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Abstract

Rapid increases in processor performance over the past
decade have outstripped performance improvements in
input/output devices, increasing the importance of in-
put/output performance to overall system performance.
Further, experience has shown that the performance of
parallel input/output systems is particularly sensitive to
data placement and data management policies, making
good choices critical. To explore this vast design space, we
have developed a user-level library, the Portable Parallel
File System (PPFS), which supports rapid experimenta-
tion and exploration. The PPFS includes a rich application
interface, allowing the application to advertise access pat-
terns, control caching and prefetching, and even control
data placement. PPFS is both extensible and portable,
making possible a wide range of experiments on a broad
variety of platforms and configurations. Our initial exper-
iments, based on simple benchmarks and two application
programs, show that tailoring policies to input/output ac-
cess patterns yields significant performance benefits, often
improving performance by nearly an order of magnitude.

1 Introduction

The widespread acceptance of massively parallel systems as
the vehicle of choice for high-performance computing has
produced a wide variety of machines and an even wider va-
riety of potential input/output configurations, most with
inadequate input/output capacity and performance. This
disparity between computation and input/output rates re-
flects similar limitations on sequential systems. Processor
performance has increased by several orders of magnitude
in the last decade, but improvements in secondary storage
access times have not kept pace (e.g., disk seek times have
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decreased by less than a factor of two even as data density
has increased dramatically).

In an effort to balance impressive peak processing rates
with sufficient input/output bandwidth, most parallel sys-
tems support multiple, redundant arrays of inexpensive
disks (RAIDs) [21, 12]. Although multiple RAIDs pro-
vide peak input/output bandwidth equal to the product
of the number of RAIDs and their individual bandwidths,
little is known about the effective input/output bandwidth
of an array of RAIDs in parallel scientific computing envi-
ronments.

Developing models for how such massively parallel sys-
tems should be configured to be balanced, and how to
manage the input/output resources to achieve high sus-
tained performance requires exploration of a broad space of
choices (e.g., disk data striping factors, file and disk block
prefetch policies, and caching policies). Simply put, we
must determine the most effective combinations of buffer-
ing, caching, data distribution and prefetching policies that
allow a parallel file system to reduce the number of phys-
ical input/output operations and to owverlap physical in-
put/output with computation.

To explore these issues, we have developed a Portable
Parallel File System ( PPFS) to study the interaction of ap-
plication access patterns, file caching and prefetching algo-
rithms, and application file data distributions. PPFS con-
sists of a user-level input/output library that is portable
across both parallel systems and workstation clusters, per-
mitting a wide range of experimentation with modest hu-
man resources. PPFS allows application control of a vari-
ety of file caching, prefetching, data layout, and coherence
policies. This enables rapid exploration of a wide range of
possibilities, facilitating rapid convergence on good poli-
cies for each file in the application. The PPFS applica-
tion interface supports a number of predefined policies,
but can also extend its repertoire by accepting user-defined
layouts, access pattern declarations, and prefetching pat-
terns. Interposing the libraries between the application
and the system software has allowed us to more quickly
experiment with a variety of data distribution and data
management algorithms than would be possible via sys-
tem software modifications.

In a preliminary study, we have measured the perfor-
mance of PPFS on simple input/output benchmarks and
on two input/output intensive programs, a gene sequenc-
ing matching application and a low temperature plasma
electron scattering code. All of these experiments were
conducted on a variety of Intel Paragon XP/S hardware
configurations, using the Intel parallel file system (PFS)



and PPFS atop multiple Intel Paragon Unix file systems
(UFS).

The simple benchmarks show that PPFS performance
is less dependent than PFS on changes in request size
or the number of concurrently active input/output oper-
ations. The two larger application codes have dramati-
cally different input/output behavior (the genome code is
read-intensive and the electron scattering code is write-
intensive), but PPFS demonstrates significant performance
benefits for each, improving performance by nearly an or-
der of magnitude in some cases.

With this context, the remainder of the paper is orga-
nized as follows. In §2 we elaborate on the motivations for a
portable parallel file system. This is followed in §3-§4 by a
detailed description of the PPFS design philosophy, design
overview, examples of its use, and current implementation
status. In §5 we analyze the performance of our current im-
plementation, based on simple input/output benchmarks.
In §6, we describe two large application codes, their in-
put/output behavior, and the performance improvements
possible with PPFS. Finally, §7 describes related work,
summarizes our results and discusses current research di-
rections.

2 Motivations

Input/output performance depends on the distribution
of file data across storage devices, the file caching and
prefetching algorithms, and parallel, spatio-temporal file
access patterns. Simply put, the potential design space of
input/output software systems is enormous, and our cur-
rent knowledge is extremely limited. Hence, it is critical
that we develop experimental methodologies that allow us
to quickly explore large portions of the software design
space.

In turn, rapid exploration requires broad control over
file management policies. Few extant file systems provide
such malleable interfaces, and the effort to build a low-level
parallel file system is substantial. Moreover, to be credi-
ble, building such a system requires access to commercial
operating system source code; this is rarely possible or
practical.

We believe that many of the important adaptivity issues
are more easily explored via a portable parallel file system
(PPFS). A PPFS implementation interposes a portable in-
put/output library between the application and a vendor’s
basic system software. In this model, a parallel file consists
of a collection of standard vendor-supported files and a set
of file metadata that describes the mapping from these files
to a single PPFS parallel file.

This approach allows one to explore a variety of caching
and prefetching policies and their performance tradeoffs on
disparate architectures, without becoming mired in costly
and time-consuming modifications to system software. Al-
though this compromise does sacrifice some low-level con-
trol (e.g., disk block placement and disk arm scheduling),
we have found that it is repaid in increased experimental
flexibility and coverage.

Based on the premise of a portable file system infras-
tructure, the goals of the PPFS project are threefold.

o First, we are developing a flexible application pro-
gramming interface (API) for specifying access pat-
tern hints and for controlling file system behavior.

e Second, we are using PPFS to explore a variety of
data distribution, distributed caching and prefetching
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strategies via both direct execution of input/output-
intensive applications and via trace-driven simulation.

o Third, we are exploring distributed techniques for dy-
namically classifying file access patterns and automat-
ically adapting data management algorithms to mini-
mize access latencies for those patterns.

3 PPFS Design Principles

The portable parallel file system (PPFS) is a tool for
exploring the design space of parallel input/output sys-
tems. To support experimentation and optimization of in-
put/output performance, PPFS has an open application
interface, and it is portable across a number of paral-
lel platforms. An open application interface supports the
advertising of access pattern information, control of data
management policies, and extension of the parallel file sys-
tem. Portability enables experimentation on a range of
platforms.

To maximize experimental flexibility, PPFS is imple-
mented as a user-level input/output library designed to be
portable across several parallel systems. Building portable
user-level libraries involves a number of challenges; when
building atop an extant system, one can dependably as-
sume only that the system software provides basic Unix
file service. The basic challenge is building a coordination
framework amongst multiple input/output servers that al-
lows them to synchronize and exchange data. PPFS im-
plements parallel file operations, providing global naming
and location for the components of a parallel file and a rich
application interface. PPFS’s APl includes library calls for
control of file striping, distribution, and caching, enabling
the application to export policy and access pattern infor-
mation to the input/output system.

3.1 Malleable Access

In any parallel file system, caching, prefetching, data place-
ment, and data sharing policies constrain the range of file
access patterns where high performance is possible. In tra-
ditional file systems, these policies are frozen during im-
plementation. Given our current, limited understanding
of the range of possible parallel access patterns, we believe
the file system must provide application interfaces for spec-
ifying these and other policies. A portable, extensible file
system must provide interfaces for extending, changing,
and controlling these policies.

As described in §4 and documented in [11], PPFS in-
corporates a rich set of input/output primitives that al-
low a parallel application to specify the data distribution
across disks, prefetching and caching algorithms, and the
anticipated file access characteristics (e.g., sequential, ran-
dom, or block-sequential). This infrastructure is far more
flexible than current vendor parallel systems; both Think-
ing Machines’ SFS [17] and Intel’s CFS/PFS [9, 12] sup-
port only a small number of access modes and an even
smaller number of automatic file data distributions among
the disks. This means that PPFS can be used to explore a
far broader range of input/output system designs than is
possible with incremental modification of existing parallel
file systems. For example, with PPFS one can distribute
a file across disks by groups of N blocks, specify that ev-
ery k** block will be accessed, and request that blocks be
prefetched into distributed client caches based on access
pattern.



The design of an experimental tool for exploring parallel
input/output systems must include support for controlling
the following key policies.

e Caching: global, client side, server side, with partic-
ular control over aggregation (granularity) and write-
back policies.

o Prefetching: client level, server level, and aggregate
prefetching to hide access latency and share work.
Prefetching must be coordinated with caching.

e Data Distribution: controlling data layout across
input/output devices.

e File Sharing: coordinated control over metadata and
file data consistency.

3.2 Portability

Software portability is always predicated on some design
assumptions, and no software is painlessly portable to all
systems. However, to increase the range of experiments
possible with PPFS we must maximize its portability, en-
abling experiments on as many systems as possible. Hence,
the only system requirements to support a port of PPFS
are:

¢ an underlying Unix file system for each input/output
node,

o atyped message passing library (currently NXLIB [26]
and MPI [19]), and

e a Ct++ language implementation.

We view these porting requirements as minimal. Unix, the
sequential file system base, is a de facto standard. The
NXLIB message passing library provides Intel Paragon
XP/S message passing semantics on a workstation network
and compatibility with the native XP/S software environ-
ment; however, it can be and has been easily replaced with
other message passing substrates (e.g., MPI). Finally, C++
has allowed us to isolate implementation details in objects
and to inherit implementation features when porting the
software to new environments. By minimizing system de-
pendencies and isolating system dependencies behind ob-
ject firewalls, PPF'S is portable to any system that meets
our three software assumptions, including both parallel
systems and workstation clusters *.

4 PPFS Software Design

Our PPFS design is based on a client/server model. Clients
are application processes that include both the user pro-
gram and a PPFS client. Clients issue requests to one or
more PPFS input/output servers that manage logical in-
put/output devices. Together the PPFS client and PPFS
servers provide parallel file service to the application pro-
gram. Below we describe the components of PPFS, their
interactions with other components, and illustrate their
use with an example.

4.1 PPFS Components

1The current implementation of PPFS is available from

http://www-pablo.cs.uiuc.edu/Projects/PPFS/.
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Figure 1: Portable Parallel File System Design

As Figure 1 shows, the key software elements in PPFS
are the clients, servers, the metadata server, and caching
agents. These components are briefly described below,
coupled with a discussion of their interactions. Dashed ar-
rows in Figure 1 represent local library or system calls, and
solid arrows (e.g., those between clients and servers) cor-
respond to message passing interactions. A more detailed
description of the file system can be found in [7, 6, 8].

Clients In an SPMD computation, a client consists of an
instance of the user application code and the local caching,
prefetching, and bookkeeping software that permits an ap-
plication to use PPFS. The client code communicates with
the metadata server to determine which data servers and
caching agents will satisfy input/output requests on behalf
of the application code for a given file. Application-specific
file system configuration and policies originate from the ap-
plication code, and can affect all elements in the PPF'S. For
example, the PPFS client may maintain a local cache to
hold recently used and prefetched data. Such a client cache
can be configured, controlled (with respect to replacement
policy for example), or disabled (to ensure data coherence)
by the application program.

Servers An input/output server is an abstraction of an in-
put/output device in PPFS. Input/output servers are the
ultimate resolvers of requests; all physical input/output
flows through them. Each server consists of a cache of file
data, a prefetch engine that fetches data from the under-
lying sequential file system based on one of a variety of
prefetch algorithms, storage for file metadata associated
with open files, server message passing support, and an
underlying Unix file system for storing data.

The number of input/output servers is configurable at
the time PPFS is initialized and may be larger or smaller
than the number of physical input/output devices. Server
caching and prefetch policies may also be affected by ap-
plication calls and can be changed during application exe-



PERSISTENT

File Name: "foo"
Clustering Table:
Server | Segment | Size

2 2:0 40

5 5:1 40

2 2:3 40

1 1:2 40

0 0:3 40
File Size: 200
Record Size: 1024
Distribution: [
Index Scheme: [

TRANSIENT

File Handle: 18
FileSize: 225
Access Pattern: [
Agent Info: [

Figure 2: Example PPFS Metadata

cution.

The data within a parallel file is divided into fixed or
variable size records, which are stored within segments, as
specified by the file’s distribution; each segment is man-
aged by a single PPF'S server.

Metadata Metadata describes the parallel file organi-
zation (i.e., the mapping of logical records to physical
records) and information about anticipated file access pat-
terns. Intuitively, the metadata, shown in Figure 2, is anal-
ogous to Unix inodes (persistent data) and open file point-
ers (transient data). The metadata server is the metadata
repository for PPFS.

The metadata servers in PPFS service file open and close
requests from clients. For opens, the metadata server gen-
erates messages that notify all servers that contain file data
that the file is now open. Metadata servers also coordi-
nate file close operations, detecting that all clients of a
file have closed and then collecting any updated metadata
from the input/output servers. Metadata can also be for-
warded directly between clients, avoiding a bottleneck at
the metadata server.

Caching Agents Caching agents are shared caches via
which multiple clients share files. Such shared caches sup-
port request aggregation across clients, “constructive in-
terference,” allowing one client to effectively prefetch data
for another. Each caching agent caches data for a single
file, and provides a coherent view to multiple clients (both
data and metadata). All requests to the shared file pass
through the caching agent rather than directly to the in-
put/output servers, supporting a wide range of file data
consistency policies.

4.2 PPFS File Control Interfaces

In addition to supporting sequential access patterns, PPFS
provides a more general set of interfaces to guide both local
(i-e., client) and global (i.e., servers and caching agents)
data management and the placement of file data on storage
devices. These features enable an application to control
or customize policies to match application requirements,
supporting malleable access. Applications can
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o declare per client or aggregate access patterns for the
file (random, sequential, strided, etc.),

o control data layout of files over servers (block, cyclic,
etc.),

o control caching policies at servers, clients, and

o control prefetching policies at servers, clients.

Together, the file control interfaces of PPFS provide a
wide range of information advertisement and policy con-
trol capabilities to the application. They provide a range
of policies beyond what is available from commercial file
systems, and PPFS’s portability enables experimentation
with such policies on a number of platforms. These file con-
trol interfaces can be used to advertise application informa-
tion (helping the file system to make good policy choices),
to control policies (explicitly optimizing input/output per-
formance), and to develop new policies (rapid evaluation).

4.3 Performance Instrumentation

We have exploited our existing Pablo performance instru-
mentation and analysis suite [24, 23] to instrument PPFS.
In addition to capturing client input/output requests and
message passing among PPFS clients and servers, client
and server cache hit ratios, cache utilizations, request
counts, and access latencies, we also record the times, du-
rations, and sizes of all input/output requests that PPFS
servers generate for the underlying file system. Because all
performance data is written in the Pablo self-defining data
format (SDDF) [2], extensive, off-line analysis and behav-
ioral comparisons are possible via the Pablo performance
analysis environment.

5 PFS and PPFS Benchmarks

To assess the performance of any parallel file system, one
must have a baseline for performance comparison. We used
the 512 node Paragon XP/S at Caltech to compare the
performance of Intel’s native parallel file system (PFS) to
that of our PPFS, which runs atop the individual Unix
file systems on each of the input/output nodes. Each in-
put/output node in the Intel Paragon includes a RAID.
Measurements in this section reflect the time to read and
write a 64 MB file using a variety of request sizes and num-
bers of compute nodes. For the read benchmark, each pro-
cessing node reads the entire file. For the write benchmark,
each processing node writes an equal portion of the file,
with record level interleaving (i.e., writer k wrote records
k,k+pk+2p,..).

5.1 PFS

Figure 3 shows PFS performance as a function of both
number of active readers or writers and the size of the
requests.”> For the read benchmark, PFS synchronous
reads were used in conjunction with the M_UNIX PFS file
mode. For the file write benchmark, we use the M_RECORD
PFS file mode which supports writing of interleaved
records. Because PFS does not cache or prefetch data,
large numbers of small reads are inefficient — each read
sees the full input/output latency and the input/output
nodes each see large numbers of small requests. Similarly,

2Points at the top of each bounding volume are clipped; actual
values are higher.
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Figure 3: Intel Paragon XP/S PFS Benchmark Perfor-
mance (16 I/O nodes)

the lack of a cache means that concurrent readers do not
benefit from the prefetch implicit in earlier requests from
other readers for the same data.

Small writes suffer from many of the same problems as
small reads — file system call overhead dominates total
execution time. As either the write size or the number
of writers increases, the number of writes per writer de-
creases. Larger writes better exploit the 64 KB striping
factor of the underlying RAIDs, and greater writer par-
allelism increases the aggregate request rate and allows
both aggregation of requests at the input/output nodes
and more efficient disk arm scheduling. Simply put, PFS
is optimized for modest numbers of large requests.

5.2 PPFS

To assess PPFS performance, we constructed benchmarks
with behavior identical to the PFS benchmarks, but anno-
tated the benchmark code with file distribution, caching,
and prefetching directives.

The Paragon which we used for our PPFS measurements
has sixteen dedicated input/output nodes. We used six-
teen PPFS input/output servers. The Paragon was in
multi-user mode during the tests.®* Each input/output
server had a 1 MB cache, and did no prefetching. Each

31In [11], we explore the performance of Paragon XP/S configu-
rations with varying numbers of input/output nodes.
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Figure 4: Intel Paragon XP/S PPFS Benchmark Perfor-
mance (16 I/O nodes)

client used a 512 KB cache. For writes, the client cache pol-
icy was configured as “to client,” meaning that the client
cache writes back to the server only when it fills; server
caches behave similarly, writing to input/output nodes
only when filled.

Figure 4 shows that in contrast to the sensitivity of PFS
to the number of input/output requesters and request size,
PPFS is resilient to variations in both. For file reads, the
PPFS server combines multiple pending requests for the
same record, sending only one request to the input/output
node. Subsequent requests for the same record can be
serviced from the cache. Although data returned from the
server is stored in the client cache, for the read pattern,
there is no reuse, so client caches give no benefit.

For writes, data is cached at each client and is written
back to the server caches only when a client cache fills.
Likewise, server caches are written to input/output nodes
only when they fill. These extra levels of indirection add
a fixed overhead, visible in the front left corner of Figure
4b, but it is more than compensated by the benefits of
aggregating requests, particularly for small requests. At
the client caches, this aggregation reduces the number of
transfers between the clients and servers (messages), and
at the server caches, the aggregation creates large, con-
tiguous blocks of data that can be written efliciently by
the input/output node RAIDs.

In general, the performance of PPFS is less brittle than
that of PFS over a range of request sizes and compute par-
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I/O Nodes 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256

PFS

1| 2364 | 1422 | 877 | 681 | 656

2| 2144 | 1334 | 791 | 611 | 554 | 541

16 | 2071 | 1244 | 753 | 649 | 431 | 453 | 486
PPFS

1| 1630 824 | 425 | 226 | 141

2 | 1585 793 | 401 | 202 | 107 64

16 | 1607 896 | 481 | 250 | 230 | 152 59 24 30

Table 1: Gene Sequence Execution Times (seconds)

tition sizes. Intuitively, most of the benefit comes from the
aggregation of requests in multiple levels of caching, reduc-
ing the file system call overhead, and also organizing the
data for more efficient transfer to the secondary storage.

6 Application Codes

To assess the utility and performance of PPFS, we selected
two input/output intensive parallel applications whose be-
havior and performance on the Intel Paragon XP/S had
been previously analyzed. The input/output behavior of
the first of these, a parallel gene sequence matching code
[1, 25], is strongly data-dependent. The second, a low tem-
perature plasma electron scattering code [27], has more
regular spatial and temporal input/output patterns. Us-
ing these codes, we measured execution times, and cap-
tured detailed input/output performance information on

both Intel’s PFS and PPFS.

6.1 Gene Sequence Matching
6.1.1 Application Structure

Because the synthesis methods currently used to determine
genetic sequences produce non-trivial numbers of errors,
exact string matching algorithms are inappropriate for bi-
ological sequences.

This code uses an approximate sequence matching ap-
proach is based on a generalization of the Needleman,
Waunsch, and Sellers (NWS) [20] dynamic programming al-
gorithm, with a K-tuple heuristic to improve performance.*
The input sequence is processed against all entries in the
genome data base, and the data base entry that results
in the best score is declared the best match for the input
sequence.

In the native parallel implementation of the NWS algo-
rithm, each Paragon XP/S node independently compares
the test sequence against disjoint portions of the sequence
data base. The results of each comparison are reported to
a coordinating node that maintains a record of the best
score.

6.1.2 Experiments

To port the gene sequence code from PFS to PPFS, we
replaced the PFS input/output calls with PPFS routines
that opened and read the sequence data base. Unlike

4The original version of this code was developed for the Cray
X-MP by Dan Davidson, then at Los Alamos National Laboratory.
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the simple benchmarks of §5, where fixed size records are
read, the gene sequence comparison code reads variable
size records, each corresponding to a sequence. We used
the PPFS variable size record access mode to retrieve se-
quences from a PPFS file.® We configured 1 MB server
caches to always prefetch groups of 32 records (i.e., 32 gene
sequences). Input/output servers also attempt to stay at
least 16 sequences ahead of the client request stream.

Because the computing processors collectively compare a
test sequence against the entire sequence data base, which
sequences are processed by each processor has no effect
on the result. On PFS, the application processors use a
shared file pointer to access a list of sequence database off-
sets. The processors then seek to the specified location and
read the needed sequences. Using the PPFS read_any ac-
cess mode, which returns any record that has not yet been
requested, exploits the order insensitivity of the algorithm,
eliminating the shared file overhead.

Table 1 and Figure 5 show the execution times for the
PFS and PPFS variations of the gene sequencing code.
Empty fields in Table 1 correspond to machine size or com-
pute time limitations. PPF'S execution time improves dra-
matically with larger numbers of processors, even when
there is only a single input/output node. For 256 proces-
sors, the speedup is over fifty with sixteen input/output
nodes.

The reasons for the large disparity between PFS and
PPFS are evident in Figures 6—7. These figures show the
duration of the read and seek calls experienced by both
file systems on a Paragon XP/S with sixteen input/output
nodes (note scale differences). In both cases, the durations
are for the native file system calls (i.e., Figure 7 does not
show PPFS input/output operation times).

The data in Figures 6—7 was obtained by modifying both
versions of the sequence code to trace input/output oper-
ations via the Pablo instrumentation library. Comparing
the total execution time in the figures to the run times
in Table 1 shows that input/output instrumentation adds
roughly thirty percent to the total execution time of both
code versions. However, the relative magnitudes of the
input/output durations are preserved.

Figure 6 illustrates that contending, non-sequential file
access is extraordinarily expensive. In contrast, Figure 7
shows that the PPFS client and server caches eliminate

5See [11] for details on the vread_any routine.
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most contention at the native file system — 99 percent of
the client reads are satisfied from the caches, and the server
prefetch algorithm fetches large blocks of data from the
input /output nodes.® PPFS aggregates read requests, re-
ducing the number of reads by more than a factor of ten
and increasing the average read size dramatically. As an
indication that these larger requests are better exploiting
the RAID devices, despite the dramatic increase in request
size, the average read time increases by less than 20 per-
cent. Thus, the net effect is that PPFS transforms the
input/output request stream to better exploit the perfor-
mance characteristics of the underlying file system; best
performance for a few large requests.

The large performance improvement with PPFS but-
tresses our belief that a richer file system interface allows
one to tune the file system’s behavior to match application
needs. For the gene sequencing code, using a shared PFS
file to parcel sequence pointers, results in high file consis-
tency overhead, with consequent performance loss. The
PPFS approach with read_any mode embodies the real se-
mantics of the read — which sequence is fetched is unim-
portant, only that it be previously unread.

6In Figure 7, the sixty second delay before PPFS input/output
operations begin is due to PPFS server initialization.
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Figure 9: Electron Scattering Comparison (PPFS with
128 client nodes)

6.2 Electron Scattering
6.2.1 Application Structure

Plasma processing plays an important role in semiconduc-
tor manufacturing; plasmas are used to perform a variety
of tasks, including cleaning, mask stripping, passivation,
doping, and etching. The electron scattering code com-
putes plasma behavior from first principles [27], predict-
ing the rates for surface reactions and the probabilities, or
cross sections, for collision processes in the plasma.

The approach involves numerical solution of a linear sys-
tem for each possible collision energy. However, the terms
in this linear system require evaluation of a Green’s func-
tion via numerical quadrature. The quadrature data is the
major source of input/output; it is too voluminous to re-
tain in memory, so it is written to disk, then re-read. The
total volume of quadrature data grows as N3, where N is
the number of possible electron scattering outcomes. Cur-
rent input/output limitations on the Paragon XP/S limit
N to roughly 10, though the desired range is approximately
50 (i.e., over two orders of magnitude beyond current prac-
tice).

The version of the electron scattering code we studied
begins with one processor reading initialization data from
a small number of shared files and broadcasting this data



to all other nodes. This implementation was chosen to re-
duce contention in the Paragon’s parallel file system (PFS).
After initialization and during normal execution, all pro-
cessors repeatedly write quadrature data to an output file
for subsequent reuse.

6.2.2 Experiments

As with the gene sequencing code, we measured the exe-
cution time of both PFS and PPFS variants of the elec-
tron scattering code and captured input/output traces
from both. Although the scattering code both reads and
writes multiple data files, writes are the dominant opera-
tion; reads occur during initialization and near the end of
the computation.

Figure 8 illustrates the duration of PFS file writes and
seeks during execution on 128 nodes. All writes are a sin-
gle size, roughly 2K bytes, and occur in bursts at the end
of each code iteration. All nodes repeatedly compute, syn-
chronize, and then write 2K bytes of quadrature data. To
simplify reloading of the data in the next phase, each node
seeks to a calculated offset dependent on the node num-
ber, iteration, and PFS stripe size before writing the data.
Intel’s M_UNIX file mode is used for these writes.

Figure 9 shows similar data from an execution of the
scattering code under PPF'S. Comparing Figures 8-9 shows
the pattern of writes and seeks differs dramatically. PPFS
generates far fewer requests to the underlying file system
than does PFS. In Figure 9, the file writes that occur after
each iteration are fully cached; this reduces the time for
each iteration by between ten and fifteen seconds. Only
near the end of execution is the file cache flushed to sec-
ondary storage, efficiently writing large blocks of data.

Comparing total program execution time under PFS and
PPFS shows that the elapsed times are similar. In large
part, this is because only about ten percent of the execu-
tion of the scattering code is attributable to input/output.
Under PPFS the total input/output time is lower. How-
ever, because PPFS is a user-level library there are some
compensating overheads.

In particular, PPFS incurs a small overhead for library
initialization that is not present with PFS.” In addition,
the scattering code relies heavily on the NX global synchro-
nization routine (gsync()). Because PPFS executes in the
same partition as the application, PPFS must emulate the
NX functionality. Global operation emulation is unneces-
sary when using MPI because the client nodes can execute
“global” operations and synchronizations using separate
client communicator group.

7 Conclusions

We have argued that a portable, parallel file system
(PPFS) provides the requisite infrastructure for exploring
the critical issues in achieving high input/output perfor-
mance, data distribution, caching, and prefetching policies
and their performance tradeoffs on disparate architectures,
without becoming mired in costly and time-consuming
modifications to system software. Such an infrastructure
requires a rich application interface with library calls for
control of file striping, distribution, and caching, enabling
the application to export policy and access pattern infor-
mation to the input/output system.

7By analogy, PFS incurs this overhead when the operating sys-
tem is booted.
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Our experiments with large research codes have shown
that investment in a malleable infrastructure is repaid with
increased input/output performance. Tuning the file sys-
tem policies to application needs, rather than forcing the
application to use inappropriate and ineflicient file access
modes, is the key to performance. Simple access pattern
hints and cache policy controls yield large performance in-
creases with modest coding effort.

7.1 Related Research

PPFS is but one of several new parallel file systems based
on user-level libraries. The major distinguishing feature of
PPFS is its rich interface that supports advertising a va-
riety of access information as well as control and augmen-
tation of input/output system policies. PIOUS [18] is a
portable input/output system designed for use with PVM.
PIOUS enforces sequential consistency on file accesses; in
contrast, PPF'S allows data consistency to be controlled by
the application, enabling higher performance as with the
genome matching application. PASSION [4] supports out-
of-core algorithms in a user-level library, but focuses on a
high-level array oriented interface. IBM’s Vesta parallel file
system [5] allows applications to define logical partitions,
data distributions, and some access information. However
applications have little control over caching.

Related work also includes a number of commercial par-
allel file systems — the CM-5 Scalable Parallel File Sys-
tem [17, 16], the Intel Concurrent File System [9] for the
iPSC/2 and iPSC/860, and the Intel Paragon’s Parallel
File System [12]. These provide data striping and a small
number of parallel file access modes. In many cases, these
access modes provide insufficient control for the applica-
tion to extract good performance from the input/output
system. Distributed file systems, such as Zebra [10] and
Swift [3], stripe data over distributed input/output servers,
but do not provide distribution or policy control to the
application layer. Further, because the performance re-
quirements in this environment are quite different (users
are not as willing to tune for input/output performance),
these systems provide little control to the application pro-
gram.

Several groups have proposed schemes for exploiting
access pattern information both in sequential and paral-
lel systems [22, 13]. In [13], Kotz uses pattern predic-
tors to anticipate an application’s future access patterns.
A variety of data management strategies for parallel in-
put/output systems are explored in [15, 14].
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