
Abstract

This paper presents the design and evaluation of a
Striped File I/O (SFIO) library for parallel I/O within an
MPI environment. We present techniques for optimizing
communications and disk accesses for small striping fac-
tors. Using MPI derived datatype capabilities, we transmit
fragmented data over the network by single MPI transfers.
We present the I/O performance of the SFIO library on
DEC Alpha clusters, both for the Fast Ethernet and for the
TNET communication networks.

1. Motivation/Introduction

For I/O bound parallel applications, parallel file
striping may represent an alternative to Storage Area Net-
works (SAN). In particular, parallel file striping offers

high throughput I/O capabilities at a much cheaper price,
since it does not require a special network for accessing
the mass storage sub-system [1].

Parallel I/O systems should offer highly concurrent
access capabilities to the common data files by all parallel
application processes. They should exhibit linear increase
in performance when increasing both the number of I/O
nodes and the number of application’s processing nodes.
Parallelism for input/output operations can be achieved by
striping the data across multiple disks so that read and
write operations occur in parallel (see Fig. 1). A number of
parallel file systems were designed ([2], [3], [4], [5], [6],
[7], [8]), which rely on the parallel file striping paradigm.

MPI is a widely used standard framework for creat-
ing parallel applications running on various types of par-
allel computers [9]. A well known implementation of
MPI, called MPICH, has been developed by Argone
National Laboratory [10]. MPICH is used on different
platforms and incorporates MPI-1.2 operations [11] as

SFIO a striped file I/O library for MPI

Emin Gabrielyan, Roger D. Hersch
École Polytechnique Fédérale de Lausanne, Switzerland

{Emin.Gabrielyan,RD.Hersch}@epfl.ch

Published in "Large Scale Storage in the Web" 18-th IEEE Symposium on Mass Storage Systems and Technologies. April 17-20, 2001, pp. 135-144. (ISBN# 0-7695-0849-9)

0

1

2

3

4

5

6

7

8

9

Subfile 1

Subfile 5

Logical File
Stripe Unit

Disk1

Disk2

Disk3

Disk4 Disk5

Disk6

Disk7

Disk8

3

1

08

9

2

4

5

6

7

Fig. 1. File Striping

well as the MPI-I/O subset of MPI-II ([12], [13], [14]).
MPICH is most popular for cluster architecture supercom-
puters, based on Fast or Gigabit Ethernet networks.
MPICH’s MPI-I/O underlying I/O implementation is
sequential and is based on NFS [10], [15].

Due to the locking mechanisms needed to avoid
simultaneous multiple accesses to the shared NFS file,
MPICH MPI-I/O write operations can be carried out only
at a very slow throughput.

Another factor reducing peak performance is the
read-modify-write operation useful for writing fragmented
data to the target file. Read-modify-write requires reading
the full contiguous extension of data covering the data
fragment to be written, sending it over the network, modi-
fying it and transmitting it back. In the case of high data
fragmentation, i.e. small chunks of data spread over a
large dataspace in the file, network access overhead may
become dominant.

Our project aims at offering scalable I/O throughput.
To be able to provide the highest level of parallelization of
access requests as well as a good load balance, small strip-
ing units are required. However low stripe unit size
increases the communication and disk access cost. Our
SFIO parallel file striping implementation integrates the
relevant optimizations by merging sets of network mes-
sages and disk accesses into single messages and single
disk access requests. The merging operation makes use of
MPI derived datatypes. At the present time, the SFIO
library interface does not provide non-blocking opera-
tions, but internally, accesses to the network and disks are
made asynchronously.

Section 2 presents the overall architecture of the
SFIO implementation as well as the software layers in
order to provide an MPI-I/O interface on top of SFIO. The
SFIO interface description, small examples as well as the
details of the system design, caching techniques and other
optimizations are presented in Section 3. First perform-
ance results are given for various configurations of the
Swiss-Tx supercomputer [16]. The performance test of
SFIO on top of MPICH is given in section 4. In the same
section we present the topology of the Swiss-T1 machine
and the SFIO benchmarks on top of the native FCI com-
munication system. Section 5 presents the conclusions and
future work.

2. Global Architecture

The SFIO library is implemented using MPI-1.2
message passing calls. It is therefore as portable as MPI-
1.2. The local disk access calls, which depend on the
underlying operating system are non-portable. However,

they are separately integrated into the source for the Unix
and the Windows NT versions.

The SFIO parallel file striping library offers a simple
Unix like interface. We intend to provide in the future an
MPI-I/O interface on top of SFIO. The intermediate level
of MPICH’s MPI-I/O implementation is ADIO [15]. We
successfully modified the ADIO layer of MPICH to route
calls to the SFIO interface (Fig.2).

On the Swiss-T1 machine, SFIO can run on top of
MPICH as well as on top of MPI/FCI, an MPI implemen-
tation making use of the low latency and high throughput
TNET network [17].

Unlike the majority of file access sub-systems SFIO
is not a block-oriented library [18],[5],[19],[20],[21].
Independance from block orientation provides a number
of advantages. There is no need to send entire blocks over
the network or to access them on the disk. The stripe units
do not form blocks; neither network transfers nor disk
accesses are rounded to the size of the stripe unit size. The
amount of data accessed on the disk and transferred over
the network is the size specified at the application level.

The functional architecture of the SFIO library is
shown in Fig. 3. Only the structure of the access functions
is described. On top of the graph we have the application’s

SFIO

MPICH

Sockets

TCP/IP

Ethernet

Modified ADIO

MPI

Fig. 2. SFIO integration into MPI-I/O

FCI

TNET

MPI-I/O Interface

interface to data access operations and at the bottom, we
have the I/O node operations.

The mread and mwrite operations are the non-opti-
mized single block access functions and the mreadc and
mwritec operations are their optimized counterparts. The
mreadb and mwriteb operations are multi-block access
functions. All the mread, mwrite, mreadc, mwritec,
mreadb, mwriteb interface functions are operating at the
level of the logical file. For example the SFIO write access
operation mwritec(f,0,buffer,size) writes data to the begin-
ning of the logical file f. Access interface functions are
unaware of the fact that the logical file is striped across
subfiles. In the SFIO library, all the interface access func-
tions are routed to the mrw cyclic distribution module.
This module is responsible for data striping. Contiguous

requests (or a set of contiguous requests for mwriteb and
mreadb) are split into small fragments according to the
striping factor. The small requests generated by the mrw
module specify the selected subfile, and the node on which
the subfile is located. Global pointers are translated to sub-
file pointers. Subfile access requests contain enough infor-
mation to execute and complete the I/O operation. For the
non-optimized mread and mwrite operations, the library
routes the requests to the sfp_read and sfp_write modules
that are responsible to send appropriate single sub-
requests to the I/O nodes using MPI as the transport layer.

The network communication and disk access optimi-
zation is demonstrated by the remaining part of the graph.
For the optimized interface functions mreadc, mwritec,
mreadb, mwriteb, the mrw module routes the requests to

sfp_waitall

mread
mwrite mreadc mwritecmreadb mwriteb

mrw

sfp_writecsfp_readc

sfp_write

sfp_read sfp_rdwrc

sfp_writebsfp_readb

SFP_CMD
_WRITE

SFP_CMD
_READ

SFP_CMD
_BREAD

SFP_CMD
_BWRITE

sfp_rflush sfp_wflush

cyclic distribution

requests caching

MPIMPI
MPI MPI

flushcachesortcache

mkbset

bkmerge

C
om

pu
te

 N
od

e

I/O
 N

ode

Fig. 3. SFIO functional architecture

the sfp_readc and sfp_writec functions. These functions
access the sfp_rdwrc module which stores the sub-requests
into a two-dimensional cache. The 2D cache structure
comprises as one axis the I/O nodes and as a second axis
the set of subfiles each I/O node is dealing with. In the
general case, on each I/O node there may be one subfile
per global file.

Each entry of the cache can be flushed. Flushing hap-
pens either because the user operation terminates, i.e.
when a signal is communicated down through the
sfp_rflush and sfp_wflush functions; or it can happen if the
sfp_rdwrc module predicts a possible overflow of recep-
tion buffers on the remote I/O nodes. The sfp_rdwrc mod-
ule makes sure that all generated requests fit within the
buffers of the compute and of the remote I/O nodes. The
entry to be flushed is passed to the flushcache operation
that also frees the relative resources within the cache.

As soon as a large list of the sub-requests needs to be
processed, the library can carry out an effective optimiza-
tions in order to save network communications and disk
accesses. Note that the data itself is never cached, and
always stays in user space. Three optimization procedures
are carried out, before an actual transmission takes place.
The requests are sorted by their offsets in the remote sub-
files. This operation is carried out by the sortcache mod-
ule. Overlapping and consecutive requests are merged
whenever possible into single requests by the bkmerge
module. This merging operation reduces the number of
disk access calls on the remote I/O nodes.

The mkbset module creates a derived MPI datatype
pointing to the fragmented pieces of user data in the user’s
memory. This allows to efficiently transmit the data asso-
ciated to many requests over the network as one contigu-
ous stream. The data can be transmitted or received
without any memory copy at the application or library
level.

The actual data transmission to the I/O nodes is car-
ried out by the sfp_readb and sfp_writeb functions.

3. The Unix like SFIO interface

Interface

Two functions, mopen and mclose are provided to
open and close a striped file. Note that a file should be
opened by all compute nodes irrespectively of whether
that node uses the file or not. This restriction is placed in
order to ensure the correct behaviour of future collective
parallel I/O functions. Additionally, the operation of open-
ing as well as of closing a file implies a global synchroni-
zation point in the program. The generic functions to read
and write to a file are respectively mreadc and mwritec.

The multiple I/O request specification interface
allows an application program to specify multiple I/O
requests within one call. This permits optimizations which
otherwise would not be possible. The multiple I/O request
operations are mreadb and mwriteb.

The following source C code shows a simple SFIO
example. The striped file with a stripe unit size of 5 bytes
consists of two subfiles. A single compute node accesses
the striped file. It is assumed that the program is launched
with one compute node MPI process.
#include <mpi.h>
#include "/usr/local/sfio/mio.h"
int _main(int argc, char *argv[])
{
 MFILE *f;
 f=mopen //Collective Operation
 (
 "t0-p1,/tmp/a1.dat;"
 "t0-p2,/tmp/a2.dat;"
 ,5
);
 if(rank()==0)
 {
 //writes at location 0 in the
 //global file 11 characters
 mwritec(f,0,"Hello World",11);
 }
 mclose(f); //Collective Operation
}

Below is an example of multiple compute nodes
accessing a striped file. Again the striped file with a stripe
unit size of 5 bytes consists of two subfiles. It is accessed
by three compute nodes. Each of them writes at different
positions simultaneously.
#include <mpi.h>
#include "/usr/local/sfio/mio.h"
int _main(int argc, char *argv[])
{
 MFILE *f;
 char bu[]=”Hello*World!*”;
 int r=rank();
 f=mopen
 (
 "t0-p1,/tmp/a.dat;"
 "t0-p2,/tmp/a.dat;"
 ,5
);
 //each process writes at its own
 //position 13 characters
 mwritec(f,13*r,bu,13);
 mclose(f);
}

We assume that the program is launched with three
compute and two I/O MPI processes. After the parallel
writing operation, the global file contains the text com-

bined from the fragments written by the first, second and
third compute nodes, i. e.
“Hello*World!*Hello*World!*Hello*World!*”
The text is distributed across the two subfiles. The first
subfile contains “Hellod!*Heorld!o*Wor” and the sec-
ond “*Worlllo*W*Hellld!*” (Fig. 4)

Function Calls

In this sub-section we present the SFIO library appli-
cation programmer interface.

File management operations are mopen, mclose,
mchsize, mdelete and mcreate.
MFILE* mopen(char *name, int stripeUnitSz);
void mclose(MFILE *f);
void mchsize(MFILE *f, long size);
void mdelete(char *name);
void mcreate(char *name);

All the presented file management operations are
collective. Operation mopen returns to the compute node a
pointer to the logical striped file descriptor. The striped
file name, required for the mopen, mdelete, mcreate com-
mands is a string containing the specification of the I/O
nodes together with the paths of subfiles representing the
global striped file. The format of the name is a sequence of
subfiles, separated by semicolon:
 “<host>,<path>;<host>,<path>...”.
For example
“tonep0,/tmp/a.dat;tonep1,/tmp/a.dat;”.
The mchsize operation change the size of the logical file. If
the specified size is smaller than the current, the operation
truncate logical file to the new size.

There are single block and multi-block data access
requests.
void mread(MFILE *f, long offset,
 char *buffer, unsigned size);
void mwrite(MFILE *f, long offset,

 char *buffer, unsigned size);
void mreadc(MFILE *f, long offset,
 char *buffer, unsigned size);
void mwritec(MFILE *f, long offset,
 char *buffer, unsigned size);
void mreadb(MFILE *f,
 unsigned numberOfBlocks,
 long offsets[],
 char *buffers[],
 unsigned sizes[]);
void mwriteb(MFILE *f,
 unsigned numberOfBlocks,
 long offsets[],
 char *buffers[],
 unsigned sizes[]);

The data access requests are blocking and non-col-
lective. mreadc and mwritec functions are the optimized
versions of the mread and mwrite functions. The multiple
block data access operations mreadb and mwriteb are opti-
mized. The numberOfBlocks argument in mreadb and
mwriteb operations specifies the number of blocks to be
accessed by the single operation in the logical file. The
information about each block has to be provided by three
arrays offsets, buffers and sizes each having a number of
elements given by the variable numberOfBlocks. The off-
sets array contains the positions of each block in the logi-
cal file. The buffers array contains the addresses of each
block in the user memory and the sizes aray stores the size
of each block in bytes.

Error management functions are given by merror and
its collective counterpart merrora.
void merrora(unsigned long *ioerr);
void merror(unsigned long *ioerr);
void prioerrora();

merror and merrora return an array of error statistics
accumulated on all the I/O nodes. At the same time, they
reset the error counters on all the I/O nodes. Statistics are
accumulated for operating system I/O calls and listed
according to open, close, creat, unlink, ftruncate, lseek,

Hello*World!*Hello*World!*Hello*World!*

Hellod!*Heorld!o*Wor

*Worlllo*W*Hellld!*

Fig. 4. Distribution of striped file across subfiles

write and read functions. prioerrora is a collective opera-
tion which prints the error statistics to the standard output
of the application.

Implementation

In our programming model, we assume a set of com-
pute nodes and an I/O subsystem. The I/O subsystem com-
prises a set of I/O nodes running I/O listener processes.
Both compute processes and I/O listeners are MPI proc-
esses within a single MPI program. This allows the I/O
subsystem to optimize the data transfers between compute
nodes and I/O nodes using MPI derived datatypes. The
user is allowed to directly use MPI operations only across
the compute nodes for computation purposes. The I/O
nodes are available to the user only through the SFIO
interface.

When a compute node invokes an I/O operation, the
SFIO library takes control of that compute node. The
library routes the requests to the corresponding I/O lis-
tener proxy on the compute node, caches the routed
requests and does an optimization of requests queued for
each I/O node in order to minimize the cost of disk
accesses and network communications. After actual trans-
mission of the messages, each I/O listener prepares a
reply, which is sent back to the compute node.

Optimization

In order to optimize the disk accesses on the remote
I/O node, the algorithm implemented on the compute node
tries to combine all overlapping or consecutive I/O
requests collected in the cache (Fig. 5). Requests queued

for each I/O node are sorted according to their offsets on
the remote disk subfile.

Queued I/O node access requests cached on the com-
pute node are launched either at the end of the function
call or when the buffer size reserved on the remote I/O
listener for data reception may become full. Memory is
not a problem on the compute node, since data always
stays in user memory and is not buffered. When launching
I/O requests, the SFIO library performs a single data trans-
mission to each of the I/O nodes. It creates dynamically
a derived datatype which points to the set of pieces in
user space memory related to the given I/O node and
transmits the data in a single stream without additional
copy. The I/O listener at the same time receives the data
as a contiguous chunk. Upon reception of a data write or
read request, the I/O node immediately launches the cor-
responding disk access request.

4. SFIO performance

Let us explore the scalability of our parallel I/O
implementation (SFIO) as a function of the number of
contributing I/O nodes. Performance results have been
measured on the Swiss-T1 machine [16]. The Swiss-T1
supercomputer is based on Compaq AlphaServer DS20
machines and consists of 64 Alpha processors grouped in
32 nodes. Two types of networks are interconnecting the
processors, the TNET and Fast Ethernet.

To have an idea about the network capabilities,
throughput as a function of number of nodes is measured
by a simple MPI program for both networks. The nodes
are equally divided into transmitting and receiving nodes
and all-to-all traffic is generated. Fig. 6 demonstrates the

User Block 1 User Block 3
User

Compute Node
I/O Node

Fig. 5. Disk Access Optimisation

Block 2

Disk

The 6 original data parts
to be written to disk are
grouped into 2 remote
subfile write requests

cluster’s communication throughput scalability over Fast
Ethernet. The Fast Ethernet network of T1 consists of a
full crossbar switch.

Let us now analyze the performances of the SFIO
library on the Swiss-T1 machine on top of MPICH using
Fast Ethernet. We assign the first processor of each com-
pute node to a compute process and the second processor
to an I/O listener (Fig. 7).

SFIO performance is measured for concurrent write
access from all compute nodes to all I/O nodes, the striped
file being distributed over all I/O nodes. The number of
I/O nodes is equal to the number of compute nodes.

The size of the striped file is 2Gbyte and the striped
unit size is 200 bytes only. The MPICH application’s I/O
performance as a function of the number of compute and
I/O nodes is measured for the Fast Ethernet network. It is
presented in Fig. 8. The white graph represents the aver-
age throughput and the gray graph the peak performance.
These results are surprising and need further investigation.
We suppose that the fall of the performance may be possi-
bly due to a non-efficient implementation of data intensive
collective operations in the current version of MPICH.

Let us analyze the capacities of the TNET network of
the Swiss-T1 machine. TNET is a high throughput and
low latency network (less than 20ms MPI latency and
more than 50MB/s bandwidth) [17]. A high performance
MPI implementation called MPI/FCI is available for com-
munication through TNET [17].

The TNET throughput as a function of the number of
nodes is measured by a simple MPI program. The contrib-

0
20
40
60
80

100
120
140
160
180

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ne
tw

or
k

th
ro

ug
hp

ut
 M

B
/s

number of contributing nodes

T1 Ethernet

Fig. 6. Aggregate throughput of Fast Ethernet

maximum
average

as a function of the number of contributing nodes

Fast Ethernet Full Crossbar Switch

Com
pute

Com
pute

Com
pute

Com
pute

I/OI/OI/OI/O

to
ne

p0

to
ne

p1

to
ne

p2

to
ne

p3

Fig. 7. SFIO architecture on Swiss-T1

0
50

100
150
200
250
300
350
400
450

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ne
tw

or
k

th
ro

ug
hp

ut
 M

B
/s

number of contributing nodes

T1 TNET

Fig. 9. Aggregate throughput of TNET

maximum
average

as a function of the number of contributing nodes

0
10
20
30
40
50
60
70
80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

number of compute and I/O nodes

Pe
rf

or
m

an
ce

 M
B

/s

SFIO on top of MPICH using Fast Ethernet

Fig. 8. SFIO/MPICH all-to-all I/O performance

uting nodes are equally divided into transmitting and
receiving nodes (Fig. 9). Due to TNET’s specific network
topology (Fig. 10), communication throughput does not
increase smoothly. A significant increase in throughput
occurs when the number of nodes increases from 8 to 10,
16 to 18 and 24 to 26 nodes.

The Swiss-T1’s TNET network [22] consists of eight
12-port full crossbar switches (Fig. 10). Routing between
switches that do not have direct connectivity is static [16].
The topology together with the routing information
defines the network’s peak throughput over the subset of
processors assigned to a given application.

Let us now analyze the performances of the SFIO
library on the Swiss-T1 machine on top of MPI/FCI using
the proprietary TNET network. As before, the first proces-
sor of each compute node is assigned to a compute process

and the second processor to an I/O listener process. There-
fore, each node acts both as a compute node and an I/O
node.

As in SFIO/MPICH, the performance of SFIO over
MPI/FCI is measured for concurrent write accesses from
all compute nodes to all I/O nodes, the striped file being
distributed over all I/O nodes.

In order to limit operating system caching effects, the
total size of the striped file linearly increases with the
number of I/O nodes. With a global file size proportional
to the number of contributing I/O nodes, we keep the size
of subfiles per I/O node fixed at 1GB/subfile.

The stripe unit size is 200 bytes. The MPI/FCI appli-
cation’s I/O performance is measured as a function of the
number of compute and I/O nodes (Fig. 11). For each con-
figuration, 53 measurements are carried out. At job launch

Fig. 10. The Swiss-T1 network interconnection topology

0

2

4

56

TNET connection

Routing

3

7

1

PR63
PR00

PR01
PR00

PR02

PR04

PR06

PR08
PR10

PR12

PR
14

PR
16

PR18

PR20 PR22 PR24
PR26

PR28

PR30

PR32

PR34

PR36

PR38

PR
40

PR
42

PR
44

PR
46

PR
48

PR
50PR

52PR
54

PR56
PR58

PR60

PR62

PR61

PR59

PR57

PR
55

PR
53

PR
51

PR
49

PR
47

PR
45 PR

43 PR
41

PR39
PR37

PR35

PR33

PR31

PR29

PR27

PR25

PR23
PR21

PR19

PR
17

PR
15

PR13PR11PR09PR07
PR05

PR03

PR01

IO Processor
Compute Processor

0 Switch

time, pairs of I/O and compute processes are assigned ran-
domly to processing nodes.

The I/O throughput on MPI/FCI scales well when
increasing the number of nodes. The speed-up may
slightly vary due to TNET’s particular communication
topology (Fig. 10). The effect of topology on the I/O per-
formance needs to be further studied.

4. Conclusion and future work

SFIO is a cheap alternative to Storage Area Net-
works. It is a light-weight portable parallel I/O system for
MPI programmers. Integrated into standard MPI-I/O,
SFIO may become a high performance portable MPI-I/O
solution for the MPI community.

We plan to check the scalability of SFIO for a larger
number of processors on a large supercomputer at Sandia
National Laboratory.

We intend to implement non-blocking parallel I/O
function calls. Disk access optimizations may also be fur-
ther improved. The library has to be further developed in
order to support global files larger than 4GB.

Finally, we are planning to implement collective
operations as follows: collective operations assume that all
compute nodes issue an I/O request at the same logical
step in the program. The compute nodes, under control of
the SFIO library, consult each other to arrive at a common
I/O strategy. The I/O nodes are informed about the strat-

egy of the compute nodes and an optimized data flow
schedule is created.

References

[1] Martha Bancroft, Nick Bear, Jim Finlayson, Robert
Hill, Richard Isicoff and Hoot Thompson, Function-
ality and Performance Evaluation of File Systems for
Storage Area Networks (SAN), 17-th IEEE Symp. on
Mass storage systems, University of Maryland,
March 2000, http://esdis-it.gsfc.nasa.gov/msst/
conf2000/PAPERS/A05PA.PDF

[2] Sachin More, Alok Choudhary, Ian Foster, Ming Q.
Xu. MTIO a multi-threaded parallel I/O system, Pro-
ceedings of the 11th International Parallel Processing
Symposium (IPPS '97), pages 368-373

[3] Ron Oldfield and David Kotz. The Armada Parallel
File System, Dartmouth College Dpt. of Compute
Science, November 22, 1998, pages 1-14, http://
www.cs.dartmouth.edu/~dfk/armada/design.html

[4] V. Messerli, O. Figueiredo, B. Gennart, R.D. Hersch,
Parallelizing I/O intensive Image Access and
Processing Applications, IEEE Concurrency, Vol. 7,
No. 2, April-June 1999, pp. 28-37

[5] Chandramohan A. Thekkath, Timothy Mann,
Edward K. Lee, Frangipani: A Scalable Distributed
File System. In Proceedings of the 16th ACM Sym-
posium on Operating Systems Principles, pages 224-

0

50

100

150

200

250

300

350

400

1 4 7 10 13 16 19 22 25 28 31

write maximum
write average
read maximum
read average

number of compute and I/O nodes

Pe
rf

or
m

an
ce

 M
B

/s

Fig. 11. SFIO all-to-all I/O performance on TNET

SFIO on top of MPI/FCI

237. ACM Press, October 1997, ftp://ftp.digital.com/
pub/DEC/SRC/publications/thekkath/frangipani-
sosp.ps

[6] Peter F. Gorbett and Dror G. Feitelson. The Vesta
parallel file system. ACM Transactions on Computer
Systems, 14(3):225-264, August 1996.

[7] Jay Huber, Christopher L. Elford, Daniel A. Reed,
Andrew A. Chien, and David S. Blumenthal. PPFS:
A High Performance Portable Parallel File System.
In Proceeding of the 9th ACM International Confer-
ence on Supercomputing, pages 385-394. ACM
Press, July 1995.

[8] David Kotz. Disk-directed I/O for MIMD Multiproc-
essors. ACM Transactions on Computer Systems,
15(1):41-74, February 1997.

[9] Peter S. Pacheco, Parallel Programming with MPI,
by Morgan Kaufmann Publishers, pages 137-178,
1997

[10] Rajeev Thakur, William Gropp, Ewing Lusk, On
Implementing MPI-I/O Portable and with High Per-
formance, Sixth Workshop on I/O in Parallel and
Distributed Systems, ACM, May 1999, pp. 23-32.

[11] Marc Snir, Steve Otto, Steven Huss-Lederman,
David Walker, Jack Dongarra, MPI - The Complete
Reference, Volume 1, The MPI Core, MIT Press,
pages 123-189, 1996

[12] William Gropp, Steven Huss-Lederman, Andrew
Lumsdaine, Ewing Lusk, Bill Nitzberg, William
Saphir, Marc Snir, MPI - The Complete Reference,
Volume 2, The MPI Extensions, MIT Press, pages
185-274, 1998

[13] William Gropp, Ewing Lusk, Rajeev Thakur, Using
MPI-2 Advanced Features of the Message-Passing
Interface, MIT Press, pages 51-118, 1999

[14] Message Passing Interface Forum, MPI-2 Extensions
to the Message-Passing Interface, University of Ten-
nessee, pages 209-300, 1997

[15] Rajeev Thakur, William Gropp, Ewing Lusk “A Case
for Using MPI’s Derived Datatypes to Improve I/O

Performance”, http://www.supercomp.org/sc98/Tech-
Papers/sc98_FullAbstracts/Thakur447/, pages 1-9,
1998

[16] Pierre Kuonen, Ralf Gruber, Parallel computer archi-
tectures for commodity computing and the Swiss-T1
machine. EPFL Supercomputing Review, Nov 99,
pp. 3-11, http://sawww.epfl.ch/SIC/SA/publications/
SCR99/scr11-page3.html

[17] Stephan Brauss, Communication Libraries for the
Swiss-Tx Machines. EPFL Supercomputing Review,
Nov 99, pp. 12-15. http://sawww.epfl.ch/SIC/SA/pub-
lications/SCR99/scr11-page12.html

[18] Benoit A. Gennart, Emin Gabrielyan, Roger D. Her-
sch, Parallel File Striping on the Swiss-Tx Architec-
ture, EPFL Supercomputing Review, Nov. 99, pp.
15-22, http://sawww.epfl.ch/SIC/SA/publications/
SCR99/scr11-page15.html

[19] Edward K. Lee, Highly-Available, Scalable Network
Storage, In Digest of Papers COMPCON 1995,
pages 397-402. IEEE Computer Society Press,
March 1995.

[20] Edward K. Lee and Chandramohan A. Thekkath,
Petal: Distributed Virtual Disks, In Proceedings of
the Seventh International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, ASPLOS-VII, pages 84-92. ACM,
October 1996. ftp://ftp.digital.com/pub/DEC/SRC/
publications/eklee/petal-paper.pdf

[21] Edward K. Lee, Chandramohan A. Thekkath, Chris
Whitaker, Jim Hogg, A Comparison of Two Distrib-
uted Disk Systems, SRC Research Report 155, April
30, 1998, http://gatekeeper.dec.com/pub/DEC/SRC/
research-reports/abstracts/src-rr-155.html

[22] Kuonen P. The K-Ring: a versatile model for the
design of MIMD computer topology, Proceedings of
the High-Performance Computing Conference
(HPC'99), San Diego, USA, pp. 381-385; April
(1999).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

