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Abstract 

This paper presents the design and evaluation of a Striped File I/O (SFIO) library for parallel 
I/O within an MPI environment. We present techniques for optimizing communications and disk 
accesses for small striping factors. Using MPI derived datatype capabilities, we transmit fragmented 
data over the network by single MPI transfers. We present the I/O performance of the SFIO library 
on DEC Alpha clusters, both for the Fast Ethernet and for the TNET communication networks. 

1. Motivation/Introduction 

For I/O bound parallel applications, parallel file striping may represent an alternative to 
Storage Area Networks (SAN). In particular, parallel file striping offers high throughput I/O 
capabilities at a much cheaper price, since it does not require a special network for accessing the 
mass storage sub-system [1]. 

 
Figure 1. File Striping 
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Parallel I/O systems should offer highly concurrent access capabilities to the common data 
files by all parallel application processes. They should exhibit linear increase in performance when 
increasing both the number of I/O nodes and the number of application’s processing nodes. 
Parallelism for input/output operations can be achieved by striping the data across multiple disks so 
that read and write operations occur in parallel (see Figure 1). A number of parallel file systems 
were designed ([2], [3], [4], [5], [6], [7], [8]), which rely on the parallel file striping paradigm. 

MPI is a widely used standard framework for creating parallel applications running on various 
types of parallel computers [9]. A well known implementation of MPI, called MPICH, has been 
developed by Argone National Laboratory [10]. MPICH is used on different platforms and 
incorporates MPI-1.2 operations [11] as well as the MPI-I/O subset of MPI-II ([12], [13], [14]). 
MPICH is most popular for cluster architecture supercomputers, based on Fast or Gigabit Ethernet 
networks. MPICH’s MPI-I/O underlying I/O implementation is sequential and is based on NFS 
[10], [15]. 

Due to the locking mechanisms needed to avoid simultaneous multiple accesses to the shared 
NFS file, MPICH MPI-I/O write operations can be carried out only at a very slow throughput. 

Another factor reducing peak performance is the read-modify-write operation useful for 
writing fragmented data to the target file. Read-modify-write requires reading the full contiguous 
extension of data covering the data fragment to be written, sending it over the network, modifying it 
and transmitting it back. In the case of high data fragmentation, i.e. small chunks of data spread 
over a large dataspace in the file, network access overhead may become dominant. 

Our project aims at offering scalable I/O throughput. To be able to provide the highest level of 
parallelization of access requests as well as a good load balance, small striping units are required. 
However low stripe unit size increases the communication and disk access cost. Our SFIO parallel 
file striping implementation integrates the relevant optimizations by merging sets of network mes-
sages and disk accesses into single messages and single disk access requests. The merging 
operation makes use of MPI derived datatypes. At the present time, the SFIO library interface does 
not provide non-blocking operations, but internally, accesses to the network and disks are made 
asynchronously. 

Section 2 presents the overall architecture of the SFIO implementation as well as the software 
layers in order to provide an MPI-I/O interface on top of SFIO. The SFIO interface description, 
small examples as well as the details of the system design, caching techniques and other 
optimizations are presented in Section 3. First performance results are given for various 
configurations of the Swiss-Tx supercomputer [16]. The performance test of SFIO on top of 
MPICH is given in section 4. In the same section we present the topology of the Swiss-T1 machine 
and the SFIO benchmarks on top of the native FCI communication system. Section 5 presents the 
conclusions and future work. 

2. Global Architecture 

The SFIO library is implemented using MPI-1.2 message passing calls. It is therefore as 
portable as MPI-1.2. The local disk access calls, which depend on the underlying operating system 
are non-portable. However, they are separately integrated into the source for the Unix and the 
Windows NT versions. 



The SFIO parallel file striping library offers a simple Unix like interface. We intend to provide 
in the future an MPI-I/O interface on top of SFIO. The intermediate level of MPICH’s MPI-I/O 
implementation is ADIO [15]. We successfully modified the ADIO layer of MPICH to route calls to 
the SFIO interface (Figure 2). 
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Figure 2. SFIO integration into MPI-I/O 
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On the Swiss-T1 machine, SFIO can run on top of MPICH as well as on top of MPI/FCI, an 
MPI implementation making use of the low latency and high throughput TNET network [17]. 

Unlike the majority of file access sub-systems SFIO is not a block-oriented library 
[18],[5],[19],[20],[21]. Independance from block orientation provides a number of advantages. 
There is no need to send entire blocks over the network or to access them on the disk. The stripe 
units do not form blocks; neither network transfers nor disk accesses are rounded to the size of the 
stripe unit size. The amount of data accessed on the disk and transferred over the network is the size 
specified at the application level. 

The functional architecture of the SFIO library is shown in Figure 3. Only the structure of the 
access functions is described. On top of the graph we have the application’s interface to data access 
operations and at the bottom, we have the I/O node operations. 
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Figure 3. SFIO functional architecture 

The mread and mwrite operations are the non-optimized single block access functions and the 
mreadc and mwritec operations are their optimized counterparts. The mreadb and mwriteb 
operations are multi-block access functions. All the mread, mwrite, mreadc, mwritec, mreadb, 
mwriteb interface functions are operating at the level of the logical file. For example the SFIO write 
access operation mwritec(f,0,buffer,size) writes data to the beginning of the logical file f. Access 
interface functions are unaware of the fact that the logical file is striped across subfiles. In the SFIO 
library, all the interface access functions are routed to the mrw cyclic distribution module. This 
module is responsible for data striping. Contiguous requests (or a set of contiguous requests for 
mwriteb and mreadb) are split into small fragments according to the striping factor. The small 
requests generated by the mrw module specify the selected subfile, and the node on which the 
subfile is located. Global pointers are translated to subfile pointers. Subfile access requests contain 
enough information to execute and complete the I/O operation. For the non-optimized mread and 
mwrite operations, the library routes the requests to the sfp_read and sfp_write modules that are 
responsible to send appropriate single sub- requests to the I/O nodes using MPI as the transport 
layer. 

The network communication and disk access optimization is demonstrated by the remaining 
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part of the graph. For the optimized interface functions mreadc, mwritec, mreadb, mwriteb, the mrw 
module routes the requests to the sfp_readc and sfp_writec functions. These functions access the 
sfp_rdwrc module which stores the sub-requests into a two-dimensional cache. The 2D cache 
structure comprises as one axis the I/O nodes and as a second axis the set of subfiles each I/O node 
is dealing with. In the general case, on each I/O node there may be one subfile per global file. 

Each entry of the cache can be flushed. Flushing happens either because the user operation 
terminates, i.e. when a signal is communicated down through the sfp_rflush and sfp_wflush 
functions; or it can happen if the sfp_rdwrc module predicts a possible overflow of reception 
buffers on the remote I/O nodes. The sfp_rdwrc module makes sure that all generated requests fit 
within the buffers of the compute and of the remote I/O nodes. The entry to be flushed is passed to 
the flushcache operation that also frees the relative resources within the cache. 

As soon as a large list of the sub-requests needs to be processed, the library can carry out an 
effective optimizations in order to save network communications and disk accesses. Note that the 
data itself is never cached, and always stays in user space. Three optimization procedures are 
carried out, before an actual transmission takes place. The requests are sorted by their offsets in the 
remote subfiles. This operation is carried out by the sortcache module. Overlapping and 
consecutive requests are merged whenever possible into single requests by the bkmerge module. 
This merging operation reduces the number of disk access calls on the remote I/O nodes. 

The mkbset module creates a derived MPI datatype pointing to the fragmented pieces of user 
data in the user’s memory. This allows to efficiently transmit the data associated to many requests 
over the network as one contiguous stream. The data can be transmitted or received without any 
memory copy at the application or library level. 

The actual data transmission to the I/O nodes is carried out by the sfp_readb and sfp_writeb 
functions. 

3. The Unix like SFIO interface 

3.1. Interface 

Two functions, mopen and mclose are provided to open and close a striped file. Note that a file 
should be opened by all compute nodes irrespectively of whether that node uses the file or not. This 
restriction is placed in order to ensure the correct behaviour of future collective parallel I/O 
functions. Additionally, the operation of opening as well as of closing a file implies a global 
synchronization point in the program. The generic functions to read and write to a file are 
respectively mreadc and mwritec.  

The multiple I/O request specification interface allows an application program to specify 
multiple I/O requests within one call. This permits optimizations which otherwise would not be 
possible. The multiple I/O request operations are mreadb and mwriteb. 

The following source C code shows a simple SFIO example. The striped file with a stripe unit 
size of 5 bytes consists of two subfiles. A single compute node accesses the striped file. It is 
assumed that the program is launched with one compute node MPI process.  
#include <mpi.h> 



#include "/usr/local/sfio/mio.h" 
int _main(int argc, char *argv[]) 
{ 
    MFILE *f; 
    f=mopen //Collective Operation 
    ( 
        "t0-p1,/tmp/a1.dat;" 
        "t0-p2,/tmp/a2.dat;" 
        ,5 
    ); 
    if(rank()==0) 
    { 
        //writes at location 0 in the 
        //global file 11 characters 
        mwritec(f,0,"Hello World",11); 
    } 
    mclose(f);  //Collective Operation 
} 

Below is an example of multiple compute nodes accessing a striped file. Again the striped file 
with a stripe unit size of 5 bytes consists of two subfiles. It is accessed by three compute nodes. 
Each of them writes at different positions simultaneously. 
#include <mpi.h> 
#include "/usr/local/sfio/mio.h" 
int _main(int argc, char *argv[]) 
{ 
    MFILE *f; 
    char bu[]=”Hello*World!*”; 
    int r=rank(); 
    f=mopen 
    ( 
        "t0-p1,/tmp/a.dat;" 
        "t0-p2,/tmp/a.dat;" 
        ,5 
    ); 
    //each process writes at its own 
    //position 13 characters 
    mwritec(f,13*r,bu,13); 
    mclose(f); 
} 

We assume that the program is launched with three compute and two I/O MPI processes. After 
the parallel writing operation, the global file contains the text combined from the fragments written 
by the first, second and third compute nodes, i. e. 
“Hello*World!*Hello*World!*Hello*World!*” The text is distributed across the two 
subfiles. The first subfile contains “Hellod!*Heorld!o*Wor” and the second 
“*Worlllo*W*Hellld!*” (Figure 4) 



 
Figure 4. Distribution of striped file across subfiles 

3.2. Function Calls 

In this sub-section we present the SFIO library application programmer interface. 

File management operations are mopen, mclose, mchsize, mdelete and mcreate. 
MFILE* mopen(char *name, int stripeUnitSz); 
void mclose(MFILE *f); 
void mchsize(MFILE *f, long size); 
void mdelete(char *name); 
void mcreate(char *name); 

All the presented file management operations are collective. Operation mopen returns to the 
compute node a pointer to the logical striped file descriptor. The striped file name, required for the 
mopen, mdelete, mcreate commands is a string containing the specification of the I/O nodes 
together with the paths of subfiles representing the global striped file. The format of the name is a 
sequence of subfiles, separated by semicolon:  “<host>,<path>;<host>,<path>...”. For 
example “tonep0,/tmp/a.dat;tonep1,/tmp/a.dat;”.  

The mchsize operation change the size of the logical file. If the specified size is smaller than 
the current, the operation truncate logical file to the new size.  

There are single block and multi-block data access requests. 
void mread(MFILE *f, long offset, 
    char *buffer, unsigned size); 
void mwrite(MFILE *f, long offset, 
    char *buffer, unsigned size); 
void mreadc(MFILE *f, long offset, 
    char *buffer, unsigned size); 
void mwritec(MFILE *f, long offset, 
    char *buffer, unsigned size); 
void mreadb(MFILE *f, 
    unsigned numberOfBlocks, 
    long offsets[], 
    char *buffers[], 
    unsigned sizes[]); 
void mwriteb(MFILE *f, 
    unsigned numberOfBlocks, 
    long offsets[], 
    char *buffers[], 
    unsigned sizes[]); 
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The data access requests are blocking and non-collective. mreadc and mwritec functions are 
the optimized versions of the mread and mwrite functions. The multiple block data access 
operations mreadb and mwriteb are optimized. The numberOfBlocks argument in mreadb and 
mwriteb operations specifies the number of blocks to be accessed by the single operation in the 
logical file. The information about each block has to be provided by three arrays offsets, buffers and 
sizes each having a number of elements given by the variable numberOfBlocks. The offsets array 
contains the positions of each block in the logical file. The buffers array contains the addresses of 
each block in the user memory and the sizes aray stores the size of each block in bytes. 

Error management functions are given by merror and its collective counterpart merrora.  
void merrora(unsigned long *ioerr); 
void merror(unsigned long *ioerr); 
void prioerrora(); 

merror and merrora return an array of error statistics accumulated on all the I/O nodes. At the 
same time, they reset the error counters on all the I/O nodes. Statistics are accumulated for 
operating system I/O calls and listed according to open, close, creat, unlink, ftruncate, lseek, write 
and read functions. prioerrora is a collective operation which prints the error statistics to the 
standard output of the application. 

3.3. Implementation 

In our programming model, we assume a set of compute nodes and an I/O subsystem. The I/O 
subsystem comprises a set of I/O nodes running I/O listener processes. Both compute processes and 
I/O listeners are MPI processes within a single MPI program. This allows the I/O subsystem to 
optimize the data transfers between compute nodes and I/O nodes using MPI derived datatypes. The 
user is allowed to directly use MPI operations only across the compute nodes for computation 
purposes. The I/O nodes are available to the user only through the SFIO interface. 

When a compute node invokes an I/O operation, the SFIO library takes control of that compute 
node. The library routes the requests to the corresponding I/O listener proxy on the compute node, 
caches the routed requests and does an optimization of requests queued for each I/O node in order 
to minimize the cost of disk accesses and network communications. After actual transmission of the 
messages, each I/O listener prepares a reply, which is sent back to the compute node. 

3.4. Optimization 

In order to optimize the disk accesses on the remote I/O node, the algorithm implemented on 
the compute node tries to combine all overlapping or consecutive I/O requests collected in the 
cache (Figure 5). Requests queued for each I/O node are sorted according to their offsets on the 
remote disk subfile. 
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Figure 5. Disk access optimisation 

Queued I/O node access requests cached on the compute node are launched either at the end of 
the function call or when the buffer size reserved on the remote I/O listener for data reception may 
become full. Memory is not a problem on the compute node, since data always stays in user 
memory and is not buffered. When launching I/O requests, the SFIO library performs a single data 
transmission to each of the I/O nodes. It creates dynamically a derived datatype which points to the 
set of pieces in user space memory related to the given I/O node and transmits the data in a single 
stream without additional copy. The I/O listener at the same time receives the data as a contiguous 
chunk. Upon reception of a data write or read request, the I/O node immediately launches the cor-
responding disk access request. 

4. SFIO performance 

Let us explore the scalability of our parallel I/O implementation (SFIO) as a function of the 
number of contributing I/O nodes. Performance results have been measured on the Swiss-T1 
machine [16]. The Swiss-T1 supercomputer is based on Compaq AlphaServer DS20 machines and 
consists of 64 Alpha processors grouped in 32 nodes. Two types of networks are interconnecting 
the processors, the TNET and Fast Ethernet.  

To have an idea about the network capabilities, throughput as a function of number of nodes is 
measured by a simple MPI program for both networks. The nodes are equally divided into 
transmitting and receiving nodes and all-to-all traffic is generated. Figure 6 demonstrates the 
cluster’s communication throughput scalability over Fast Ethernet. The Fast Ethernet network of T1 
consists of a full crossbar switch. 
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Figure 6. Agregate throughput of Fast Ethernet as a function of the 
number of the contributing nodes 

Let us now analyze the performances of the SFIO library on the Swiss-T1 machine on top of 
MPICH using Fast Ethernet. We assign the first processor of each compute node to a compute 
process and the second processor to an I/O listener (Figure 7). 

 
Figure 7. SFIO architecture on Swiss-T1 

SFIO performance is measured for concurrent write access from all compute nodes to all I/O 
nodes, the striped file being distributed over all I/O nodes. The number of I/O nodes is equal to the 
number of compute nodes. 
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application’s I/O performance as a function of the number of compute and I/O nodes is measured 
for the Fast Ethernet network. It is presented in Figure 8. The white graph represents the average 
throughput and the gray graph the peak performance. These results are surprising and need further 
investigation. We suppose that the fall of the performance may be possibly due to a non-efficient 
implementation of data intensive collective operations in the current version of MPICH. 
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Figure 8. SFIO/MPICH all-to-all I/O performance 

Let us analyze the capacities of the TNET network of the Swiss-T1 machine. TNET is a high 
throughput and low latency network (less than 20ms MPI latency and more than 50MB/s 
bandwidth) [17]. A high performance MPI implementation called MPI/FCI is available for com-
munication through TNET [17]. 

The TNET throughput as a function of the number of nodes is measured by a simple MPI 
program. The contributing nodes are equally divided into transmitting and receiving nodes (Figure 
9). Due to TNET’s specific network topology (Figure 10), communication throughput does not 
increase smoothly. A significant increase in throughput occurs when the number of nodes increases 
from 8 to 10, 16 to 18 and 24 to 26 nodes. 
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Figure 9. Aggregate throughput of TNET as a function of the number of the 
contributing nodes 

The Swiss-T1’s TNET network [22] consists of eight 12-port full crossbar switches (Figure 
10). Routing between switches that do not have direct connectivity is static [16]. The topology 
together with the routing information defines the network’s peak throughput over the subset of 
processors assigned to a given application. 



 
Figure 10. The Swiss-T1 network interconnection topology 

Let us now analyze the performances of the SFIO library on the Swiss-T1 machine on top of 
MPI/FCI using the proprietary TNET network. As before, the first processor of each compute node 
is assigned to a compute process and the second processor to an I/O listener process. Therefore, 
each node acts both as a compute node and an I/O node.  

As in SFIO/MPICH, the performance of SFIO over MPI/FCI is measured for concurrent write 
accesses from all compute nodes to all I/O nodes, the striped file being distributed over all I/O 
nodes. 

In order to limit operating system caching effects, the total size of the striped file linearly 
increases with the number of I/O nodes. With a global file size proportional to the number of 
contributing I/O nodes, we keep the size of subfiles per I/O node fixed at 1GB/subfile.  

The stripe unit size is 200 bytes. The MPI/FCI application’s I/O performance is measured as a 
function of the number of compute and I/O nodes (Figure 11). For each configuration, 53 
measurements are carried out. At job launch time, pairs of I/O and compute processes are assigned 
randomly to processing nodes. 
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Figure 11. SFIO all-to-all I/O performance on TNET 

The I/O throughput on MPI/FCI scales well when increasing the number of nodes. The speed-
up may slightly vary due to TNET’s particular communication topology (Figure 10). The effect of 
topology on the I/O performance needs to be further studied.  

5. Conclusion and future work 

SFIO is a cheap alternative to Storage Area Networks. It is a light-weight portable parallel I/O 
system for MPI programmers. Integrated into standard MPI-I/O, SFIO may become a high 
performance portable MPI-I/O solution for the MPI community.  

We plan to check the scalability of SFIO for a larger number of processors on a large 
supercomputer at Sandia National Laboratory.  

We intend to implement non-blocking parallel I/O function calls. Disk access optimizations 
may also be further improved. The library has to be further developed in order to support global 
files larger than 4GB.  

Finally, we are planning to implement collective operations as follows: collective operations 
assume that all compute nodes issue an I/O request at the same logical step in the program. The 
compute nodes, under control of the SFIO library, consult each other to arrive at a common I/O 
strategy. The I/O nodes are informed about the strategy of the compute nodes and an optimized data 
flow schedule is created. 
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