IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 11,

NOVEMBER 2002

1333

PC-OPT: Optimal Offline Prefetching
and Caching for Parallel /O Systems

Mahesh Kallahalla, Member, IEEE, and Peter J. Varman, Senior Member, |IEEE

Abstract—We address the problem of prefetching and caching in a parallel /O system and present a new algorithm for parallel disk
scheduling. Traditional buffer management algorithms that minimize the number of block misses are substantially suboptimal in a

parallel I/0 system where multiple I/Os can proceed simultaneously. We show that in the offline case, where a priori knowledge of all
the requests is available, PC-OPT performs the minimum number of 1/Os to service the given I/O requests. This is the first parallel /O
scheduling algorithm that is provably offline optimal in the parallel disk model. In the online case, we study the context of global L-block
lookahead, which gives the buffer management algorithm a lookahead consisting of L distinct requests. We show that the competitive
ratio of PC-OPT, with global L-block lookahead, is ©(M — L + D), when L < M, and ©(MD/L), when L > M, where the number of

disks is D and buffer size is M.

Index Terms—Parallel /0O systems, caching, prefetching, scheduling, buffer management, competitive ratio, algorithms, online

algorithm, offline algorithm.

1 INTRODUCTION

HE I/O system is a critical bottleneck for many modern

data-intensive applications. Parallel I/O systems con-
sisting of multiple disks have the potential to improve I/O
performance by performing multiple concurrent I/Os.
However, it is a challenging problem to successfully exploit
the higher available bandwidth to reduce application 1/O
latency.

Caching and prefetching are fundamental techniques
used to improve I/O performance by exploiting the main-
memory buffer present in I/O systems. Blocks can be
cached in the I/O bulffer so that future requests to the same
data are serviced from main memory instead of accessing
the much slower disk. Additionally, the I/O buffer can be
used to facilitate prefetching. Prefetching refers to the
process of reading data from disks prior to their being
requested by the computation. While a read progresses on
one disk, concurrent reads can be started on other disks to
prefetch data that are required later. The prefetched data
are held in the I/O bulffer till needed. This overlap of data
fetches reduces the I/0O time significantly.

This paper deals with the problem of prefetching and
caching in parallel I/O systems. The aim is to exploit the
parallelism provided by multiple disks to reduce the
average read latency seen by an application by using
appropriate buffer management techniques. The prefetch-
ing algorithm must schedule reads carefully so that the
most useful blocks are fetched in advance. To exploit
locality effectively, the caching mechanism must retain the
most valuable blocks in the buffer when the need for

o M. Kallahalla is with Hewlett-Packard Laboratories, 1501 Page Mill Road,
Palo Alto, CA 94304. E-mail: mahesh_kallahalla@hp.com.

e P.J. Varman is with the Department of Electrical and Computer
Engineering, Rice University, Houston, TX 77251.
E-mail: pjv@ece.rice.edu

Manuscript received 5 July 2001; revised 19 Oct. 2001; accepted 23 Oct. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 114468.

eviction arises. The interrelation between prefetching and
caching decisions makes designing effective buffer manage-
ment policies challenging. Applying these techniques to
parallel I/O systems is fundamentally different from that in
systems with a single disk [7], [17], [22]. Intuitively
appealing greedy prefetching policies that are suitable for
single-disk systems can have poor worst-case and average-
case performance for multiple disks [7], [21]. Similarly,
traditional caching strategies do not account for parallelism
in the I/O accesses and, consequently, may not perform
well in a multiple-disk system. In this paper, we will
present a new priority-controlled greedy algorithm, PC-OPT,
for optimizing prefetching and caching decisions in a
parallel I/O system.

The model of the I/O system used to analyze our
algorithm is based on the Parallel Disk Model [25]: The I/O
system consists of D independent disks that can be accessed
in parallel and a buffer of capacity M blocks through which
all disk accesses occur (See Fig. 1). The computation
requests data in blocks; a block is the unit of disk access.
When an I/O is initiated on one disk, blocks can be
concurrently fetched from other disks in the same parallel
I/0 step. The computation waits for data from the I/O
system only when the data are not available in the buffer.

The ideal measure of performance of an I/O system is
the time it takes to service a set of I/O requests. In a
multiple-disk system, this depends on the time for each disk
access and the concurrency among the different disks. The
former depends upon parameters like the geometry of the
disk, load on the disk, unit of data fetch, the layout of the
data, and the disk-head scheduling algorithm. In practice,
parameters such as unit of data fetch, data layout, and
physical geometry are optimized to perform I/O from a
single disk efficiently. Additionally, by issuing I/O requests
to a disk in batches, the prefetching algorithm can provide
the individual disk-head schedulers with considerable
scope for optimizing the disk access times. Our prefetching

0018-9340/02/$17.00 © 2002 IEEE

1334

%\
=
=

Disks

Processor

I/0 Buffer

Fig. 1. Parallel disk model

and caching algorithm attempts to maximize the disk
concurrency by minimizing the number of parallel I/O
steps. In each parallel I/O step, up to D blocks (at most one
from each disk) are fetched from the I/O subsystem. Note
that this is different from the total number of I/Os
performed on all disks as an I/O on one disk may be
overlapped with an I/O on another disk. An empirical
study [12] discusses the practical usefulness and limitations
of the idealized parallel disk model.

In the parallel disk model, the computation is implicitly
assumed to be very much faster than I/O. This is a
reasonable characterization of I/O-bound applications
where the main performance bottleneck is the I/O sub-
system. In these situations, the I/O time dominates the
computational time and, hence, the benefit of overlapping
computation and I/O is small compared to the potential
benefit of overlapping I/Os on different disks. Theoreti-
cally, a block is consumed in zero time so that the total
elapsed time is just the I/O time.

The I/O trace of a computation is characterized by a
reference string, which is an ordered sequence of I/O
requests made by the computation. In serving a reference
string, the buffer manager (which makes the prefetching
and caching decisions) determines which blocks to fetch
and when to fetch them so that the computation can access
the blocks in the order specified by the reference string.

If the application requests are known only when the data
are immediately required, then only speculative prefetching
is possible. In order to prefetch accurately, some amount of
information about future requests is essential. This in-
formation about future accesses is embodied in the idea of
lookahead. We define and work with global lookahead, which
provides the prefetching algorithm a window of future
requests. Global lookahead is an abstraction of the looka-
head available when applications provide hints to the
prefetcher [22] or when a speculative execution of the
application provides a window into potential future 1/O
requests [11]. Lookahead is also naturally available in
applications like video retrieval [13], broadcast servers [4],
and database systems. Our notion of lookahead is similar to
strong lookahead [2], introduced to study caching in
sequential I/O systems. We consider both the online
situation, which uses bounded lookahead, as well the offline
situation, which uses knowledge of the entire reference
string to construct the I/O schedule.

Specifically, this paper investigates the problem of
generating an I/O schedule for a given read-only reference
string. The I/O schedule specifies the blocks to be fetched in
each I/0 step and the blocks to be evicted from the buffer,
subject to the conditions that, in any I/O step, never more

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 11, NOVEMBER 2002
than one block is fetched from a disk and the number of
blocks in the buffer is no more than M. In the offline case,
the algorithm has a priori knowledge of the entire reference
string. In the online case, it only has knowledge of past
references and references in the lookahead. The lookahead
consists of the next L distinct references beyond the current
reference. The goal of the scheduling algorithm is to
generate a schedule that performs the smallest number of
parallel I/Os with the available information.

The buffer management algorithm PC-OPT presented in
this paper is an optimal offline prefetching and caching
algorithm in the parallel disk model. That is, when PC-OPT
has a priori knowledge of the entire reference string, it
generates a schedule of minimal length. This is the first
optimal offline scheduling algorithm for the parallel disk
model that we are aware of. In an online scenario, PC-OPT
uses available lookahead to make prefetching and caching
decisions dynamically. Specifically, we show that the
competitive ratio of PC-OPT is ©(M — L + D) when L < M
and ©(MD/L) when L > M, where D is the number of
disks, M is the size of the I/O buffer, and L is the number of
distinct references in each lookahead window. The compe-
titive ratio is the worst-case ratio of the number of I/Os
performed by the online version of PC-OPT that has access
to only the references in the lookahead, to the minimum
number of I/Os required if the entire reference string were
known in advance. Finally, we would like to point out that,
though the running time of the buffer management
algorithm is of secondary importance, PC-OPT has a running
time of O(NlogM) to schedule a sequence of N I/O
references, where M is the size of the I/O buffer.

The rest of the paper is organized as follows: The
difficulty of prefetching and caching in a multiple-disk
context is illustrated informally in Section 2. A brief survey
of related work is presented in Section 3. The buffer
management algorithm PC-OPT is described in Section 4. In
Section 5, we prove formally that PC-OPT constructs the
minimal length schedule in the off-line case. In Section 6, we
present bounds on the performance of PC-OPT as a function
of the available lookahead. The paper concludes with
Section 7.

2 LIMITATIONS OF TRADITIONAL PREFETCHING AND
CACHING

In this work, we consider the I/O buffer to be a shared
resource, capable of buffering blocks from any disk. In
contrast, in a distributed buffer model, each disk has its
own private buffer; optimal buffer management algorithms
for a distributed-buffer model were presented and analyzed
in [24]. With a shared buffer, it is possible to dynamically
allocate buffer space unevenly to different disks to meet the
changing load on individual disks. However, this freedom
in allocating buffer space makes the buffer management
problem more difficult. The buffer manager has to
judiciously decide on questions like how much buffer to
allocate for prefetching and how much for caching, which
blocks to prefetch and which blocks to cache. For instance,
to utilize available bandwidth, it may appear attractive to
keep many disks busy during an I/O. However, prefetching

KALLAHALLA AND VARMAN: PC-OPT: OPTIMAL OFFLINE PREFETCHING AND CACHING FOR PARALLEL 1/O SYSTEMS

1335

Disk A a4 a) as as Disk A aq a)

Disk A ap as as ay as ag ar

Disk B | b3
Disk C | ¢

Disk B | b3 | &y
Disk 3 | ¢ | ¢1

Disk B bl l)Q b3 l)4
Disk C | ¢1 | e c3 | eq | 5 | o | cr

(a) (b)

Fig. 2. Influence of replacement strategy on |/O schedule length.
(a) Using MIN as eviction policy. (b) Optimizing for multiple disks.

too eagerly can fill up the buffer with blocks which may not
be used till much later in the computation. Such blocks have
the adverse effect of choking the buffer and reducing the
parallelism in fetching more immediate blocks. In earlier
works [7], [15], we showed that, even when the problem is
reduced to just prefetching decisions, it is not trivial: In this
case, when each block is accessed exactly once, the problem
of deciding which blocks to fetch in an I/O is non-intuitive.
In the general case considered here, the buffer manager has
to deal with the additional complexity of deciding which
blocks to cache and which to evict, in conjunction with
prefetching. As it turns out, these decisions are interrelated.
A good prefetching and caching algorithm needs to
cooperatively decide how much buffer space to allocate
for prefetching in a particular I/O and which blocks ought
to be prefetched then.

Traditional caching policies for buffer management have
concentrated on minimizing the total number of disk
accesses. However, these algorithms do not generalize to
the problem of optimizing parallel I/Os. For instance, the
offline caching algorithm MIN [8], which evicts the block
that will be next requested farthest in the future, is known
to minimize the number of sequential I/Os in a single-disk
I/0 system. But, as the following example illustrates, using
MIN as the caching policy in a parallel I/O system can
potentially serialize otherwise fully parallelizable accesses.

Consider a system with three disks and a buffer of size
six. At some point during the computation, let the buffer
contain the blocks aq, as, as, bi, by, and ¢;, where blocks a;,
b;, and ¢; are from disks A, B, and C, respectively. Let the
remainder of the reference string, which is fully known to
the scheduler, be:

(aa,bs, c2, a4,b3,b9,b1, 1, a1, a2, a3)

The next three request are to blocks a4, b3, and ¢, all of
which are not present in the buffer. Since all these can be
fetched in parallel, three blocks are evicted to fetch these
blocks." The actual set of blocks that are evicted determines
the overall length of the I/O schedule.

Fig. 2a shows the schedule generated by an algorithm
which uses MIN to service this reference string. The farthest
referenced blocks, ai, as, and a3, are evicted, requiring three
I/0s to fetch them back. On the other hand, evicting blocks
a1, b, and ¢y, instead results in a schedule of length two,
shown in Fig. 2b.

The example highlights the need for the caching
algorithm to explicitly account for I/O parallelism in
addition to issues in traditional sequential caching. This
example can be generalized to prove that irrespective of the

1. Even if we fetched these blocks one at a time, the same conclusion
holds.

Fig. 3. Greedy-in-order schedule.

prefetching policy, any algorithm that uses MIN for block
replacement may require (D) times more parallel I/Os
than the optimal, where D is the number of disks. It should
be noted that this is the worst possible dilation of the
schedule length due to ignoring I/O parallelism.

Even when there are no caching decisions to be made,
the problem of deciding when any block ought to be fetched
is challenging. When the reference string consists of
requests to all distinct blocks, caching is a non-issue as
there is no benefit in retaining a block in the buffer after its
reference. As the following example shows, even in this
case, creating an optimal schedule is nontrivial. The
problem of optimally scheduling such read-once reference
strings was considered in [15].

As before, let the I/O system have D =3 and M = 6. Let
the blocks labeled a; (respectively, b;, ¢;) be placed on disk A
(respectively, B, C) and the (fully known) reference string be:

<CL1,(12,(13,&4,bl,Cl,(157bg,CQ,CL6,b3,63,(Z77b47C47C57CG,C7>.

Fig. 3 shows the I/O schedule constructed by an intuitive
greedy algorithm that always fetches blocks in the order of
the reference string and maximizes the disk parallelism at
each I/0O step. In Step 1, blocks ay, b1, and ¢; are fetched
concurrently in one I/O. Block ¢, is consumed immediately
(in zero time). Next, block as is requested and blocks ay, bs,
and c, are fetched in parallel in Step 2. Subsequently, the
buffer contains five blocks: as, by, by, ¢, and ¢;. Now, when
as is requested, an I/O needs to be done to fetch it
However, there is buffer space for only one additional block
besides a3 and the choice is between fetching b3, c3, or
neither. Fetching greedily in the order of the reference
string means that we fetch b3. Continuing in this manner,
we obtain a schedule of length nine.

Fig. 4 presents an alternative schedule for the same
reference string. The first two steps in the schedule are
identical to the previous case. In Step 3, c¢3 that occurs after
bs is prefetched and, in Step 4, ¢4 is fetched by evicting b,
even though ¢, is referenced only after b,. However, by
doing so the overall length of the schedule is reduced to
seven, better than the previous schedule.

The above example indicates that optimizing the number
of parallel I/Os cannot be done based solely on local
heuristics such as “at any time keep as many disks busy as
possible” or “fetch blocks only if they are within the next
buffer load of blocks to be requested.” The algorithm, PC-
OPT, presented later in this paper, makes optimal offline
caching and prefetching decisions to schedule the sequence

Disk A |a, | ao | a3 | as | a5 | ag | a7
Disk B bl b2 b b3 b4
Disk C C1 C2 C3 C4 Cs Cg Cr

Fig. 4. Minimal I/O length schedule.

1336

of requests in its lookahead. It carefully delays prefetches so
that the increased available buffer space can be used for
deeper prefetching, while simultaneously caching only
those blocks that occupy buffer space for a small time
between repeated references.

3 RELATED WORK

Classical buffer management in the single-disk model deals
primarily with optimizing eviction decisions to minimize
the number of I/Os performed. The well-known buffer
management algorithm MIN [8] is the optimal offline
algorithm to construct a minimum-length schedule for a
single disk system. Online buffer management for sequen-
tial IO systems in the framework of competitive analysis
was first studied in [23], followed by studies using extended
models which incorporated lookahead [2], [9] or randomi-
zation [14], [19]. An analysis of paging algorithms with
strong lookahead (similar to global lookahead defined here)
was presented in [2] for the single disk situation. Recent
formal work on using prefetching to overlap computation
with I/0O in single disk systems was introduced by [10],
where they showed that aggressive prefetching can reduce
total elapsed time. A linear programming approach to
optimizing the total time in such a stall model was
presented in [3].

There has been relatively little work dealing with
prefetching and buffer management in the parallel setting,
though there has been work on developing I/O-efficient
algorithms for specific applications (e.g., [1], [5], [6], [21]).

The problem of online scheduling of read-once reference
strings in a multiple-disk system was first addressed in [7].
A lower bound of Q(v/D) on the competitive ratio of any
prefetching algorithm with M-block lookahead was estab-
lished and a greedy prefetching algorithm was shown to
attain the bound. However, the algorithm could not make
use of lookahead beyond M. An offline optimal algorithm,
L-OPT, for read-once reference strings was presented in [15].
As an online algorithm with L-block lookahead, L-OPT was
shown to have a competitive ratio of ©(/MD/L), L > M,
and to match the lower bound established in the paper.
However, L-OPT did not exploit caching for general
reference strings containing repeated accesses to the same
set of blocks.

For read-once reference strings, analysis of algorithms
exploiting a randomized data placement was studied in
[6], [7], [20], [21]. In a generalization of the stall model to
parallel disks, [17] designed a sophisticated offline
approximation algorithm to service read-many reference
strings. In the stall model, the measure of performance is
the total elapsed time including both I/O and computa-
tion. The model assumes constant I/O and computation
times for all blocks and is parameterized by F, the ratio
of block I/O time to block computation time. They
showed that their algorithm, Reverse Aggressive, is near
optimal for typical system parameters (memory size and
computation time). I/O scheduling in a distributed buffer
configuration where each disk has a private buffer, was
considered in [24]. They presented an optimal off-line
algorithm PMIN, a generalization of MIN, and showed
that the algorithm is optimal for this buffer configuration.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 11, NOVEMBER 2002
Empirical studies on using prefetching, based on hints
provided to the system, to improve parallel I/O perfor-
mance include [11], [22]. The underlying greedy prefetch-
ing heuristic is restricted to performing shallow
prefetching and preventing prefetched blocks from chok-
ing the buffer and affecting the LRU-based caching. An
empirical evaluation of prefetching and caching in
parallel file systems was presented in [18].

4 ALGORITHM PC-OPT

In this section, we introduce our parallel I/O scheduling
algorithm PC-OPT. The reference string is the sequence of 1/O
requests, ¥ = (r1,...,ry), made by the computation, with
possibly several references to the same block. Each block
resides on a specified disk from which it is to be fetched.
The problem is to generate a schedule for a given reference
string with the available lookahead information. The 1/O
schedule specifies the blocks to be fetched in each I/O and
the blocks to be evicted, subject to the conditions that, in
any I/O, never more than one block is fetched from a disk
and the number of blocks in the buffer is no more than M.
In the offline case, the algorithm has a priori knowledge of
the entire reference string, while, in the online case, it only
has knowledge of past references and references in the
lookahead. The goal of the scheduling algorithm is to
generate a schedule that performs the smallest number of
parallel I/Os with the available information.

PC-OPT is a priority-controlled greedy scheduling algo-
rithm. It is made up of two components: the prefetching
module and the priority assignment module. The latter
assigns all references in the current lookahead a priority.
The priority of a block on disk reflects the urgency with
which it should be fetched; the priority of a block currently
in the buffer indicates how worthwhile it is to cache rather
than to evict that block. The prefetching module uses the
current priority assignments to determine which blocks to
fetch in the current I/O and which blocks to evict. The
prefetching and priority assignments modules are de-
scribed in detail below.

4.1 Prefetching Module

The prefetching module of PC-OPT is presented in Fig. 5.
The specification makes use of the the following definitions:

Definition 1.

o The current lookahead is denoted by the sequence of
references L = (r;,riy1...,7;). The block accessed in
reference r is denoted by block(r).

e Fora reference r, the disk from which block(r) needs to
be fetched is denoted by disk(r): We shall use the same
notation disk(b) to refer to the disk on which block b
occurs: The meaning will be clear from the context.

e Every reference r in the current lookahead has a
priority, denoted by priority(r). We shall use the same
notation to denote the priority of a block b that is
present in the buffer.

e The priority of a block in the buffer is defined as the
priority of the next reference in L to that block. When
there is no reference to that block in the lookahead, the
block is assigned priority i-MAX, where i is the index

KALLAHALLA AND VARMAN: PC-OPT: OPTIMAL OFFLINE PREFETCHING AND CACHING FOR PARALLEL 1/O SYSTEMS

1337

If block(r) is present in the buffer then
If block(r) is not present in the buffer then

the Priority Assignment module

priority in H U B;
The request » is then serviced

Algorithm pC-OpPT:

On a request r, algorithm PC-OPTtakes the following actions.

no I/0 is necessary before servicing the request
Update the priorities of references in the lookahead by calling

Update the priorities of blocks in the buffer
An I/0 is initiated to fetch blocks in H N BT evicting the
lowest priority blocks in B — B as nccessary, where
B is the set of blocks present in the buffer
H is the maximal set of (up to) D blocks, such that if b€ H
then b has the highest priority among all blocks from
disk(b) in the lookahead but not present in the buffer
B* is the maximal set. of (up to) M blocks with the highest

Prefetching Module

Fig. 5. Algorithm PC-OPT: prefetching module.

of the most recent past reference to that block. Here,
MAX is a large positive constant greater than the
length of the reference string. This priority assignment
simply implements a Least-Recently-Used (LRU)
eviction policy for blocks that are no longer in the
lookahead.

e Ties in the priorities are handled as follows: A tie
between a cached block and a disk-resident block is
resolved in favor of the cached block. A tie between
two-disk resident blocks or two buffer-resident blocks is
resolved in favor of the block occurring earlier in the
reference string.

The blocks in the buffer that are not in the lookahead
have the lowest priorities among all blocks and are among
the first to be evicted from the buffer. Blocks in the buffer
that are also in the lookahead have the same priority as the
immediately following reference to the block. PC-OPT is a
greedy algorithm in that it attempts to fetch a block from as
many disks as possible in every I/0, subject to the
constraint that it does not fetch a block if it requires evicting
a block with higher priority from the buffer.

The prefetching module of PC-OPT performs 1/Os only
on demand; that is, only when the referenced block is not
present in the buffer. By doing so, PC-OPT can defer its
decisions till the latest time and make use of the largest

lookahead available. In an 1/0O, the prefetcher attempts to
fetch an uncached block from each of the D disks. The
candidate block from a disk is the highest-priority reference
from that disk that has not been serviced and is not in the
buffer; the set H identifies the candidate blocks. Among
these blocks and the blocks currently in the buffer (B), we
would like to have the M blocks with the largest priority
(BT) present in the buffer following the I/O. The blocks
with the lowest priorities are evicted to fetch the blocks in H
that are among the M highest-priority blocks (H N BY).

PC-OPT eagerly schedules prefetches and attempts to
utilize as many I/O slots as it can during a parallel read.
This allows it to utilize future lookahead information as
soon as it is available and avoid situations where the
decision to leave an I/O slot idle is rendered obsolete
(and wasteful) by fresh lookahead information. However,
aggressive greedy prefetching has to be tempered since it
can fill up the buffer and hinder useful caching and
further prefetching. The dynamically assigned priorities
allows PC-OPT to recover from counterproductive pre-
fetching decisions, causing it to reuse those prefetch
buffers for more useful blocks.

An example of the schedule created by PC-OPT is shown
in Fig. 6. The buffer is assumed to be of size M = 6. The
reference string and the priorities of the references are given
in Fig. 6a. In the next section, we will show how these

INDEX 1 2 3 4 5 6 7 819 |10 |11 (12|13 |14 | 15| 16 | 17
Reference | a1 | as | az | b1 | bs | ¢qn | ag | b3 | o | ag | b3 | b | b1 | &1 | aq | a2 | a3
Priority 3 4 3 41313 2 2 2 2 2 3 1 1 1 4 3
(a)

Step 1 2 3 4 5

Disk A ay a» Qas ay ai

Disk B b1 b2 b3 bl

Disk C 8] (&) Cy

Evict - - | ar | b,e | aq,bs, e

Fig. 6. Schedule created by pc-0PT for given reference string. (a) Reference String. (b) Schedule created by PC-0OPT.

1338

Blocks aq a» [)[{)2 & €
Priority | 1 | 4 | 4 | 3 | 3 | 2

Block as as b1 b_g (4] Co
Priority | 4 3 1|31 :
(b)
Block a9 (3 [(17] bg b3 (&)

Priority | 4 | 3 -88 | -89 | -91

Fig. 7. Buffer block priorites immediately before I/Os steps 3, 4, and 5.
(a) Prior to referencing a3 at index 3. (b) Prior to referencing a4 at index
7. (c) Prior to referencing b; at index 13.

priorities are computed; here, we assume they are given.
Beginning with an empty bulffer, the first two I/Os greedily
fetch the two highest-priority blocks from each of the three
disks. The third I/O is done when the demand block a3 at
index 3 is requested. Block a; is evicted from the buffer and
as is fetched. The priorities of the cached blocks that justify
this decision are shown in Fig. 7a. Each block in the buffer
has the priority of its next reference; hence, a;, which is next
referenced at index 15, has a priority of 1, and as, which is
next referenced at index 16, has a priority of 4. Of all the
cached blocks, a; has lowest priority and is evicted to fetch
az. Block b; (referenced at index 8), which is also a candidate
to be fetched, has priority 2; this is not more than the
priority of any block currently in the buffer and is hence not
fetched. The next I/O is required just prior to reference a4 at
index 7. The priorities of blocks in the buffer at this time are
shown in Fig. 7b. Once again, all blocks in the buffer have
the priority of their next reference. The set of candidate
blocks to be fetched in this I/O are a4 and b3, both of which
have priority 2. The two lowest-priority blocks in the buffer
(b1 and ¢;) have priority 1 and are therefore evicted in favor
of a, and bs. Finally, the last I/O is required just prior to
referencing b, at index 13. At this time several cached blocks
are no longer in the remaining lookahead. These blocks (a4,
by, b3, and ¢p) are assigned priority i-MAX, where i is the
index of their latest reference. This is shown in Fig. 7c,
where MAX has been assumed to be 100. Candidate blocks
a1, by, and ¢, are fetched by evicting blocks ¢y, as, and b3
from the buffer. Note that the blocks not in the lookahead
are evicted in LRU order.

Finally, we discuss the relation between disk-head
scheduling at the individual disks and the schedule created
by PC-OPT. Rather than present one parallel request at a
time to the disk subsystem, PC-OPT can batch the requests
so that, at any time, the next M blocks in its schedule
(beyond the last reference) are requested from the disks.
The individual disks can reorder the requests in their
queues to optimize access times. This decoupling of the
schedules allows lower-level access-time optimizations to
be done independently of the higher-level load-balancing
schedule of PC-OPT.

4.2 Priority Assignment Module

The priority assignment module, the heart of PC-OPT,
assigns priorities to each reference in the lookahead. The

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 11, NOVEMBER 2002
priority of a block is a measure of how important it is to
have that block in the buffer. With respect to prefetching, a
low priority indicates that an I/O for that block can be
delayed and, with respect to caching, a low priority
indicates that the block can be evicted from the buffer.
The I/0O buffer is used both to cache blocks since their
previous reference and to hold prefetched blocks till they
are referenced. PC-OPT attempts to set the priority of every
block as low as possible, subject to certain constraints. It
employs two principles in assigning the priorities: 1) Pre-
fetches for blocks should occur close to their references so
that prefetched blocks do not wastefully occupy buffer
space and 2) avoid caching a block if there is any later free
1/0 slot available which can be used to fetch the block.
Among the candidates of blocks to cache, PC-OPT caches
the block which occupies buffer space for a smaller
duration. Hence, if, at some time, two blocks are required
in the buffer, PC-OPT prefers to cache the block whose
previous reference is closer to the current time as this would
reduce the buffer pressure between the two previous
accesses. For prefetching, PC-OPT assigns priorities so that
prefetches can be delayed till close to the actual reference.
These choices in ordering blocks to be fetched or evicted are
made by PC-OPT through its priority assignment scheme.
Since at most one block can be fetched from one disk in
an I/0O, at any time all blocks on the same disk have distinct
priorities. However, two blocks from different disks can
have the same priority, indicating that, at the current time,
both of these are equally preferable. Also, there can be at
most M blocks cached in the buffer at any time. Hence, if a
reference r has priority p, then at most M — 1 distinct
references that occur after r can be assigned a priority
higher than p — 1. This is necessary to guarantee that there
is always buffer space available to fetch the demand block
for which the computation is waiting. Finally, a priority
needs to be assigned to those blocks that are present in the
buffer to allow them to be compared to blocks that can be
prefetched. A block in the buffer has the priority of the next
reference to that block. If a block is no longer in the
lookahead, we assign it a low priority so that it is evicted
before blocks in the lookahead; if several blocks are no
longer in the lookahead, their relative priorities are chosen
so that they are evicted in least-recently-used (LRU) order.
The priority assignment module examines maximal-
length subsequences of the lookahead consisting of
M distinct references, called phases. It then assigns priorities
to certain references in the phase, one distinct reference
from each disk. The priority assignment can be understood
by considering the first phase, phase(1): This consists of the
largest subsequence of the lookahead that includes the last
reference and has at most M distinct references. All
references which are assigned the smallest priority should
belong to phase(1); otherwise, there will be some reference
such that M or more blocks referenced after it have a
higher, or same, priority. Which among these blocks should
have the lowest priority? First, we can assign the lowest
priority to at most one distinct reference from each disk.
Additionally, between two blocks from the same disk, we
prefer assigning this priority to the block whose previous
reference outside this subsequence is earlier. This is to

KALLAHALLA AND VARMAN: PC-OPT: OPTIMAL OFFLINE PREFETCHING AND CACHING FOR PARALLEL 1/O SYSTEMS

1339

reference in £ to the same block.
For ¢ from k down to j
or —i if that index is less than j

else
If numberOfBlocksPlaced = M then

Remove r from P[d);
Increment lowestPriority

Increment numberOfBlocksPlaced

Routine to assign priorities to references

This routine is used to assign prioritics to references £ = (ry, ...
specific references; the priority of any other reference is taken to be the same as that of the previous

Initialize lowestPriority to 1, all other counts to 0, and sets to ¢.
Let previous(r;) be the index of the previous reference to block(r;),
If there is 7 in P[disk(r;)] such that block(r) = block(r;) then

Replace r in P[disk(r;)] with 7; and key previous(r;)

For each disk d such that P[d] is not empty
Assign priority(r) « lowestPriority,
where r is the reference with the smallest key in P[d]

Decrement numberOfBlocksPlaced

Insert r; into P[disk(r;)] with key previous(r;)

, 7). Prioritics are assigned only to

Fig. 8. Algorithm PC-OPT: priority assignment.

indicate that, between the two blocks, we would rather not
cache this block: assigning it a lower priority indicates that
we prefer caching other blocks over this one.

The algorithm to assign priorities is described in Fig. 8.
The variable numberOfBlocksPlaced keeps count of the
number of distinct references in the subsequence scanned.
A phase is complete when this count reaches A and the
next reference differs from those currently in the sequence.
For each disk d, the distinct references that are encountered
are maintained in a priority queue P[d]. There is one entry
in P[d] for each distinct reference from disk d. If several
references are to the same block, then only the earliest
(leftmost) reference is stored in the priority queue. The
references in any P[d] are ordered by the index of the
previous occurrence of that block outside the phase (the key
field in Fig. 9). The current lowest assignable priority is
tracked by lowestPriority. Once a phase has been identified,
the reference with the smallest key from each disk is
assigned this priority. All other references in this phase that
access the same block are also assigned the same priority.

The priority assignment module of PC-OPT has low time
complexity. The amortized time complexity of the priority
assignment routine is O(log M) per reference using any
standard priority queue for implementing the P array. One
element is inserted, deleted, or updated in the priority
queue to account for one reference. The values for
previous (r) can be initialized in one pass over all the
references whose priorities need to be assigned. The
overhead of assigning priorities depends on the frequency
of additional lookahead being available as priorities of
blocks in the lookahead change only when the lookahead
window is extended.

An example illustrating the priority assignment is shown
in Fig. 9. The reference string is that used in the example of
Fig. 6. Fig. 9a illustrates phase(1); it consists of the last
M distinct references with indexes 12 through 17. The

references belonging to phase(1) are shown in bold. The field
key for each reference in the phase is the index of the
previous reference to the same block outside this phase.
Hence, for instance, c; has a key field of 6 since the previous
reference to ¢; outside the phase is at index 6 in the
reference string. In the inner for-loop, the blocks from each
disk with the lowest key are assigned the lowest priority
(currently 1). Among the references a;, as, and a3 on disk A,
a1 has the smallest key (previous reference is earliest), and
hence, is assigned priority 1. Similarly, b; and ¢, are the
references with the smallest key values from the other two
disks and are also assigned priority 1.

Fig. 9b shows the second phase of the example above;
this is when the else condition is entered for the second
time. The second phase includes the largest suffix of
M distinct references, excluding the references which have
previously been assigned priorities. At this time, P consists
of the earliest (leftmost) reference of each distinct block in
the phase. They are keyed by the index of the earliest
reference to that block outside the phase. Hence, for
instance, P would hold the reference to a4 at index 7 rather
than at index 10. Note that a reference r at index i is
assigned a key of —i if there are no previous references to
block(r) outside this phase. Thus, blocks a4, b3, and ¢, have
negative priorities. Again, in the inner for-loop of the
algorithm, all the blocks in P with the smallest keys are
assigned the lowest priority (currently 2) and the priorities
are extended to all references to the same blocks. Conse-
quently, references at indexes 7, 8, and 9 which have the
smallest key values from each disk are assigned priority 2.
Since the algorithm assigns the same priority to all other
references to the same block in the phase, references a4 and
b3 at indexes 10 and 11 are assigned the same priorities as
the corresponding earlier references. Fig. 9¢, Fig. 9d, and
Fig. 9e show the remaining phases and the final assignment
of priorities to all references.

1340 |IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 11, NOVEMBER 2002
INDEX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Reference | a1 | a2 | as | by | b2 | ¢1 | a4 | b3 | co | aa | b3 | be | b1 | 1 | a1 | az | ag
Key 5 1 4 6] 1] 23
Priority 1 1
(a)
INDEX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Reference al ao a3 b1 bs 1 aq bs [ay bs bo * * * as ag
Key T 1819 -1-15 2 | 3
Priority 2 2 2 2 2 1 1 1
(b)
INDEX 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Reference al ag ag b1 b2 C1 * * * * * b2 * * * ao as
Key -1 -2 -3 -4 -5 -6 - - -
Priority 3 3 3 2 2 2 2 2 3 1 1 1 3
INDEX 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17
Reference | a1 | aso * 1 by ook O* * * * * * * * ao *
Key 1] 2 7 -
Priority 4 3 4 3 3 2 2 2 2 3 1 1 1 4 3

INDEX 1 2|34 |56 |7 |8|9]|10 |11 |12 |13 |14 | 15| 16 | 17

Reference ay * * * * * * * * * * * * * * * *
Key -1

Priority 5 |4 |34 (3 |[3]2]2]2] 2 2 3 1 1 1 4 3

Fig. 9. Priority assignment example. (a) Phase(1). (b) Phase(2). (c) Phase(3). (d) Phase(4). (e) Phase(5).

5 OFFLINE OPTIMALITY OF PC-OPT

In this section, we analyze the performance of PC-OPT in
terms of the length of the schedule it generates. We show
that, when, PC-OPT has knowledge of the entire reference
string > in advance, it generates a schedule of minimal
length, that is, it is an optimal offline 1/O scheduling
algorithm. Note that, in this case, the entire reference string
is in the initial lookahead of PC-OPT, and, hence, the
priorities are all assigned at once. To do the analysis in this
case, we start by showing some properties of the schedule
generated by PC-OPT.

Property 1. If PC-OPT is given the entire reference string at the
start, the number of 1/Os done by PC-OPT to service the
reference string is given by the highest priority of any reference
in the reference string.

Our analysis will concentrate on showing that the
maximum priority of any block equals the length of OPT,
the optimal offline schedule. This will be used together with
Property 1 to show that the length of the schedule generated
by PC-OPT is of the same length as OPT. We shall start by
characterizing the blocks which have a priority p. We begin
by formally defining a phase that was used in describing the
algorithm in Section 4.

Definition 2.

o Initially, let ¥, equal ¥. Define phase(i) to be the
largest subsequence of ¥;, including the last reference

in X;, such that the total number of distinct blocks in
phase(i) is no more than M.

o Define ¥,y = %, — earliest(i), where earliest(i) is
defined as follows: For each disk d, consider the set of
all blocks from disk d referenced in phase(i). Among
these, let b be the block whose previous reference
outside phase(i) is earliest in the past. Then,
earliest(i) consists of all references to block b in
phase(i).

From the above definition and the specification of the
priority assignment routine, phase(i) is the sequence of
references from among which the references which have a
priority ¢ are selected. Also, the references in earliest(i) are
exactly the ones with priority i.

Property 2. The priority of all references in earliest(i) is i.

From Property 2, we can estimate the maximum priority
of any reference by counting the number of “earliest” sets
that can be formed from the reference string. Without any
loss in generality, we assume that, in OPT, no block that is
fetched is evicted before at least one reference to it is
serviced. This will simplify the comparison of the schedule
generated by PC-OPT and OPT. Let the length of OPT be
Topr. For integer k, 1 <k < Tppr, we denote by R; the
expression Tpopr —k+1. We denote the jth I/O in a
schedule by I;.

The theorem is proven by inductively showing that OPT
can be repeatedly transformed into a series of schedules,
each derived from the previous one and of the same length

KALLAHALLA AND VARMAN: PC-OPT: OPTIMAL OFFLINE PREFETCHING AND CACHING FOR PARALLEL 1/O SYSTEMS 1341

as OPT, such that, in the kth schedule, all references fetched
in I;, j > Ry, match those in the earliest(y).

Theorem 1. Given a reference string ¥ of length L, PC-OPT,
with L block lookahead, performs the least number of 1/Os to
service Y.

Proof. We shall prove the theorem by inductively showing
that OPT can be repeatedly transformed into a series of
schedules OPT*(k), k from Topr,---,1, such that sche-
dule OPT*(k) is the same length as OPT and any
reference that is fetched by OPT*(k) in I;, j >k, is in
earliest(R;). The theorem will then follow due to
Properties 1 and 2.

For the Induction Hypothesis (IH), assume that
OPT* (k+1) and OPT are the same length and that all
references r fetched by OPT*(k+1) in I;, j > k+ 1, are in
earliest(R;). We shall show how to construct OPT*(k)
from OPT*(k+1) by changing only the blocks fetched in
the kth 1/0, I, or earlier. The blocks fetched in I, are
chosen to match those in earliest(R},), thereby reestab-
lishing the IH.

For an arbitrary disk d, let p be the reference fetched in
I}, by OPT*(k+1), and let g be the reference from the same
disk with the smallest index in earliest(Ry). If either
reference does not exist, then we denote p or ¢ by ¢. For
each disk independently, we change the block fetched in
I;; of OPT*(k+1) to that belonging to earliest(Ry).

There are four possible cases to consider in the proof.

Casel:p=¢

In OPT*(k), we will instead fetch ¢ in I;. By the IH,
since ¢ is in phase(Ry;) and hence not in earliest(R;) for
any ¢ > k+1, it is not fetched by OPT*(k+1) in any I},
j > k+ 1. Therefore, ¢ must be fetched by OPT*(k+1) in
some [, j < k.

If ¢ is referenced after I in OPT*(k+1), then it must
already be in the buffer at the start of /;. In this case, to
get OPT*(k), we evict g immediately before I;, and fetch it
back again immediately during I;, thereby satisfying
the IH.

If ¢ was referenced before I;, in OPT*(k+1), then, in
OPT*(k), we fetch ¢ in [} and reference it immediately
after the I/0O. All references in OPT*(k+1) that occurred
between the reference to g and I, are also deferred to the
end of Ij. Since there are at most M — 1 other blocks
which occur after g in ¥ that are fetched on or before I,
(these are from among the M — 1 distinct references in
phase(Ry,) different from g), there is enough buffer space
to defer the references to all these blocks till after I

Case 2: p does not belong to phase(Ry,)

In OPT*(k) we cancel the I/O for p and instead fetch ¢
in I;. To show that we can cancel the I/O done by
OPT*(k+1) for p in I and still get a valid schedule, we
argue as follows. Either the index of p in ¥ is less than the
smallest index of any reference in phase(Ry,) or p belongs
to earliest(R;) for some i > k+ 1. By the IH, the latter
implies that p is fetched in I; for some j > k + 1. Hence,
in this case, we do not need the I/O done for p in I; and
can cancel it while still maintaining a valid schedule.
Next, we show that the first case is not possible. By the
IH, none of the references in phase(Ry) will be fetched in
the I/Os beyond I;. Hence, all M distinct references in

phase(Ry), different from p and referenced after p, would
need to have been fetched by I;.. There can be at most M
such references (including p) as the buffer capacity is M,
an impossibility. This contradicts the hypothesis that
OPT*(k) is a valid schedule. Once we cancel the I/O for
p, then we use case 1 above to fetch ¢ in I} to get OPT*(k).

Case 3: p belongs to phase(R;) and, in OPT*(k+1),
both p and ¢ are referenced after I;.

In OPT*(k+1), both block(p) and block(g) must be in the
buffer following I since, by the IH, they are not fetched
in any I/0 beyond I;. To construct OPT*(k), we fetch ¢
instead of p in I, and adjust earlier I/Os to ensure that p
is in the buffer before I.

In OPT*(k+1), let block(q) be last fetched in some I/0,
1, earlier than I;;, and cached till I;. By the discussion
above, such an I/O must occur. Suppose that block(p)
was last evicted at time ¢ and not read back till I,. If ¢ is
earlier than I, then, in OPT*(k), we fetch block(p) instead
of block(q) in I,. If t is later than I,, then, instead of
evicting block(p) at t, we evict block(q) instead. By the
definition of earliest(k), we are guaranteed that the last
references to both block(p) and block(q) outside phase(Ry,)
have been serviced at t and, so, both transformations are
valid.

Case 4: p belongs to phase(Ry;) and, in OPT*(k+1), ¢ is
referenced earlier than I;.

To construct OPT*(k), we fetch ¢ instead of p in I}, and
adjust earlier I/Os to ensure that p is in the buffer before
I.

Let g be referenced at time ¢ in OPT*(k+1). At this
time, OPT*(k+1) must have ¢ in the buffer. By an
argument identical to Case 3, we can transform
OPT*(k+1) so that, at t, OPT*(k) has block(p) instead in
the buffer. Then, block(q) will be fetched in I, in OPT*(k)
as required.

In OPT*(k), we can reference ¢ only after its fetch at ;.
Hence, all references made by OPT*(k+1) between its
reference of ¢ and I, are also deferred till immediately
after I;. Since there are at most M — 1 blocks that occur
after ¢ in ¥ and are fetched no later than I, there is
always enough buffer available to do this.

Between ¢ and I}, we fetch the same blocks in OPT*(k)
as in OPT*(k+1). Any block not in phase(R;) that is
evicted in these I/Os by OPT*(k+1) is also evicted by
OPT*(k), but no blocks that are referenced between ¢ and
p in ¥ are evicted since these have not yet been
referenced. Following the I/O at I;, all the deferred
references between ¢ and I, are made and blocks that had
been evicted by OPT*(k+1) are also evicted.

Thus, OPT*(k+1) can be transformed into a valid
schedule OPT*(k) such that the induction hypothesis
holds for OPT*(k).

For the base case, OPT*(Tppr + 1) is initialized to
OPT. Clearly, the two schedules have the same length
and the second condition of the induction hypothesis
holds vacuously. 0

Immediately, it follows that, when the entire reference

string is known to PC-OPT, it generates the minimal length
schedule to service it.
Theorem 2. PC-OPT is the optimal offline parallel I/O scheduling

algorithm.

1342

6 BOUNDS ON ONLINE PERFORMANCE OF PC-OPT

In this section, we shall characterize the online performance
of PC-OPT using the competitive ratio [16] as the metric. In
this context, the competitive ratio is the ratio of the number
of I/Os done by the online algorithm to the number of I/Os
required by the optimal offline algorithm to schedule the
same reference string. Though being a worst case measure,
the competitive ratio attempts to isolate the effect of
decisions made by the online algorithm from inherent
features of the input data.

The performance of an online scheduling algorithm
depends on the amount of information in the lookahead
and how frequently the lookahead is updated. For the
analysis, we consider that, at any time, the algorithm has
the next L distinct references in the lookahead. Formally, an
algorithm is said to have global L-block lookahead if, at any
time it knows a portion of the reference string, starting from
the next reference to be accessed and including accesses to
L distinct blocks, that is, if the lookahead is £ = (r;,...,r;),
then the number of distinct blocks in £ is L. This is a natural
definition of lookahead and is similar to that of strong
lookahead [2], which was used in the context of on-line
caching algorithms for single-disk systems.”

We shall next provide bounds on the performance of PC-
OPT in the online case, where it only has L-block lookahead.
We shall show the bounds separately in the two regions,
L < M and L > M. For the analysis, we partition the entire
reference string into subsequences consisting of M distinct
blocks, called segments: A segment is a maximal length
subsequence of the reference string consisting of references
to at most M distinct blocks, with the first segment starting
with the first reference.

We categorize all references as either stale or clean based
on whether or not the same block has been accessed in the
previous segment. For the reference string in Fig. 6a,
segment(l) consists of references 1 to 6 and segment(2)
consists of references 7 through 14. The clean blocks of
segment(2) are a4, b3, and ¢, and the stale blocks are by, b1,
and c¢;. The main theorem below follows from Lemmas 3
and 4, which are proven below.

Let the ith segment be denoted by segment(i) and let the
number of clean blocks in segment(i) be ¢;. Let the total
number of segments in the reference string be N.

Theorem 3. The competitive ratio of PC-OPT is:

(M — L+ D)
©(MD/L)

when L <M
when L > M

Lemma 1. The number of 1/Os done by PC-OPT to fetch the first
set of L distinct references of a segment, L < M, is at most
equal to the number of clean blocks in that set.

Proof. From the definition of the priority assignment
scheme, it can be seen that 1) blocks in the buffer which
are present in the lookahead have a higher priority than

2. L-block lookahead is a slightly weaker form of lookahead than strong
lookahead: Strong lookahead requires that the first reference of any
lookahead window be to a block that is not present in the previous
lookahead. Thus, for instance, several sets of L-block lookahead could
correspond to only one strong lookahead window.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 11, NOVEMBER 2002
blocks which are not present in the lookahead, and 2)
among the blocks in the buffer which are not present in
the lookahead, a lower priority is assigned to a block
whose past reference was earlier in the past. This
indicates that, when blocks are evicted, the blocks in
the buffer that are not in the lookahead and whose prior
reference was earlier in the past are preferred.

Since there are exactly M distinct blocks in a segment,
once a block has been fetched, it will not be evicted
during that segment as there will always be some other
block which is not in the lookahead but which is present
in the buffer. Hence, at the end of a segment, if a block is
present in the buffer of PC-OPT, then it is either a block
that is referenced in that segment or it is a block which is
a clean block from the first lookahead window, the first
set of references comprised of L distinct requests, of the
next segment.3

Consider the I/Os done by PC-OPT in segment(i). From
the previous argument, the number of I/Os done by PC-
OPT to service the first lookahead window is no more than
the number of clean blocks in this lookahead. 0

Lemma 2. The total number of blocks fetched by OPT is at least
half the total number of clean blocks in the reference string.

Proof. We can show that the total number of blocks fetched by
OPTisatleast) ¢;/2, using an analysis similar to one used
to bound the competitive ratio of marking algorithms in
[14]; we briefly repeat it here for convenience. Let n; clean
blocks of segment(i) be present in OPT’s buffer at the start
of segment(i). Hence, the number of blocks fetched by OPT
in segment(i) is atleast ¢; — n;. Also, since n;;; clean blocks
are present in OPT’s buffer at the end of segment(i), OPT
must have fetched atleast n; 1 blocks in segment(i). Hence,
the number of blocks fetched by OPT in segment(i) is at
least max{c; — n;,ni41} > (¢; — n; +ni1)/2. This, when
summed over all segments, gives the result that OPT
should have fetched at least > ¢;/2 blocks and, hence,
should have done atleast) ¢;/2D 1/0Os. O

In the example of Fig. 6, at the end of segment(1) (step 3
of the schedule), the buffer contains as, as, b1, bs, c1, co. Of the
three clean blocks in segment(2), only one of them, (c), is
present in the buffer at the start of segment (2). Hence, the
first bound (¢; — n;) states that at least 3 — 1 = 2 blocks must
be fetched in segment(2). For the second bound, note that
two blocks (a2 and a3) are cached throughout segment(2),
even though they are never referenced in that segment.
These two blocks are clean blocks for segment(3) and are
present in the buffer at the start of the segment. Carrying
these two blocks across segment(2) gives the second bound,
(nix1), that at least two blocks must be fetched in
segment(2).

Lemma 3. When L < M the competitive ratio of PC-OPT is

O(M — L+ D).

Proof. Consider thel/Os done by PC-OPT in segment(i). From

Lemma 1, the number of I/Os done by PC-OPT to service

the first lookahead window is no more than the number of
clean blocks in this lookahead. There are at most M — L

3. Sequential paging algorithms with this property have been previously
referred to as marking algorithms [14].

KALLAHALLA AND VARMAN: PC-OPT: OPTIMAL OFFLINE PREFETCHING AND CACHING FOR PARALLEL 1/O SYSTEMS

other blocks referenced in the rest of the segment and,
hence, the number ofI/Os done by PC-OPT in the rest of the
segmentis at most M — L. Hence the total number of I/Os
done by PC-OPT in segment(i) is at most ¢; + M — L. We
will next show that the total number of I/Os done by OPT
is Y~ ¢; /2D, where the sum is taken over all segments in ¥,
or Q(N), where N is the total number of segments in the
reference string; hence, the competitive ratio of PC-OPT
willbe O(D+ M — L).

From Lemma 2, the total number of blocks fetched by
OPT is at least) ¢;/2. Hence, OPT should have done at
least > ¢;/2D 1/0s. Additionally, in any set of two
consecutive segments, there are a total of at least M + 1
distinct blocks that are referenced. Hence, OPT should
do at least one I/O in every set of two segments, which

gives the second bound of Q(N) on the total number of
I/0s done by OPT to service . 0

Lemma 4. When L > M, the competitive ratio of PC-OPT is
O(MD/L).

Proof. Let us divide the reference string X into subse-
quences Ly, -, Ly, where L; is the lookahead available
to PC-OPT initially and £; is the lookahead window
available to PC-OPT after servicing the last reference of
L;_1. Note that, from the definition of global L-block

lookahead, there are L distinct references in each L;.

Consider the optimal length schedule OPT to service
Y. Let us partition the schedule into subschedules, each
consisting of a sequence of contiguous I/Os of the
original schedule. Let the ith subschedule S; start with
the I/0 following the last I/O of sub-schedule S;_; and
end with the last I/O in which a block from L; is fetched;
let Sy start with the first I/O. In the case when L > M, it
can be noted that each S; consists of at least one I/O.

First, consider the case when L > 2M. OPT needs to
do atleast (L — M)/D1/0Os in each S; as it could have at
most M blocks in the buffer prior to scheduling L;. Thus,
in this case, if the number of lookaheads is N,
Topr = Q(NL/D). The number of I/Os done by PC-OPT
to service any L; is less than 2)M more than the number
of 1/Os in S;. Thus, Tpc_opr < Topr +2NM, thereby
completing the proof for this case.

The other case, when L <2M, is simpler. By
Lemma 1, the number of I/Os done by PC-OPT in
the first lookahead of any segment is at most the
number of clean blocks in that lookahead. However,
when the lookahead is more than M, the entire
segment is a part of the lookahead. Hence, the total
number of I/Os done by PC-OPT in the reference string
is no more than the total number of clean blocks in the
reference string, >, ¢;. On the other hand, by Lemma
2, the total number of blocks fetched by OPT is at least
half the total number of clean blocks in the reference
string. Thus, the total number of I/Os done by OPT is
at least), ¢;/2D. This gives the result that the ratio of
the number of I/Os done by PC-OPT to the number of
I/Os done by OPT is at most O(D) when
M < L <2M. O

1343

7 SUMMARY

In this paper, we addressed a generalization of the
sequential paging problem [8] to a multiple-disk parallel
I/0 situation. In the parallel I/O model, the total number of
I/0s is not an appropriate metric since multiple I/Os can
proceed concurrently on different disks. The problem here
is to optimize the number of parallel I/Os.

We argued that both caching and prefetching decisions
need to be sensitive to disk parallelism and that there could
be substantial loss in parallelism if traditional prefetching
and caching algorithms are used. For instance, by using the
MIN algorithm [8] for caching, we could sequentialize
accesses that could otherwise be parallelized completely.

We used an intuitive model of lookahead, global looka-
head, which provides information regarding a subsequence
of future accesses to the online algorithm. Lookahead
allows algorithms to perform accurate prefetching rather
than speculate on future references. Lookahead information
is also useful in making caching decisions.

We presented a new algorithm, PC-OPT, for optimizing
prefetching and caching decisions in the parallel disk
model. We showed that, in the offline case, where a priori
knowledge of all the accesses is available, PC-OPT performs
the minimum number of I/Os to service the I/O requests.
This is the first optimal offline algorithm in the parallel disk
model. In the online case, we show that the competitive
ratio of PC-OPT, with this lookahead, is ©(max {M — L, D}),
when L <M, and ©(MD/L), when L > M, where the
number of disks is D and buffer size is M.

ACKNOWLEDGMENTS

This research was suported in part by the US National
Science Foundation under grants CCR-9704562 and CCR-
0105565 and a grant from the Schlumberger Foundation. A
preliminary version of this work appears in the Proceedings
of ACM Symposium on Parallel Algorithms and Architectures,
SPAA 2001. This work was done while Mahesh Kallahalla
was with the Department of Electrical and Computer
Engineering at Rice University.

REFERENCES

[1] A. Aggarwal and].S. Vitter, “The Input/Output Complexity of
Sorting and Related Problems,” Comm. ACM, vol. 31, no. 9,
pp- 1116-1127, Sept. 1988.

[2] S. Albers, “On the Influence of Lookahead in Competitive Paging
Algorithms,” Algorithmica, vol. 18, no. 3, pp. 283-305, July 1997.

[3] S. Albers, N. Garg, and S. Leonardi, “Minimizing Stall Time in
Single and Parallel Disk Systems,” J. ACM, vol. 47, no. 6, pp. 969-
986, Nov. 2000.

[4] D. Askoy and M. Franklin, “Rxw: A Scheduling Approach to
Large Scale On-Demand Broadcast,” IEEE/ACM Trans. Network-
ing, vol. 7, pp. 846-861, 1999.

[5] L.M. Baptist and T.H. Cormen, “Multidimensional, Multiproces-
sor, Out-of-Core FFTs with Distributed Memory and Parallel
Disks,” Proc. 11th Ann. ACM Symp. Parallel Algorithms and
Architectures, June 1999.

[6] R.D. Barve, EF. Grove, and].S. Vitter, “Simple Randomized
Mergesort on Parallel Disks,” Parallel Computing, vol. 23, no. 4,
pp- 601-631, June 1996.

[71 R.D. Barve, M. Kallahalla, P.J. Varman, and].S. Vitter, “Compe-
titive Parallel Disk Prefetching and Buffer Management,”
J. Algorithms, vol. 36, no. 2, pp. 152-181, Aug. 2000.

1344

(8]
&)

(10]

(1]

[12]

(13]

(14]

[15]

[16]

(7]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(23]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 11, NOVEMBER 2002

L.A. Belady, “A Study of Replacement Algorithms for a Virtual
Storage Computer,” IBM Systems ., vol. 5, no. 2, pp. 78-101, 1966.
D. Breslauer, “On Competitive On-Line Paging with Lookahead,”
Proc. 13th Ann. Symp. Theoretical Aspects of Computer Science,
pp- 593-603, Feb. 1996.

P. Cao, E.W. Felten, A.R. Karlin, and K. Li, “A Study of Integrated
Prefetching and Caching Strategies,” Proc. Joint Int’l Conf.
Measurement and Modeling of Computer Systems, pp. 188-197, May
1995.

F. Chang and G.A. Gibson, “Automatic I/O Hint Generation
Through Speculative Execution,” Operating Systems Design and
Implementation (OSDI), pp. 1-14, 1999.

T.H. Cormen and M. Hirschl, “Early Experiences in Evaluating the
Parallel Disk Model with the VIC* Implementation,” Parallel
Computing, vol. 23, no. 4, pp. 571-600, 1997.

O. Ertug, M. Kallahalla, and P. Varman, “Real-Time Parallel Disk
Scheduling for VBR Video Servers,” Proc. Fifth Int’l Conf. Computer
Science and Informatics, Feb. 2000.

A. Fiat, R. Karp, M. Luby, L. McGeoch, D.D. Sleator, and N.E.
Young, “Competitive Paging Algorithms,” J. Algorithms, vol. 12,
no. 4, pp. 685-699, Dec. 1991.

M. Kallahalla and P.J. Varman, “Optimal Read-Once Parallel Disk
Scheduling,” Proc. Sixth ACM Workshop 1/O in Parallel and
Distributed Systems, pp. 68-77, (see www.ece.rice.edu/pjv for a
revised and expanded version), 1999.

A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator,
“Competitive Snoopy Caching,” Algorithmica, vol. 5, no. 3,
pp- 79-119, Mar. 1988.

T. Kimbrel and A.R. Karlin, “Near-Optimal Parallel Prefetching
and Caching,” SIAM]. Computing, vol. 29, no. 4, pp. 1051-1082,
2000.

D.F. Kotz and C.S. Ellis, “Prefetching in File Systems for MIMD
Multiprocessors,” IEEE Trans. Parallel and Distributed Computing,
vol. 1, no. 2, pp. 218-230, 1990.

L.A. McGeoch and D.D. Sleator, “A Strongly Competitive
Randomized Paging Algorithm,” Algorithmica, vol. 6, pp. 816-
825, 1991.

J.H.M. Korst, P. Sanders, and S. Egner, “Fast Concurrent Access to
Parallel Disks,” Proc. SIAM Symp. Discrete Algorithms, Jan. 2000.
V.S. Pai and A. Schéeffer, and P.J. Varman, “Markov Analysis of
Multiple-Disk Prefetching Strategies for External Merging,”
Theoretical Computer Science, vol. 128, nos. 1-2, pp. 211-239, June
1994.

R.H. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and].
Zelenka, “Informed Prefetching and Caching,” Proc. 15th ACM
Symp. Operating Systems Principles, pp. 79-95, Dec. 1995.

D.D. Sleator and R.E. Tarjan, “Amortized Efficiency of List Update
and Paging Rules,” Comm. ACM, vol. 28, no. 2, pp. 202-208, Feb.
1985.

PJ. Varman and R.M. Verma, “Tight Bounds for Prefetching and
Buffer Management Algorithms for Parallel I/O Systems,” IEEE
Trans. Parallel and Distributed Systems, vol. 10, no. 12, pp. 1262-
1275, Dec. 1999.

J.S. Vitter and E.A.M. Shriver, “Optimal Algorithms for Parallel
Memory I: Two-Level Memories,” Algorithmica, vol. 12, nos. 2-3,
pp. 110-147, 1994.

Mahesh Kallahalla received the BTech de-
gree from the Indian Institute of Technology,
Chennai, in 1995. He received the MS and
PhD degrees from Rice University, in 1997
and 2001, respectively. He is a researcher at
Hewlett Packard Laboratories in Palo Alto,
California. His research interests currently are
3 in the general area of storage systems,
including external memory algorithms, storage
system security, and self-managing storage systems. He is a
member of the IEEE, ACM, and SIAM.

Peter J. Varman received the BTech degree
from the Indian Institute of Technology, Kanpur,
and the MS and PhD degrees from the
University of Texas at Austin, all in electrical
engineering. He is currently on the faculty of
Rice University. He has held visiting positions at
IBM’s T.J. Watson and Almaden Research
Centers, Nanyang Technological University,
Singapore, and Duke University. His research
interests are in the areas of parallel computing, parallel I/O, resource
scheduling algorithms, multimedia systems, and temporal and spatial
databases. Dr. Varman is a senior member of the IEEE, an associate
editor of the IEEE Transactions on Computers, and a member of the
ACM and the New York Academy of Sciences.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

