
7 February 2000

1 of 12

Parallel I/O system for 
Swiss-Tx

Striped file based parallel I/O system with the 
NAFS user interface. Realisation of the system 
using the MPI communications as the transport 
layer.

LSP-DI EPFL

1.0 Intruduction

The goal of whole project is to supplay MPI-I/O to the fast MPI-FCI of Swiss-Tx. 
The realisation is divided into the two different works.

First is the MPI-I/O interface support. This includes the correct mapping of the 
defined by user derived data set from the local process memory into the logical file 
through the file view, which is also defined by derived datatypes. So this is the 
translation of MPI-I/O calls into the multiple block oriented calls. As the interme-
diate level for the multiple block oriented calls is taken NAFS interface. 

Second part is the actual realization of the I/O system with the intermediate NAFS 
block-interface. Here the basic rule in the realisation of I/O system is to increase 
performance using paralelism. And thereafter the striped file distributed system is 
taken as a basic idea of this layer implementation. 

To the Swiss-Tx is ported the NAFS realised on top of Ps2 of CAP. But because 
the CAP is socket based, this have performance limitations defined by TCP/IP.

Another alternative for realization of striped file based parallel I/O is the usage of 
fast MPI communications as the transport layer. This version also have NAFS 
block-interface but directly based on the MPI communications and the operating 
system I/O calls. 



Intruduction

2 of 12 Parallel I/O system for Swiss-Tx

Pg. 01

MPI-I/O for Swiss-Tx

MPI-I/O Interface realization

Intermediate layer NAFS

The I/O implementation realization



Intruduction

Parallel I/O system for Swiss-Tx 3 of 12

Pg. 02

MPI-I/O Interface

Parallel I/O Implementation

I/O Block Interface
NAFS



Intruduction

4 of 12 Parallel I/O system for Swiss-Tx

Pg. 03

MPI-I/O Interface

Modified ADIO

PS2

CAP

Sockets

Ethernet

TCP/IP

MPICH
MPI-FCI

TNet

MPINAFS
CAP NAFS

NAFS



NAFS on top of MPI

Parallel I/O system for Swiss-Tx 5 of 12

2.0 NAFS on top of MPI

How multiple access oriented I/O system realised on top of MPI, and how paralel-
lism of I/O is reached ?

The idea is following to divide the logical file into the blocks and cyclicaly distrib-
ute this blocks into the striped files. Then distribute the striped files accross the I/O 
nodes,- computers in the network which whill perform disk I/O operations.

After MPI program is launched and number of MPI processes start running on the 
computers, then the striped file parallel I/O system selects from the set of MPI 
processes those which will perfom I/O operations and configures them as I/O lis-
tener. Those processes, after this will not be available for user computation. 

When from user process is called NAFS I/O function to perform I/O operations, 
the user process computes the amount of subsets of local data which must be proc-
essed on different I/O nodes and geterates related requests to the specific I/O lis-
teners using the MPI communications. 



NAFS on top of MPI

6 of 12 Parallel I/O system for Swiss-Tx

Pg. 04

How is I/O parallelism obtained ?

Division of file into the blocks

Local files per I/O node

Cyclic distribution over striped files



NAFS on top of MPI

Parallel I/O system for Swiss-Tx 7 of 12

Pg. 05

I/O
Dev

Data Exchange between
Compute Nodes and
I/O Listeners

Comp

Comp

Comp

I/O
Node I/O

Dev

I/O
Node I/O

Dev

I/O
Node

I/O
Dev

I/O
Node



NAFS on top of MPI

8 of 12 Parallel I/O system for Swiss-Tx

Pg. 06

Initialisation of NAFS/MPI

Fixing one MPI process per I/O node

Running I/O listeners

The rest processes grouping into new
MPI communicator



NAFS on top of MPI

Parallel I/O system for Swiss-Tx 9 of 12

pg. 07

P

P

PP P

P

P

P

P

MPI_COMM_WORLD

I/O
Listeners

Comp.
Proc.

N
O

D
E3

N
O

D
E2

N
O

D
E1



Optimisations in realisation

10 of 12 Parallel I/O system for Swiss-Tx

3.0 Optimisations in realisation

When user generates request for I/O access of the large contiguose piece of data 
within the logical file, cyclicaly striped across the I/O nodes, it is possible that this 
will generate single block I/O access per I/O node more than once. Especialy the 
number of single block access requests per I/O node will be high in the case of 
small stripe unit sizes. 

It is known that the cost of communication with transmission of set of small 
blocks are higher than the cost of transmission of large single block. So it is object 
of optimisation the gathering together the small blocks into the large one before 
making communication.

Another fragmentation level is the user multiple block access interface over the 
striping factor. So here in optimisation should be counted also this factor, especi-
aly for the small sizes of the user blocks.

This two kinds of optimisations are realised in the current version.

In the collective communications important think is optimisation on the I/O node 
level. When you make collective I/O operation, then I/O nodes receiving the 
access requests from several compute nodes. It is known that contiguous large 
block I/O access are more efficient than random small block access. So optimisa-
tion is here the gathering of all of requests from the all compute nodes involved 
into the collective I/O operation. Then before making the actual I/O operations 
create from the set of small I/O requests gathered from different sources, a request 
containing as much as possible large and contiguous block of data necessary for I/
O processing on the local device. 



Optimisations in realisation

Parallel I/O system for Swiss-Tx 11 of 12

Pg. 08

U
se

rB
lo

ck
1

U
se

rB
lo

ck
2

Merged Data
Lo

gi
ca

l F
ile

Striped Files

Zero 
Derived 

Transmission
Copy

Data



Optimisations in realisation

12 of 12 Parallel I/O system for Swiss-Tx

Pg. 09

waiting for all data,
sorting and gathering

and then writing or reading

Logical File

Lo
ca

l D
is

k

Proc1

Proc2

Proc3

Proc4


