft, 290 block grid

NSMB was designed for running on vector computers,
and the most time consuming routines are written to have
vectorizable do-loops over all grid points in a block. This
yields an excellent performance on vector computers,
reaching about 40 to 50% of the peak performance. On
RISC architectures the performance of NSMB is much less,
reaching between 5 and 15% of the peak performance.
There are several reasons for this. First, when using do-loops
over all grid points, unnecessary work is carried out in grid
cells used for imposing the boundary conditions. This
additional work is not a problem on vector computers,
where the gain by using long vectors largely compensates
this overhead. This is not the case on RISC architectures,
and for this reason most time consuming routines in NSMB
are now available as VECTOR and RISC version. The
second reason for the poor performance of NSMB on RISC
architectures are memory and cache contention problems

because data loaded in cache cannot be re-used. When the
problem size is reduced (i.e. when smaller blocks are used),
the performance is increased because all the data can fit into
cache. A typical example of cache problems is shown in
Fig. 1, which shows the CPU time as function of the block
size for the AS28G test case on 3 different RISC architectures.

As can be seen, the CPU time increases almost linearly
with the block size, except for a few blocks which have a size
of around 20000 cells. For these blocks, the CPU time is
suddenly about 4 to 5 times larger. The size of these blocks
is 32 x 32 x 20, a multiple of 1024 (1K). Since the cache
memory is a multiple of 1024, this performance degradation
can be attributed to cache misses. Data required for
calculations do not fit into cache, and need to be reloaded
each time it is used. Since reloading data into cache requires
more clock cycles than accessing data in cache, the CPU
time is increased.

ON-GOING DEVELOPMENTS

All the partners of the NSMB consortium work on
various aspects of NSMB. Here a non-exhaustive list of
items partners of NSMB are working on is given:
❚ Explicit Algebraic Reynolds Stress Models (EARSM)

turbulence models seem to be very promising since they
remove basic short comings of 2 equation turbulence
models while only marginally increasing the
computational costs;

❚ Large Eddy Simulation (LES) is another promising
technique to simulate turbulent flows. The large scales
of turbulence are resolved using the unsteady Navier
Stokes equations, while the small scales are modelled
using subgrid scale models. LES simulations are unsteady,
hence the computational costs are increased considerably
compared to solving the RANS equation;

❚ Coupling with the Maxwell equations to simulate the
flow in a plasma torche;

❚ Automatic Mesh Refinement. Work is underway on
building an adaptative mesh environment based on the
subblock refinement technique. A coarse multi block
mesh is adapted by adding finer sub-blocks in regions
which need a better resolution;

❚ Non-equilibrium chemistry for hypersonic flows. This
development is needed for applications involving future
re-entry space vehicle;

❚ Higher order numerical schemes. The main motivation
of this development to increase the precision of the
simulation, which may lead to the use of coarser grids.
Also higher order schemes are needed to simulate the
vortex flows in the wake behind aircraft;

❚ Development of a RISC optimized version, in which the
declaration of arrays in NSMB is changed to permit a
better use of the cache;

❚ Coupling with heat transfer and structural mechanics
codes;

❚ Object Oriented Programming languagues. At present,
NSMB has become a complex piece of software, and has
reached the limits of what can be done using the Fortran
77 programming language. A project is underway to

FLOW SIMULATIONS ON HIGH PERFORMANCE COMPUTERS USING THE NSMB FLOW SOLVER

35 Nov. 2000

build a prototype of NSMB using the object oriented
features of Fortran 90.

BENCHMARK SIMULATIONS

Benchmark calculations using NSMB version 5.02 were
made in August 2000 using 2 test cases from the Parallel
Aero project:
❚ A-Airfoil. The A-Airfoil is a 2D test case, and the grid

can be split into equal sized blocks. It is a good test case
to assess the network of a computer;

❚ AS28G Full Aircraft Configuration, which is
representative of an industrial test case.

THE COMPUTERS USED

The benchmark calculation were made on computers at
the Swiss Federal Institute of Technology in Lausanne
(EPFL), the Swiss Federal Institute of Technology in Zürich
(ETHZ), the Swiss Center for Scientific Computing (CSCS),
the University of Linköping (LIU), and at CFS Engineering.

Characteristics of the computers used
Table 1 summarizes the characteristics of the different

computers used for the benchmark calculations. The table
also includes the estimated single processor performance of
NSMB. On vector architectures as the NEC SX4 and SX5,
the NSMB performance can reach between 40 and 50% of
the peak performance. On RISC architectures, NSMB
reaches around 16% of the peak performance on the SGI
Origin 2000 and the Swiss T1, but it is only 10% on the PC
Cluster, and even lower on the Cray T3E. As can be seen
from Table 1, both the Swiss T1 and the NEC SX5 were
installed in the year 2000, and have a theoretical peak
performance of 64 Gflops. Almost all benchmark calculations
were run during production time (loaded systems), but on

most computers queues were available to ensure that the
allocated resources were not shared with other processes.

Comments from a user viewpoint
In this section, some remarks from the user point of view

on using the different computers are given. The remarks
reflect the personal opinion of the author. No remarks
could be given for the Cray SV1, since the jobs were not run
by the author himself.

Most people needing large computer resources have
accounts on several computer systems. For production
runs, they in general use the computer which gives them the
most results per elapsed time. For testing and debugging the
code, they use the computer with the best debugger and the
fastest compiler.

A user of different computers expects (or hopes) that he
may use the same user name on all computers, and that he
finds on each computer the same environment (shell, job
scheduling software). Errors are made when commands are
just slightly different from one computer to the other. A
typical example is that for the Cray J90 or SV1, you need to
use the command mpirun -nt 2 nsmb5.02.mpi to run
nsmb on 2 processors, while on all other computers it is
mpirun -np 2 nsmb5.02.mpi. However the command
mpirun -np 2 nsmb5.02.mpi is accepted on the Cray J90
but should not be used for shared memory parallelism.

In the following a list of observations is given
❚ Compilation of NSMB

Fast on the Swiss T1, SGI Origin 2000 and the PC
Cluster (around 5 minutes), slow on Cray and NEC
computers (around 2 hours).

❚ Environment
CSCS has still the policy to give users not the user name
they have on other platforms. tcsh was available on all
computers except the Origin 2000 at EPFL.

FLOW SIMULATIONS ON HIGH PERFORMANCE COMPUTERS USING THE NSMB FLOW SOLVER

Year 1995 1995 1998 1996 2000 1996 1999 2000

of nodes 256 8 16 12 8 80 6 64

Shared memory (Gb) 4 16 8 64 (20) NUMA

Memory per node (MB) 128/256 (256) 384 512

Cache (Kb) 8 32 128 64

Node peak performance
(Mflops) 600 200 1000 2000 8000 390 500 1000

Installed peak
performance (Gflops) 153.6 1.6 16.0 24.0 64.0 31.2 3.0 64.0

Node NSMB
performance (Mflops) 25-40 60-70 190-220 500-1100 1500-3500 50-70 40-50 90-160

Table 1 – The computers used in the NSMB benchmarks

36Nov. 2000

❚ Job execution
❚ Timing results on the SGI Origin 2000 showed
variations up to 50%, only the best results are shown;
❚ Results on the NEC SX4, NEC SX5 and Cray SV1
were the easiest obtained;
❚ The Swiss T1 is still a somewhat experimental
computer. Several jobs had to be re-run since another
job blocked one of the nodes, job scheduling software
not optimal yet, not possible to run on 1 node with FCI,
number of nodes should be a power of 2. Impossible to
use MPICH with more than 16 nodes. Communication
problems appeared using MPICH for the AS28G test
case, and only a few steps could be made. For the AS28G
testcase on 8 processors, it happened that one of the
nodes started to swap due to lack of available memory,
leading to very long elapsed time of the job;
❚ Large waiting time to get results on 64 nodes on the
T3E due to the heavy load on this machine.

A-AIRFOIL

The A-Airfoil is a well known test case for testing
turbulence models for separated flows which occur near the
trailing edge at high angles of attack. A view of the grid used
for the calculations is given in Fig. 2.

Frame 001 21 Aug 2000 data from a_airfoil.4.db

Fig. 2 – Grid A-airfoil

The flow is turbulent, and the calculations were made
using the Baldwin-Lomax algebraic turbulence model. A
grid of 512 x 128 grid points was used, which was split into
8 blocks for computations on vector computers, and
64 blocks for computations on RISC based architectures.
The central scheme using artificial dissipation was used for
the space discretization, and the equations were integrated
in time using the LU-SGS semi-implicit scheme. Only
100 time steps were made for the benchmark calculations.

Figs. 3a and 3b show the speedup curves up to respectively
8 and 64 processors.

As can be seen from Fig. 3a, a good speed-up up to 8
processors has been obtained on all computers except the
Swiss T1 using MPICH. It should be remarked that no
parallel queues were available on the Cray SV1, and for the
NEC SX5 running on 8 processors, the timing results are
influenced by interactive users and the operating system.
This explains the somewhat lower speedup using 8 processors
on these 2 computers.

1

2

4

8

1 2 4 8

T(
1)

 /
T(

Np
)

Np

A-Airfoil, Baldwin Lomax, Implicit Scheme, Fine Grid
ideal curve
CRAY J90 EPFL
CRAY SV1 ETHZ
CRAY T3E/600 LIU
SGI ORIGIN 2000 EPFL
PC CLUSTER 500 MHZ CFS
NEC SX4 CSCS
NEC SX5 CSCS
SWISS T1 MPICH EPFL
SWISS T1 FC1 EPFL

Fig. 3a – Speedup curves A-Airfoil calculations

1
4
8

16

32

64

1 4 8 16 32 64
Np

T(
1)

 /
T(

Np
)

A-Airfoil, Baldwin Lomax, Implicit Scheme, Fine Grid

ideal curve
CRAY SV1 ETHZ
CRAY T3E/600 LIU
SGI ORIGIN 2000 EPFL
NEC SX4 CSCS
NEC SX5 CSCS
SWISS T1 MPICH EPFL
SWISS T1 FC1 EPFL

Fig. 3b – Speedup curves A-Airfoil calculations

Looking to the speedup curve up to 64 processors, it can
be seen that the Cray T3E still yields a good speedup, while
on the Swiss T1 the speedup levels off after 16 processors.
The reason for this is twofold. First, the Swiss T1 is about
4 times faster than the Cray T3E in the computing part,
hence the ratio time spent in the calculation to time spent
in communication is better on the Cray T3E. Second, the
network of the T3E is faster when using more than 8
processors. This is illustrated in Fig. 4, which shows the
elapsed time per timestep, and the total communication
time (including processor synchronization) for the
calculations made.

Fig. 4b clearly shows that the time spent in the
communication is reduced when using more processors on

FLOW SIMULATIONS ON HIGH PERFORMANCE COMPUTERS USING THE NSMB FLOW SOLVER

37 Nov. 2000

the Cray T3E. This is to be expected, since the blocks are
distributed over more processors, and the amount of
communication for each processor is therefore decreasing.
On the Swiss T1 using FCI, one can observe that the time
spent in communication is slightly decreasing when going
from 2 to 8 processors, but then suddenly increases, remains
constant, and then decreases slightly. It should be remarked
that the time spent in communication is lower on the Swiss
T1 than on the Cray T3E up to 8 processors.

When looking to the elapsed time per time step, Fig. 4a,
it can be seen that the results of the Swiss T1 are close to
those of the Cray SV1 up to 8 processors. The results of the
Cray J90, SGI Origin 2000, Cray T3E and the PC Cluster
are also very close.

The NEC SX5 is only about 2 times faster than the NEC
SX4 for this test case. The NEC SX5 is a less balanced
computer than the NEC SX4, requiring long vectors to
approach the peak performance. Since the block size (hence
vector length) for the a-airfoil test case is rather small, the
performance on the SX5 for this test case is rather poor.
Fig. 4a shows that the elapsed time for the 64 processor
Swiss T1 using FCI approaches the elapsed time on the
8 processor NEC SX5.

0.1

1

10

El
ap

se
d

Ti
m

e
pe

r T
im

es
te

p
(s

ec
s)

Elapsed time A-Airfoil, Baldwin Lomax, Implicit Scheme, Fine Grid

0 10 20 30 40 50 60
Np

ideal curve
CRAY J90 EPFL
CRAY SV1 ETHZ

CRAY T3E/600 LIU
SGI ORIGIN 2000 EPFL

PC CLUSTER 500 MHZ CFS
NEC SX4 CSCS
NEC SX5 CSCS

SWISS T1 MPICH EPFL
SWISS T1 FC1 EPFL

Fig. 4a – Elapsed and Communication Time A-Airfoil
calculations

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60

Co
m

m
un

ic
at

io
n

Ti
m

e
10

0
 s

te
ps

 (s
ec

s)

Np

Communication time A-Airfoil, Baldwin Lomax,
Implicit Scheme, Fine Grid

CRAY J90 EPFL
CRAY SV1 ETHZ

CRAY T3E/600 LIU
SGI ORIGIN 2000 EPFL

PC CLUSTER 500 MHZ CFS
NEC SX4 CSCS
NEC SX5 CSCS

SWISS T1 MPICH EPFL
SWISS T1 FC1 EPFL

Fig. 4b – Communication Time A-airfoil calculations

Fig. 5 shows the Mach number contours over the
A-airfoil. At the trailing edge on the leeward side of the
airfoil, the separated area is clearly visible.

M
0.26
0.24
0.22
0.21
0.19
0.17
0.15
0.14
0.12
0.10
0.09
0.07
0.05
0.03
0.02

Frame 001 21 Aug 2000 data from a_airfoil.4.db

Fig. 5 – Mach number contours A-airfoil, M∞ = 0,15,
α = 7°, Re/m = 2.1 106

AS28G FULL AIRCRAFT

The AS28G is a wing-body-pylon-nacelle generic aircraft,
which has been extensively tested in a windtunnel. The
configuration is representative of an aircraft in cruise
conditions, and one of the principal interests of this test case
is the engine integration. Fig. 6 shows the surface grid of the
AS28G.

Fig. 6 – Surface grid AS28G

The grid for this test case is composed of 62 blocks, and
contains in total 3.5 Million grid points. The largest block
has about 300’000 points, the smallest 729 points. The flow
is turbulent, and the benchmark calculations were made
using the 1-equation Spalart-Allmaras turbulence model.
The calculation required about 2.0 Gbytes of memory
when running on 1 processor, substantially more when
running in parallel due to the allocation of send buffers and
the fact that temporary storage needs to be allocated on each
processor. For example, the calculation required 3.6 Gbytes

FLOW SIMULATIONS ON HIGH PERFORMANCE COMPUTERS USING THE NSMB FLOW SOLVER

38Nov. 2000

of memory when running on 8 processors on the NEC SX4.
The original 62 block grid was used on the Cray SV1, the
NEC SX4 and the NEC SX5. A 290 block grid was used on
the Origin 2000, the Cray T3E and the Swiss T1. Fig. 7
shows the distribution of these 290 block over 32 processors.

121141707524110220391

120140626124010120290

281271596023910020189

52270151902389920088

1591472661892379819987

1581462651882369719869

2801452641872359619768

2791442631862348619663

1192742581102338519525

1182732571092328419222

285143951042318319110

28314919254244106206210

11614818253243105205209

2771144525524510720208

27811551256246108267207

11719316247211239

12329418424821224139

28615348567222267138

2727246407122066137

2615221326421855136

1611517144721743135

282504419325221631134

284154587425121530133

1254577325021429132

1243496524921328131

28815626825922122678129

2871555419421922377128

16015011126022422779130

531571122612252288012

28927511383523082127

29027626926234229811261

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

178

174

175

170

169

168

181

5

39

13

173

177

163

164

166

42

176

171

189

102

41

17

11

38

6

33

36

162

167

180

179

1651221429276242103204185

110.0 220.0 330.0 440.0 550.0 660.0 770.0 880.0 990.0 1100.0 cputime(s)

1000.0

1000.0

1056.72

1000.08

1004.32

1000.72

1053.12

1038.08

1038.08

1000.16

999.92

1001.04

1001.04

1006.8

1053.04

1071.28

1024.16

1056.8

1011.68

1006.56

1031.68

1070.08

1064.96

1003.2

1002.98

1000.8

1000.8

1065.28

1052.96

1057.12

1056.88

1052.96

Theorical cpu-time for 100 iterations

110.0 220.0 330.0 440.0 550.0 660.0 770.0 880.0 990.0 1100.0 cputime(s)

Fig. 7 – Distribution 290 block grid AS28G over
32 Processors

Other block decompositions were used on 16 and 32
processors, but in all cases, the elapsed time obtained with
the 290 block grid was the smallest. The reason for this is the

better use of the cache when using small blocks, see Section
Single Processor Optimization.

Fig. 8 shows the speed-up curves for the AS28G
calculations. It should be remarked that it was not possible
to run on a single processor on the SGI Origin 2000, Cray
T3E and the Swiss T1. The speed-up results on these
computers are normalized with the result on the lowest
number of processors which could be used.

Fig. 8a shows the speed-up curves up to 8 processors. As
can be seen, a super linear speed-up was obtained on the SGI
Origin 2000, which is probably due to the bad performance
of NSMB for this test case on 2 processors. The reason for
this bad performance is the large amount of memory
needed, coupled with the NUMA memory architecture of
the SGI 2000. The Cray SV1 also showed a super linear
speedup for 2 processors for an unknown reason. As for the
A-airfoil, the SX5 results on 8 processors are influenced by
interactive users and the operating system.

Fig. 8b shows the speed-up curves up to 64 processors.
With MPICH on the Swiss T1, only 8 and 16 processors
could be used. The results on 8 processors was used for the
normalization, and since this computation was rather slow,
a super linear speed up is obtained when using 16 processors.
A close to linear speedup is obtained on the Cray T3E and
the Swiss T1 between 16 and 64 processors.

1

4

8

1 4 8

T(
1)

 /
T(

Np
)

Np

AS28G, Spalart, Implicit Scheme, Fine Grid
ideal curve
CRAY SV1 ETHZ
CRAY T3E/600 LIU
SGI ORIGIN 2000 EPFL
NEC SX4 CSCS
NEC SX5 CSCS
SWISS T1 MPICH EPFL
SWISS T1 FC1 EPFL

Fig. 8a – Speedup curves AS28G calculations

1
4
8

16

32

64

1 4 8 16 32 64

T(
1)

 /
T(

Np
)

Np

AS28G, Spalart, Implicit Scheme, Fine Grid

ideal curve
CRAY SV1 ETHZ
CRAY T3E/600 LIU
SGI ORIGIN 2000 EPFL
NEC SX4 CSCS
NEC SX5 CSCS
SWISS T1 MPICH EPFL
SWISS T1 FC1 EPFL

Fig. 8b – Speedup curves AS28G calculations

FLOW SIMULATIONS ON HIGH PERFORMANCE COMPUTERS USING THE NSMB FLOW SOLVER

39 Nov. 2000

Fig. 9a shows the elapsed time per time step. As can be
seen, the NEC SX5 is the fastest computer, and the elapsed
time on 4 processors of this machine is the same as
64 processors on the Swiss T1 using FCI. The Cray T3E is
about 4 times slower than the Swiss T1 using FCI. One can
observe that when using 16 processors, the elapsed times on
the Cray T3E, SGI Origin 2000 and the Swiss T1 using
MPICH are very close.

1

10

100

0 10 20 30 40 50 60

El
ap

se
d

Ti
m

e
pe

r T
im

es
te

p
(s

ec
s)

Np

Elapsed time AS28G, Spalart, Implicit Scheme, Fine Grid

CRAY J90 EPFL
CRAY SV1 ETHZ

CRAY T3E/600 LIU
SGI ORIGIN 2000 EPFL

NEC SX4 CSCS
NEC SX5 CSCS

SWISS T1 MPICH EPFL
SWISS T1 FC1 EPFL

Fig. 9a – Elapsed Time AS28G calculations

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

Co
m

m
un

ic
at

io
n

Ti
m

e
10

0
 s

te
ps

 (s
ec

s)

Np

Communication time A-Airfoil, Baldwin Lomax,
Implicit Scheme, Fine Grid

CRAY T3E/600 LIU
NEC SX4 CSCS
NEC SX5 CSCS

SWISS T1 FC1 EPFL

Fig. 9b – Communication Time AS28G calculations

Fig. 9b shows the time spent in the communication (and
synchronization) for the NEC SX4 and SX5, the Cray T3E
and the Swiss T1 using FCI. It can be seen that
communication time on the NEC SX4 and SX5 follow the
same zig-zag pattern. The run using 4 processors is probably
slightly less balanced than using 2 and 6 processors, which
increases the time needed for synchronization. Comparing
Cray T3E and the Swiss T1 shows that the time spent in
communication and synchronization is close on both
machines.

Fig. 10 shows the surface pressure and the stream lines
around the pylon-nacelle. The influence of the nacelle on
the flow is clearly visible in the stream lines, and on the
surface pressure.

Fig. 10 – Stream Lines and Surface Pressure AS28G

CONCLUSIONS

A short overview of the NSMB flow solver was given. In
the 9 years since the first version, NSMB has grown to a
complex piece of software which is used in industry to
simulate a wide variety of different flows, including flows
over aircraft (AS28G, Airbus Aircraft, FA-18 of the Swiss
Army), re-entry space vehicles (ARD and Soyuz capsule,
EXTV re-entry vehicle) to internal flow problems as air
intakes and flows in compressors. Development of NSMB
is an ongoing effort at all the partners involved, with as
objective to improve the prediction capabilities of NSMB,
and to reduce the costs of Navier Stokes simulations.

NSMB was ported to different computer platforms, and
benchmark calculations were made for two test cases. The
major objective of these benchmark calculations was to
assess the performance of NSMB on the NEC SX5 and the
Swiss T1 computers. Both computers were installed this
year, and both have a installed peak performance of
64 Gflops.

From the benchmark results, the following conclusions
can be drawn:
❚ the use of MPICH is not recommended on the Swiss

T1;
❚ distributed memory massively parallel computers require

a fast network to obtain a good performance;
❚ the FCI network on the Swiss T1 is fast up to 8

processors. For larger number of processors the network
on the Cray T3E (a computer which is 5 years old !) is
at least as fast if not faster than FCI;

❚ the Compaq Alpha chips on the Swiss T1 are fast, and
a good single processor efficiency for NSMB was
obtained. This efficiency can be further improved in the
future with a RISC optimized NSMB version;

FLOW SIMULATIONS ON HIGH PERFORMANCE COMPUTERS USING THE NSMB FLOW SOLVER

40Nov. 2000

FLOW SIMULATIONS ON HIGH PERFORMANCE COMPUTERS USING THE NSMB FLOW SOLVER

❚ the NEC SX5 is a less balanced computer than the NEC
SX4, resulting in a reduction of the single processor
efficiency. For NSMB, the NEC SX5 is only about 2 to
2.5 times faster than the NEC SX4;

❚ the elapsed time on the NEC SX5 was the smallest for
both benchmark testcases.

From a user point of view, it is remarked that the Swiss
T1 is still a somewhat experimental computer, and
improvements need to be made to the job-scheduling
software to make it a production system. The NEC SX5 is
a production computer.

One of the on-going discussions in the High Performance
Computing world is which type of computer yields the
fastest performance: distributed memory massively parallel
RISC architectures or shared memory (moderately) parallel-
vector architectures. The Swiss T1 belongs to the first type
of computers, the NEC SX5 to the second. It is concluded
that for NSMB, shared memory parallel-vector architectures
yields the fastest results. However, the difference between
the two types of architectures is closing rapidly.

As final conclusion, it is remarked that computer vendors
should strive to build well balanced computers. For
distributed memory computers it is the network and cache
memory which are primordial, for shared memory parallel-
vector architectures, it is the memory access and memory
bandwidth which have a large influence on the processor
efficiency.

ACKNOWLEDGEMENTS

Aerospatiale Avions is acknowledged for providing the
grids for the A-Airfoil and for the AS28G.

The people from the Central Computing Facility at
EPFL are acknowledged for providing their support and
help to run NSMB on the EPFL Computer facilities.

Olivier Byrde from Cray Research is acknowledged for
running the test cases on the Cray SV1 at ETHZ.

Jean Favre from CSCS is acknowledged for providing
the figure of the result of the AS28G calculation.

The people from the operations group at CSCS are
acknowledged for allowing me to use 8 processors on the
NEC SX5.

The CTI/KTI is acknowledged for financing the Swiss
Tx project at EPFL.

REFERENCES

[1] Raj, P., CFD at a Crossroads: An Industry Perspective, In:
Frontiers of Computational Fluid Dynamics 1997, Eds.
D.A. Caughey and M.M. Hafez.

[2] Vos, J.B., Rizzi, A., Corjon, A., Chaput, E. and Soinne E.,
Recent Advances in Aerodynamics inside the NSMB (Navier
Stokes Multi Block) consortium. AIAA Paper 98-0225, 1998.

[3] Merazzi, S., MemCom, An Integrated Memory and Data
Management System - MemCom User Manual Version 6.0,
SMR TR-5060, March 1991, SMR Corporation, P.O. Box
41, CH-2500 Bienne.

[4] Vos, J.B. , Leyland, Van Kemenade, V. , Gacherieu, C.,
Duquesne, N., Lotstedt, P., Weber, C., Ytterström, A., and
Saint Requier, C.NSMB Handbook Version 4.5, 1998.

[5] Hirt, C., Amsden, A. and Cook, J., An Arbitrary Lagrangian-
Eulerian Computing Method for All Flow Speeds, Journal of
Computational Physics, Vol. 14, 1974, pp. 227-253.

[6] Vos, J.B.,Van Kemenade, V., Ytterström, A. and Rizzi,
A.W., Parallel NSMB: An Industrialized Aerospace Code for
Complete Aircraft Simulations. In: Proceedings of Parallel
CFD Conference 1996, Eds. P. Schiano et al., North
Holland, 1997.

[7] Vos, J.B., Haberhauer, S. and Ytterström, A. Industrial
Flow Simulations using Different Parallel Architectures.
In: Proceedings Parallel CFD Conference 1997, Eds. D.
Emerson et al., North Holland, 1998.

[8] Ytterström, A., MB-Split A structured mesh partitioning tool
for load balancing on MIMD-Computers, Proceedings of the
Second ECCOMAS Conference on Numerical Methods
in Engineering, September 1996, Paris, France, pp. 803-
809.

NOTE FROM THE EDITOR
As mentioned by the author of the article above, the EPFL

Swiss T1 was and is still an experimental machine. Indeed,
work is being done to improve the communication library and
the job scheduling system to make the T1 an efficient production
machine. ■

RÉDACTEUR EN CHEF Trach-Minh Tran, SIC-EPFL EDITOR

MISE EN PAGE ET GRAPHISME Appoline Raposo de Barbosa, SIC-EPFL TEXT PROCESSING AND LAYOUT

ADRESSE Service informatique central EPFL ADDRESS

MA-Ecublens Case Postale 121
CH - 1015 Lausanne

TÉLÉPHONE (021) 693 22 11 PHONE

TÉLÉCOPIE (021) 693 22 20 FAX

ADRESSE ÉLECTRONIQUE trach-minh.tran@epfl.ch E-MAIL

ADRESSE WEB sic.epfl.ch/publications WEB LOCATION

http://sic.epfl.ch
mailto:trach-minh.tran@epfl.ch
http://sic.epfl.ch/publications

	Contents
	Using Smoothed Particle Hydrodynamics for Industrial Flow Simulations
	Visualization Tools and Environments for Very Large Data
	The Fluent 5 Benchmark Results on the Swiss-T1
	SFIO,Parallel File Striping for MPI-I/O
	Stability and a-particle Confinement in the Sphellamak Reactor Concept
	HPC in Computational Structural Mechanics
	Flow Simulations on High Performance Computers using the NSMB flow solver

