Performance Analysis of Parallel I/O Scheduling Approaches on
Cluster Computing Systems

J. H. Abawajy
School of Computer Science,
Carleton University,
Ottawa, K1S 5B6, Canada.

abawjem@scs.carleton.ca

Abstract

As computation and communication hardware per-
formance continue to rapidly increase, 1/O repre-
sents a growing fraction of application ezecution
time. This gap between the 1/0 subsystem and oth-
ers is expected to increase in future since 1I/O per-
formance is limited by physical motion. Therefore,
it is imperative that novel techniques for improv-
ing I/O performance be developed. Parallel 1/0
is a promising approach to alleviating this bottle-
neck. However, very little work exist with respect
to scheduling parallel I/0 operations ezplicitly. In
this paper, we address the problem of effective man-
agement of parallel I/0 in cluster computing sys-
tems by using appropriate 1/0 scheduling strate-
gics. We propose two new I/0 scheduling algo-
rithms and compare them with two existing schedul-
ing Approaches. The preliminary results show that
the proposed policies outperform ezxisting policies
substantially.

1 Introduction

As cluster computing gains popularity, it is increas-
ingly being used for parallel and sequential appli-
cations with significant 1/O requirements. How-
ever, with the tremendous advances in processor
and interconnection network technologies, the lack
of commensurate improvements in I/0 subsystems
have resulted in I/O becoming a major bottleneck

for many applications in these systems. In the last
few years, parallel I/O has drawn increasing at-
tention as a promising approach to alleviating this
bottleneck. Parallel I/O combines a set of stor-
age devices and provides interfaces to utilize them
in concert. For example, several file systems {e.g.,
Parallel Virtual File System (PVFS) [8]) and I/O
runtime libraries have been developed to alleviate
the 1/O bottlenecks by distributing the data over
several nodes and providing low-level data access
mechanisms.

Although the development of parallel file systems
has helped to ease the performance gap, but I/O
still remains an area requiring significant perfor-
mance improvement [11, 10]. This has lead to a
number of different approaches. Most attention
has focused on improving the performance of I/0O
devices using fairly low-level parallelism in tech-
niques such as disk striping and interleaving [11].
Data distribution strategies and data layout strate-
gies have also been researched for optimizing I/O
performance [3, 1]. Also, research focusing on the
data access strategies such as collective I/0 [9]
have been proposed as a means of optimizing I/O
performance.

This paper investigates the effectiveness of paral-
lel I/O scheduling strategies for multiprogrammed
cluster computing environments. Most existing
studies have not investigated the potential per-
formance problems of handling tens to possibly
hundreds of outstanding I/O requests in a multi-

0-7695-1919-9/03 $17.00 © 2003 IEEE 724

COMPUTER
SOCIETY

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

workload environment. We believe that such envi-
ronments require an efficient parallel I/O schedul-
ing techniques in order to address the I/O bottle-
neck problem. Parallel I/O scheduling is concerned
with allocating parallel I/O operations to the most
appropriate 1/O server with the goal of minimizing
the overall response times. Although parallel I/0
scheduling can potentially provide substantial per-
formance benefits, by far I/O scheduling strategies
for parallel workload is the least studied area. A
number of 1/O scheduling strategies that are based
on various knowledge of I/O patterns such as the
sum of the service demands of is described in [4].
Unfortunately, it is very difficult if not impossi-
ble to know the pending 1/O service demands of a
job. Some of the I/O patterns of a job do not lend
themselves to be easily explored by the parallel I/O
scheduling subsystem. Scheduling of a batch of I/O
operation is also discussed in [11]. To this end, we
propose two new 1/O scheduling algorithms and
compare them with two existing scheduling Ap-
proaches. The preliminary results show that the
proposed policies outperform existing policies sub-
stantially.

The rest of the paper is organized as follows.
Section 2 describes the system model used in this
study. In Section 3, a set of scheduling algo-
rithms we have implemented for the purpose of this
study are discussed. Section 4 presents the system
and workload parameters used in the experiments
whereas the discussion of results is presented in
Section 5. The conclusions and future directions
are given in Section 6.

2 System Model

The system of interest has D disks and P work-
stations that are connected by a fast interconnec-
tion network as shown in Figure 1. As in [11],
we replicate application data on at least K < D
disks. Any data required to run a job is fetched
(if it is not already present locally) before the job
is run . All I/O request from a job is sent to a
data scheduler that runs on a single central node

PL | | P2 || P3 [Pn

Network

(Data Scheduler)

1
disk 1 disk 2 disk 3
f1 3 f2 fl. 4 |f4p215
f3 f5

Figure 1: Cluster Computing system architecture

in the I/O subsystem. The data scheduler coordi-
nates the 1/O request on multiple I/O nodes for
greater efficiency. Upon arrival, if an I/O request
cannot be serviced immediately, it is placed into an
1/0 wait queue and scheduled using I/O scheduling
approaches discussed in the following subsections.
In the following sections, we describe a number of
parallel 1/0O scheduling strategies in detail.

3 Parallel I/O Scheduling Strate-
gies

When application data is replicated on K disks,
each 1/O request can be possibly serviced by K
servers. This means an I/O server may receive
requests from several concurrent parallel applica-
tions, which do parallel I/O. Thus, if the I/O
requests are not efficiently scheduled, some I/0
servers can be overloaded while others remain idle.
Moreover, the order with which the I/O servers ser-
vice the 1/0 requests can affect the overall perfor-
mance of the system. This will have a serious im-
pact on the performance of the applications, which
necessitates an efficient I/O scheduling policy. The
objective of the 1/0 scheduler is to balance the load
among the k I1/O servers such that the response
time of the jobs is minimized.

In this section, we propose two new schedul-

725

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

TEEE ':a

COMPUTER
SOCIETY

ing polices called the Equi-Partition (EQUI) 1/0
scheduling policy and the Adaptive Equi-Partition
(AEQUI) 1/0 scheduling policy. We also de-
scribe three existing policies proposed in [11] called
the Lowest Destination Degree First (LDDF) and
Highest Destination Degree First (HDDF).

3.1 Equi-Partition Policy

Figure 2 is a pseudo-code of the Equi-Partition
(EQUI) 1/O scheduling policy. In (EQUI) policy,
at each scheduling iteration, the algorithm first de-
termines the average number of 1/O requests (i.e.,
Avg) to be handed to each I/0 server as follows:

number outstanding I/O requests

S

where the parameter S is denotes number of severs
that can service the outstanding I/O requests.

Let OR;, be a subset of outstanding I/O requests
that can be serviced by an I/O server Ni. The
algorithm selects an 1/0 server N; € S with ORy >
0 and the OR;, is the lowest among the I/O servers.
It then removes a set of min(Avg, ORy) unassigned
I/0 requests from the I/O request pending queue
and forwards it to server N;. This process repeats
until all pending I/O requests are assigned to the
1/0 servers.

Avg = (1)

3.2 Adaptive Equi-Partition

Figure 3 is a pseudo-code of the Adaptive Equi-
Partition (AEQU) 1/0 scheduling policy. At each
scheduling point, the AEQU first determines the
average number of 1/O requests (i.e., Avg) to be
allocated to each I/O server as follows:

Total number of I/O requests
Avg = 5

(2)
where

e S = total number of severs that can service the
pending I/O requests;

e Total number of I/O requests = Rpendging +
Riockiogs

Algorithm 1: Equi-Partition Policy

Let D be the number outstanding I/O requests

1. While not all pending I/O requests are as-
signed (i.e., D > 0) DO

(a) Let N; be an I/O server that meets the
following conditions:
i. has an outstanding requests (i.e.,
OR; > 0);
ii. has the lowest outstanding I/O re-
quest (i.e., min (OR;);and
iii. has not been assigned 1/O requests
in this round;
(b) Assign 1/0O requests from pending I1/O
queue as follows:

target = min(OR;, Avg)
OR; = OR; — target

N; = target

D =D —target

Figure 2: Equi-Partition I/O Scheduling

e Ryendging = a subset of outstanding 1/O re-
quests; and

® Rpacklog = the total number of locally bock-
logged (i.e., assigned to I/O servers but not
yet processed 1/0 requests.

The I/O servers are then sorted in an increasing
order based on the total number of locally bock-
logged 1/O requests. The algorithm then assigns
pending 1/O requests to under loaded I/O servers
while re-scheduling I/O requests from overloaded
I/0 servers onto the under loaded servers.

726
COMPUTER
SOCIETY

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

Algorithm 2: Adaptive Equi-Partition

lowest number of pending 1/0 requests, the algo-
rithm removes a pending I/O request for the I/0

Let:
e D = the total number I/O requests;

. Rzendmg = a subset of outstanding I/O re-

quests that can be serviced by server &

J R’,fack[og = the total number of locally bock-
logged 1/O requests at server k.

1. Sort the S servers in an increasing order based
on the number of locally bocklogged 1/0 re-
quests.

2. For each Ny € S DO
(a) IF Rf, 410, > Avg +1 THEN
target = Rfacklog — Avg +1

k k
Riockiog = Rbackiog — target
D =D +target

(b) Otherwise, assign I/O requests from
pending I/O queue as follows:

target = min(Rkendmg + Ri‘acklog, Avg)

P
Rpending = Rpending — target
N, = target
D =D —target

Figure 3: Adaptive Equi-Partition I/O Scheduling

3.3 Lowest Destination Degree First

An 1/0 scheduling policy called the Lowest Desti-
nation Degree First (LDDF) is proposed in [11]. In
LDDF policy, I/O requests are mapped to the I/O
servers in a round robin fashion. The algorithm
first sorts the I/O servers in an increasing order of
the pending I/O requests that they can possibly
service. Starting with an I/O server that has the

servers from the queue and assigns it to the server.
It then picks the next I/O server with the lowest
number of pending 1/0 requests, removes a pend-
ing I/O request from the queue and assigns it to
the 1/O server. This process continues until there
is no more pending 1/O requests.

3.4 Highest Destination Degree First

The Highest Destination Degree First (HDDF) [11]
is similar to the LDDF policy except the algorithm
sorts the I/O servers in a decreasing order of the
pending 1/O requests that they can possibly ser-
vice. It also chooses the 1/0 server with the highest
number of pending I/O requests first.

3.5 Random I/0 Request Scheduling

In the Random I/O Request Scheduling (RIORS)
policy, as the 1/O requests arrive at the I/O sched-
uler, the request are assigned to a randomly se-
lected I/0 server.

4 Performance Analysis

We compared the performance of the four 1/0
scheduling policies discussed in the previous sec-
tion using the mean response time (MRT) as a
performance metric. All the experiments were per-
formed on a cluster computing environment that
consists of 20 pentim workstations (166 MHz) on
the same 100 MBs LAN and run the Parallel Vir-
tual Machine (PVM) under Linux operating sys-
tem. In the experiments, we used 16 workstations
as compute nodes while three workstations are used
as 1/O servers where the workstation local disk is
used to store the application data. There is one
1/0O process on every I/0 node that performs the
read or write operation. Finally, we used one of the
workstations as the master scheduler where the I/O
requests are submitted to.

The parallel workloads of interest to us are
those characterized by alternating CPU and 1/0

727

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

TEEE ':a

COMPUTER
SOCIETY

phases that repeat K times as observed in [5]. It
is a master-worker type workload (i.e., a matrix
multiplication), which is characterized with non-
overlapping CPU-I/0 operations. However, it uses
parallel 1/0 technigue to read/write the applica-
tion data. Specifically, the master task uses n par-
allel 1/O operations to read in the application data
from n disk. It then distributes the data among
the p worker tasks. The worker tasks perform
only computation using the data and at the end
of the computation they return the result data to
the master task, which combines the data from the
n workers and writes it to n disk using n paral-
lel 1/0O operations. After the data is successfully
written to disk the job completes.

5 Relative Performance of the
Policies

Table 1 shows the relative performance of the five
1/0O scheduling policies. The data shows that the
proposed 1/0 scheduling policies are quite efficient
with respect to the other three policies. The Ran-
dom policy performs slightly better than the High-
est Destination Degree First policy while Lowest
Destination Degree First performs somewhat bet-
ter than both Highest Destination Degree First and
the Random policies.

Policy MRT
Equi-partition 57.870
Adaptive Equi-partition 51.030
Lowest Destination Degree First | 88.820
Highest Destination Degree First | 95.190
Random 92.230

Table 1: Performance comparison of the five I/O
scheduling policies.

The Equi-partition policy performs better that
the Lowest Destination Degree First, Highest Des-
tination Degree First and the Random policies.
This is because the FEqui-partition policy dis-
tributed the I/O requests in a balanced fashion over

the 1/0 servers whereas the other three policies do
not.

The Adaptive Equi-partition is the best as this
policy allocates pending I/O requests as well as
move unprocessed 1/O requests from heavy loaded
to lightly loaded 1/O servers.

6 Conclusions and Future Direc-
tions

The I/O bottleneck in cluster computing sys-
tems has recently begun receiving increasing atten-
tion. However, very little work exist with respect to
scheduling parallel I/O operations in cluster com-
puting systems. In this paper, we presented two
new scheduling policies and demonstrated their ef-
fectiveness by comparing their performance with
three other scheduling policies.

Acknowledgments My thanks to Meliha who has
been very kind to me and helping me with many
things for completing this project. Wish you good
luck in Melbourne, Australia.

References

[1] Peter Kwong and Shikharesh Majumdar,
”Study of Data Distribution Strategies for
Parallel I/O Management”, ACPC, pp. 12-23,
1996.

[2] L. Diaconescu and S. Majumdar, "Effect of
Average Parallelism and CPU-I/O Overlap
on the Performance of Parallel Applications”,
Proc. Workshop on Industrial Application of
Network Computing, 2000.

[3] S. Majumdar and F. Shad, ” Characterization
and Management of I/O in Multiprogrammed
Parallel Systems”, Proc. Parallel and Dis-
tributed Processing, pp. 502-510, 1995.

[4] Peter Kwong and Shikharesh Majumdar,
”Scheduling of I/O in Multiprogrammed Par-

728

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

TEEE ':a

COMPUTER
SOCIETY

allel Systems, Informatica (Slovenia), 23 (1),
pp. 104-113, 1999.

[5] Barbara K. Pasquale and George C. Polyzos,
»Dynamic I/O Characterization of I/O Inten-
sive Scientific Applications”, Supercomputer
Conference, pp-660-669, 1994.

[6] E. Rosti et. al., "Models of Parallel Applica-
tions with Large Computation and I/O Re-
quirements”, TSE”, 28 (3), pp- 286-307, 2002.

[7] E. Rosti et. al., ”The Impact of I/O on Pro-
gram Behavior and Parallel Scheduling”, Pro-
ceedings of the SIGMETRICS Conference, pp.
56-65, 1998.

(8] R. Ross and W. Ligon, "Server-side Schedul-
ing in Cluster Parallel 1/O Systems”, Calcula-
teurs Parallele, 2002.

[9] Y. E. Cho et al. , "Parallel I/O for scien-
tific applications on heterogeneous clusters: a
resource-utilization approach”, International
Conference on Supercomputing”, pp. 253-259,
1999.

(10] J. H. Abawajy, "Parallel I/O Scheduling in
Multiprogrammed Cluster Computing Sys-
tems”, In Proc. of the ICCS 2003, Melbourne,
Australia, 2003.

[11] F. Chen and S. Majumdar, "Performance of
Parallel 1/O Scheduling Strategies on Net-
works of Workstations”, In Proc. ICPADS
2001, pp. 157-164, 2001.

[12] R. Buyya (ed.), "High Performance Cluster
Computing: Architectures and Systems”, vol-
ume 1 and 2, Prentice Hall PTR, NJ, USA,
1999.

729

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID’03)

0--7695-1919-9/03 $17.00 © 2003 IEEE C(S)gcl)lll:{%%}{

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

