
A Parallel U 0 Mechanism for Distributed Systems

Troy Baer and Pete Wyckoff
Ohio Supercomputer Center

1224 Kinnear Road
Columbus, OH 43212
{troy,pw} @osc.edu

Abstract

Access to shared data is critical to the long term suc-
cess of grids of distributed systems. As more parallel ap-
plications are being used on these grids. the needfor some
kind of parallel 1/0 facility across distributed systems in-
creases. However: grid middleware has thus fa r had only
limited support for distributed parallel IUO.

In this paper; wepresent an implementation of the MPI-
2 U0 interface using the Globus GridFTP client API. MPI
is widely used forparallel computing. and irs U0 interface
maps onto a large variety of storage systems. The limita-
tions uf using GridFTP as an MPI-I/O transport mecha-
nism are described, as well as support forparallel access
to scientific data formats such as HDF and NetCDF: We
compare the peqormance of GridFTP to that of NFS on
the same network using several parallel U0 benchmarks.
Our rests indicate that GridFTP can be a workable trans-
port forparallel I/O, particularly for distributed read-only
access to shared data sets.

1. Introduction

As grids of distributed systems become more com-
monly used for parallel computations, shared access to
data becomes increasingly problematic. Most of the so-
lutions used for shared data access on parallel systems,
such as cluster or parallel file systems, are not appropri-
ate for use across wide-area networks. However, grid data
services can be accessed in ways very similar to parallel
VO systems, so extending parallel U 0 capabilities to grid
applications is a natural extension of existing practice.

applications, particularly on distributed-memory architec-
tures such as MPP supercomputers and clusters. MPI has
been implemented on a large number of communication
technologies, ranging from TCP/IP, to InfiniBand [131, to
Globus [IO]. However, MPI-2, the second major version
of the MPI standard [9], also describes an interface for
performing VO operations on files in parallel, including
interleaved individual or collective access to shared files.
While the ROM10 implementation of the MPI-2 VO inter-
face [21,22] has been implemented on a large number of
storage systems thanks to its AD10 abstract device inter-
face [201, the only implementation using a grid data man-
agement protocol is not widely available and relies upon
a long deprecatcd protocol [3]. However, an AD10 driver
using a widely available grid data service would immedi-
ately allow a luge base of MPI programs to be used more
effcctively in grid environments.

1.2 Globus and GridFTP

The Globus Grid Toolkit [I] is a widely used set
of tools and librarics for grid computing, including
certificate-based authentication and data management ser-
vices. The lowest level of the Globus data management
services is GridFTP [7, 81, an extension of the venerable
File Transfer Protocol [I81 using the Globus Grid Security
Infrastructure (GSI) [21. The client interface to GridlTP
supplies almost all of the operations needed to implement
the MPI-2 VO interface. Furthermore, since several MPI
implementations already support authentication and com-
munication using Globus protocols, building an MPI-2 U 0
interface atop GridFTF'allows for secure, shared access to
files in those same environments.

1.1 MPI-2 Parallel YO 1.3 Goals

The Message Passing Interface, or simply MPI, has
long been the standard interface for developing parallel

In this paper, we will describe the design and then the
implementation of a driver for the AD10 component of

0-7803-8694-9/04/$20.00 02004 IEEE 63 CLUSTER 2004

mailto:osc.edu

ROMIO using the GridFTP client interface. We will also
discuss the capabilities and limitations of this software,
including functionality and performance. Finally, we will
discuss future directions and improvements that could he
made to the current implementation.

2. Design Considerations

Since a GridETP “file system” does not implement all
of the functionality of a POSIX file system, it requires
some special care in the semantics of certain operations.
As shown in Table 1, the CridFTP client intcrface has
equivalents to most (though not all) POSIX and MPI-2
VO operations, and in cases where there is not a one-to-
one correspondence in functionality, the actions taken by
the GridFTF’driver for ROMIO must endeavor to conform
as closely to the requirements of the MPI-2 specification
as possible. In a few cases however, this proved extremely
difficult.

2.1 CridFTP Namespace

The first consideration in designing an YO storage sys-
tem is its namespace. Files in GridFTP are referenced
usingaURL, of the forms ftp://host/path/file
or gsiftp://host/path/file. Thedifference be-
tween these is the protocol used; f tp: / / URLs use the
traditional FTP protocol, while gsiftp: / / URLs may
also use GridFTP extensions such as GSI authentication,
extended block mode, and parallel data transfers. Hap-
pily, ROMIO has support for a tile system prefix with a
URL-like syntax in its file name handling routines (eg.
pvfs: /pvfs/dir/file), so extending them to han-
dle GridFP U R L s was straightforward.

2.2 Basic U 0 Operations Using GridFTP

The VO operations in the GridFTP client interface, like
most Globus routines, are designed to be called asyn-
chronously. A callback routine supplied at invocation is
executed when the operation completes. A mutual exclu-
sion (mutex) lock is used to ensure that only one thread
may signal the completion of a data transfer. A further
complication is that GridFTP ~ol lows the FTP model of
client-server operation, where there are separate control
and data transfer channels. Thus, the algorithm for initiat-
ing a blocking read or write transaction is as follows:

1. Initiate U0 transaction on control channel

2. Initiate one or more data transfers on data channel

3. Acquire lock

4. Wait for control channel transaction to complete; this
implies data transfer complction as well

5. Rclcase lock

2.3 Limitations of the GridFTP Client Interface

While the asynchronous design of the G r i d R P
client interface makes it seem natural for use in im-
plementing MPI-2 nonblocking VO operations such as
MPIYile-iread () , it unfortunately has a significant
limitation: a G r i d F P file handlc may have only one con-
trol channel operation in progress at any time per client
process 161. MPI-2 U 0 semantics, on the other hand, allow
multiple asynchronous VO operations to be in progress at
the same time. This semantic mismatch can be addressed
in two ways. The first and simpler approach is treat all
VO operations as blocking, which is the approach used
by the version of the ROMIO CridFTP driver described
here. This requires that MPI-2 nonblocking U0 operations
block silently, which implies waits issued against these
nonblocking operations return immediately. A more el-
egant but complex solution to this problem would be to
maintain a FIFO queue of U0 operations and have the
completion of the top operation on the queue initiate the
operation following it.

Another significant limitation of the GridFTP client in-
terface is that is i t has no concept of access modcs, such
as read-only or write-only. The MPI-2 VO interface, on
the other hand, has a large set of access modes derived
largely from POSIX. As a result, read and write opera-
tions at the AD10 driver level for GridFTP must check
the access modes and set error conditions appropriately.
Forinstance, ifanMPI_File.write () isissuedagainst
a GridFTP URL opened read-only, the AD10 driver for
GridFTP must abort the operation and issue an error be-
fore any GridFTP client routines are invoked.

The data transfer routines in the G r i d F P client
interface, globus.ftp.clientiegisteriead ()
and g lobus- f tp-c l ien tzegis te rwr i te 0,
have slightly different interfaces; the write routine has
an offset parameter that the read routine lacks 151. This
affects the implementation of strided reads, since the read
cannot specify an offset. There are at least two possible
solutions to this. One is to implement a strided read as a
sequence of separate invocations of the algorithm shown
in the previous section; however, this has the additional
overhead of doing multiple control channel operations
and mutex locldrelease sequences for a single read
operation from the user’s point of view. An alternative to
this approach is to read the entire extent of the remote file
containing thc desired data to the client and then copy out

64

ftp://host/path/file

U 0 opcntion
create

Seek
Kevd (non-blocking)

Kead (blocking)

Wnrc (nun-blockinn)

Table 1. Comparison of VO Operations

POSIX MPI-2 U 0 6ndKl'P
crea t I I or MPLFEile.open (, . . , none

lseekll MPLFile3seekj I none
a i o i e a d l) M P I J i l e i r e a d i I glObus.ftp.~lientpartral.~get I I

read (I M P I S i l e i e a d (I g l o b u s . f t p . ~ l i e n t p a r t i ~ l . g ~ t (I

a i o w r i te I I MPIFile.iWrite I I g l a b u s . f t g - ~ l i e n t p a r t i a l p u t I I

open(... ,O.CREATI MPIMODE.CREATE, ... I

g1obus.f t p . c l i e n t i e g i s t e r i e a d ()

globus.ftp.clientiegisteriead I I
globus-cond-wai t I I

the desired portions to the user's buffer; this alternative
requires additional memory but only one control channel
operation and mutex locwreleasc. The second approach
effectively trades bandwidth for server-side latency, which
is appropriate for relatively dense accesses over small
extents; it was the approach used in the implementation
discussed below.

The GridFTP client interface also lacks some fun-
damental operations that makes certain MPI-2 U 0 fea-
tures difficult to implement. For instance, the GridFTP
client interface has noequivalent to the POSM creat (j
system call; there is no way to create a file that does
not already exist without writing data to it. To work
around this, the client can write a single byte to the
beginning of the file to create it, then overwrite that
byte with the first user-initiated write transaction. The
GridFTP interface also lacks a mechanism to tell the re-
mote server to flush its buffers to disk, which effectively
makes M P I T i l e s y n c i) impossible to implement in a
way that preserves MPI semantics. Finally, the G r i d F R
interface lacks a way of explicitly requesting locks or
atomic updates on a file, which makes the implementation
o f M P I 3 i l e . s e t . a t o m i c i t y () problematic.

3. Implementation Details

An AD10 driver atop the GridFI" client interface has
been implemented and tesled using the design described in
Section 2. In the process of doing this, several issues were
uncovered that had not been expected during the design
phase of the project. In most cases, these issues could he
worked around however, in one case the issue caused a
serious limitation in functionality.

3.1 Difficulties with Firewalls and Network Ad-
dress Translation

The Ohio Supercomputer Center (OSC), like many
sites, keeps the vast majority of its cluster compute nodes
on private networks with network address translation
(NAT) gateways to bridge to the public Internet and to
tilter incoming traffic. This is not recommended by the
Globus developers, hut the fact of the matter is that it is
often necessary for both security and lack of sufficient E'
address space. However, this caused significant problems
with writing files to remote GridFTP servers; the hehav-
ior observed was that reading a file through a NAT fire-
wall would succeed, but writes to the same file would
fail. It was hoped initially that a NAT proxy for GridFTP
similar to those used for traditional FTP could be devcl-
oped, hut those hopes faded upon further observation of
how GridFTP allocates ephemeral ports on the client side.
The European Data Grid community has observed similar
behavior [14]. The Globus developers have a set of rec-
ommendations for how to configure a firewall to permit
Globus services such as GridFI" through it [25]. How-
ever, these recommendations include assigning a static
GridFTP client port range to each compute node, which is
inherently unscalahle and difficult to manage in systems
with more than a few tens of compute nodes.

3.2 Limitations on MPWO Functionality

As mentioned previously, limitations in the GridFTP
client interface make it extremely difficult to im-
plement MPIMODE-CREATE, M P I T i l e . s y n c () and
M P I J i l e s e t - a t o m i c 1) . Unexpectedly, the lack of
atomic operations made it difficult to implement shared
file pointers in the way used by other ROM10 drivers.
The natural way to implement a shared file pointer is to
store the current shared file pointer location in a sepa-

65

rate file and forcc atomicity on it. This approach has two
drawbacks for GridFTP first, it requires readwrite access
to the directory, which may not be availahlc for remote
GridFTP files; and second, i t requires atomicity to work.
GridFTP i s not alone in lacking shared file pointers un-
der ROMIO; a number of parallel filc systems, including
PVFS, also lack shared file pointers.

3.3 MPI-2 File Hints

The GridFTP client interface has a number of features
that are potentially he useful to certain applications but
are disabled by default, such as striping and multiple data
transfer threads. To allow access to these features from
MPI programs, a number of GridFTP file hints were im-
plemented as part of the driver. The hints are stored as
(key,ualue) pairs in an MPI-Info object, which i s then
used as an argument to MPI-Fileapen () . The hints
implemented for GridFTP are summarized in Table 2. The
three that may not be familiar to users of the original FTP
protocol are ftp_controlmode,parallelism, and
st r iped-f tp . The ftp.controlmode hint sets the
FTF’ file transfer mode to either stream (traditional
passive FTP) or extended (allowing parallel and par-
t ial transfers), the latter of which i s the default. The
pa ra l l e l i smh in tse ts themaximumnumh~rofthreads
that can be spawned by an individual client process to
transfer data to and from the FTP server, with a default
of one. The s t r i p e d - f t p hint enables striped trans-
fers when thc lTF’ service i s striped across multiple data
servers.

4. Results

The GridFTP driver for ROMIO was developed and
tested on the BALE cluster at OSC; this is a 51-node clus-
ter of dual-processor Athlon systems used for instruction
and research. The GridFTP driver has also been used
in parallel grid applications on OSC’s Cluster Ohio grid
testhed [17]. The driver passes all hut two of the test pro-
grams included with ROMIO; however, the two tests that
fail require atomic updates andor shared file pointers, so
their failures were not unexpected.

4.1 Performance

Figure 1. ROM10 perf Read Performance
without Sync

Figure 2. ROM10 perf Read Performance
with Sync

Figures 1 through 4 compare the read and write per-
formance (without and with buffer flushes) of the ROMIO
test program perf on a fi le accessed via GridlTP and
N F S on the OSC BALE cluster using 100 Mhit/s Ether-
net. This application has an extremely simple parallel U 0

66

Hint Key
ftp-controlmode
pa ra l l e l i sm
str iped-f t p
t cp-bu f f e r
t ransfer- type

Table 2. Hints for GridFTP Files in ROM10

Value Type Possible Values
string extended (default) or stream
integer
string

integer
string a s c i i or b inary (default)

number of threads connecting to ftp server (default I)
t r u e l f a l s e or enableldisable (default f a l s e)
size of T C P buffer in bytes

Figure 3. ROM10 perf Write Performance
without Sync

Figure 4. ROMIO perf Write Performance
with Sync

't'
Figure 5. FLASH U 0 Benchmark Checkpoint
Performance using NetCDF

pattern: each MPI process independently writes and reads
a chunk of data (four megabytes by default) at an offset
of chunksize x MPIiank. As can be seen from the
plots, G r i d R P is typically about two-thirds as fast as NFS
for reads, but as fast as or faster than NFS for writes. The
poor write performance on NFS can be attributed to its
locking protocol. The large amount of variability observed
is a result of network contention for the single network in-
terface on the server side.

4.2 Parallel Access to Scientific Data Formats
over the Grid

There are two widely used "standard" formats for
portable, annotatable scientific data storage: HDF [161
and NetCDF [231. Both of these have parallel YO inter-
faces built on top of MPI-VO; the HDF5 library has an
MPI-YO interface included with it [15], while a separate
library for parallel access to Netcdf files bas been devel-
oped by Argonne National Laboratory and Noprthwestern
University [121. Experiences with using these parallel in-
terfaces over GridFTP were mixed. The HDF5 parallel
interface relies heavily on MPI_File.set-atomic () ,

67

and as a result it does not work well with G r i d m (or
NFS, for that mattcr). Parallel NetCDF, on the other hand,
works quite well over GridFTP.

A parallel application that uses both HDFS and parallel
NetCDF is the ASCI EXASH code from the University of
Chicago [24]. This application has such heavy parallel U0
requirements that its VO behavior has been made into a
benchmark [26, 191. The original FLASH VO benchmark
used HDFS's parallel interface; however, recent versions
have used parallel NetCDF as well [4]. Figure 5 compares
the checkpoint performance of the parallel NetCDF ver-
sion of the FLASH VO bcnchmark on the BALE cluster
using GridFI'P and NFS over 100 Mbit/s Ethernet. As in
the case of ROMIO perf writes with buffer sync, NFS
performance drops owing to lock contention; Grid-
performance is lower overall but more consistent.

4.3 An Application in Wide-Area Parallel Com-
puting

Despite the limitations on writing files through NAT
firewalls, using MPI-VO over GridFTP on compute nodes
in private networks such as thosc used hy OSC and the
Cluster Ohio grid still has significant applications. For
instance, to facilitate using the Cluster Ohio grid envi-
ronment for genome sequence alignment calculations, re-
searchers at the Ohio Spate University wrote a wrapper
around the popular tool BLAST that performs queries
in parallel. MpiBLAST [I I] uses MPICH-G2 with a
worker-slave paradigm to farm out a set of queries against
the same search database across multiple worker nodes.
Both the input queries and the databases are accessed by
the nodes using MPI-YO. In several cases, the input and
database files were referenced using G r i d W URLs to en-
able transparent remote access of a central data repository.
Thus, MpiBLAST users could run the code anywherc in
the grid using any sequence database without needing to
first pre-stage the data to each potential compute node.

5. Conclusions and Future Directions

We have demonstrated that G r i d F P can be used to im-
plement the majority of the MPI-2 VO interface. By using
MPI-VO for data access, developers of grid applications
can reuse significant amounts of existing code, especially
for shared read-only access to standardized scientific data
formats like NetCDE While GridFTP performance is of-
ten lower than that of NFS on the same network, it has the
added benefits of better security (using GSI) and a lower
performance penalty for simultaneous shared access from
multiple clients. We are submitting a patch for this func-

tionality to the ROMIO developers, so that it may be in-
cluded in future version of ROMIO.

Future work will focus primarily on two areas: strided
reads and non-blocking VO opcrations. The current im-
plementation's approach to strided reads does not scale
to applications that need small, discontiguous portions of
large data sets; a set of heuristics needs to be added to
switch to doing multiple GridETP read transactions, based
on the ratio ofthe size ofthe data being read to the size of
the extent in which that data lies. We also need to better
support non-blocking VO operations using the operation
queuc concept described earlier.

References

[I] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. 1 1(2):115-128, 1997.

[2] I. Foster. C. Kesselman, G . Tsudik, and S. Tuecke. A se-
curity architecture for computational grids. In ACM Con-
ference on Computers and Security. pages 83-91. ACM
Press, 1998.

[31 1. Foster, D. Kohr, Jr., R. Krishnaiyer. and J. Mogill. Re-
mote 110: Fast access to distant storage. In Proceedings
of the Fifth Workshop on Input/Output in Paralleland Dis-
tributed Systems. pages 14-25. San Jose, CA, November
1997. ACM Press.

[41 B. Gallagher. HDFS/parallel-netCDF FLASH U 0
benchmarks. http: / /flash.uchicago. edu/

~ jbgallag/io-bench/,2003.
[51 Globus Project. Globus reference manual:

globusftprlient data operations. http: / /www.
globus.org/api/c/globus_ftp-client/
html/group-globus-ftp-client-data.
html.

161 Globus Project. Globus reference manual:
globus.ftprlient operations. http://www.
globus.org/api /c /globus_ftp_cl ient /
html/group-globus-ftp-client-
operations.htm1.

[7] Globus Project. GridlTP: Universal data transfer for
the grid. http://www.globus.org/datagrid/
deliverables/C2WPdraft3,pdf.

[8] Globus Project. GridFP update January 2002. http : / /
www.globus.org/datagrid/deliverables/
GridFTP-Overview- 2002 01 .pdf, 2002.

[9] W. Gropp, E. Lusk. and R. Thakur. Using MPI-2: Ad-
vanced Features of the Messoge-Passing Inte$ace. MIT
Press, Cambridge, MA, 1999.

[IO] N. Karonis, B. Toonen. and 1. Foster. MPICH-G2: A grid-
enabled implementation of the Message Passing Interface.
loumal of Parallel and Distributed Computing, 63(5):5.51
- 563,2003.

[l I] M. Lauria. MpiBLASTparallel sequence alignment, 2003.
[I21 I. Li, W. keng Laio, A. Choudhary, R. Ross. R. Thakur,

W. Gropp, R. Latham. A. Siegel. B. Gallagher, and M. Zin-
gale. Parallel netCDF A high-performance scientific U 0
interface. In Pmc. SC 2003, 2003.

68

http://www
http://www.globus.org/datagrid

I. Liu. J . Wu, S. P. Kini, P. Wyckoff, and D. K. Panda. High
performance RDMA-based MPI implementation over In-
fi niBand. In Pmc. Inr'l. Conj on Supenxmpuring 2003.
2003.
A. McNab. Firewell issues for Globus 2 and
EDG. http://www.hep.man.ac.uk/u/mcnab/
grid/firewalls05nov02 .ppt. Nov. 2002.
National Center for Supercomputing Applications. HDFS
- a new generation of HDF. http://hdf.ncsa.
uiuc.edu/HDFS/.
National Center for Supercomputing Applications. Hi-
erarchical Data Format. http://hdf .ncsa.uiuc.
edu/.
Ohio Supercomputer Center. The Clustcr Ohio project.
http://oscinfo.osc.edu/clusterohio/.
2004.
J. Pastel and I. K. Reynolds. RFC 959: File transfer pro-
tocol, Oct. 1985.
R. Ross, D. Nurmi, A. Cheng, and M. Zingale. A case
study in application I/O on Linux clusters. In Pmc. SC
?NI, 2001.
R. Thakur, W. Gropp, and E. Lusk. An abstract-dcvice
interface Tor implementing portable parallel-l/O intcrfaces.
In Proceedings of rhe Sirrh Symposium on rhe Fmnriers of
Massively Parallel Computarion, pages l8&187, October
1996.

[211 R. Thakur, W. Gropp, and E. Lusk. On implementing MPI-
10 portably and with high performance. In Proceedings of
the Sirrh Workshop on Inpur/Outpur in Parallel and Dis-
tribured Sysrems. pages 23-32, May 1999.

[221 R. Thakur, E. Lusk. and W. Gropp. Users guide for
ROMIO: A high-performance. portable MPI-IO imple-
mentation. Technical Report ANWMCS-TM-234, Mathe-
matics and Computer Science Division. Argonnc National
Laboratoly, October 19Y7.

[231 University Corporation for Atmospheric Research.
UniData NetCDF. http: //www.unidata.ucar.
edu/packages/netcdf/.

[241 University of Chicago. ASCl/Alliances center for as-
trophysical thermonuclear &shes. http: //flash.
uchicago. edu/.

1251 V. Welch. Globus toolkit ti rewall reuuirements. . -
http://www.globus.org/security/v2.0/
f irewalls . html, July 2003.

[26] M. Zingale. FLASH U0 benchmark routine -
parallel HDFS. http: / / flash.uchicago .edu/
I z ingal e / f 1 as h-benchmar k-io / ,2002.

69

http://www.hep.man.ac.uk/u/mcnab
http://hdf.ncsa
http://hdf
http://oscinfo.osc.edu/clusterohio
http://www.globus.org/security/v2.0

