MEASUREMENT-BASED HYBRID FLUID-FLOW MODELS FOR FAST MULTI-SCALE SIMULATION

Khosrow Sohraby
University of Missouri - KC
Computer Science
Telecommunications
5100 Rockhill Rd.
Kansas City, MO 64110

Yorai Wardi
Georgia Institute of Technology
School of Electrical and Computer Engineering
Atlanta, GA 30332

Benjamin Melamed
Rutgers University
Faculty of Management
Dept. of MSIS
94 Rockafeller Rd.
Piscataway, NJ 08854
MEASUREMENT-BASED HYBRID MODELS FOR FAST MULTI-SCALE SIMULATION

New Ideas

- Novel measurement-based traffic modeling methodology based on general time-Series processes (e.g., Auto-regressive Modular)

- New hybrid discrete-continuous flow (HDFC) paradigm to combine discrete and continuous flows resulting in fast simulation and considerable modeling flexibility

Impact

- Accurate traffic modeling driven by measurement-based models
- Multi-scale simulation paradigm from packet transport to protocol-based messages
- Identification of generic scalable network topologies

Sepember 27-29, 2000
MOTIVATION

- Emerging high-speed packet-based telecommunications networks carry enormous traffic loads
 - compressed video
 - file transfer

- Network modeling and analysis technologies are urgently needed (witness Internet congestion)
 - network control (admission and congestion)
 - network provisioning and planning
• PROBLEM: Emerging high-speed packet-based telecommunications networks are hard to analyze
 - current analytical models cannot capture teletraffic burstiness and are overly optimistic
 - simulation of complex networks is either infeasible, or takes forever to complete

• SOLUTION GOALS: Develop a new modeling and simulation paradigm
 - hybrid simulation paradigm that combines traditional discrete flows with continuous ones
 - multi-scale simulation paradigm from packet transport to protocol-based messages
 - accurate teletraffic modeling driven by measurement-based teletraffic models
TECHNICAL CHALLENGES

- How to achieve a high expressive power of simulation models by capturing multiple scales?
 - transaction level (discrete and continuous flows)
 - message level (subject to prescribed protocols)

- How to speed up simulation runs?
 - large and complex network models give rise to enormous numbers of packet-based events
 - traditional simulation would require prohibitive computational resources to process

- How to achieve a high accuracy of predicted performance measures?
 - burstiness modeling
 - measurement-based teletraffic modeling
NEW IDEAS

• New Hybrid Discrete-Continuous Flow (HDCF) paradigm combines discrete and continuous flows
 • fast simulation takes advantage of fluid transport
 • flexible modeling allows modeler to assign type of flows (traditional discrete jobs or fluid-flow streams)

• Traffic model
 • new accurate measurement-based teletraffic modeling methods via ARM (AutoRegressive Modular processes), e.g., TES, QTES
BENEFITS TO DOD

• Ability to model and simulate complex networks
 • accurate simulation models whose computational complexity using traditional models is currently infeasible or prohibitive
 • flexible paradigm allows users to control trade-off between computational complexity and model fidelity

• Integration with network applications
 • modeling of Next Generation Internet at multiple levels of detail
 • network design and capacity planning
 • network control (buffer management, service allocation)
• **Problem**: traditional discrete-event simulation at packet level is often *infeasible*
 - time complexity (too many packets to process)
 - space complexity (too many packets to store)

• **Proposed Solution**: *fluid-flow models*
 - transactions (customers, packets) become fluid
 - random discrete arrivals become random arrival rates
 - random discrete services become random service rates
 - random routing becomes rate thinning and merging
 - sample paths governed by differential equations
 - complex networks are modeled as TT/CT (Target-Traffic /Cross-Traffic) networks
THE GENERIC TT/CT NETWORK MODEL

- The generic TT/CT (Target-Traffic / Cross-Traffic) network model is a useful class of networks
 - simple HDCF network with tandem topology
 - reduced complexity renders simulation scalable in path size n
 - accurate measurement- based teletraffic modeling and generation methods (e.g., QTES) already developed under a previous DARPA/ITO project
• Fluid-flow simulation implications
 • events correspond to rate changes, which occur far less frequently than packet arrivals, service and routing
 • rate changes affect all downstream flows in a fluid-flow network, so fluid-flow events are more expensive than packet–flow events
 • overall, a fluid-flow simulation usually runs much faster than its packet–flow counterpart
BASIC CONTINUOUS-FLOW MODEL (CFM)

Defining Processes:
- $\alpha(t) = \text{inflow rate at time } t$
- $\beta(t) = \text{service rate at time } t$
- $c(t) = \text{capacity rate at time } t$

Derived Processes:
- $x(t) = \text{workload at time } t$
- $\gamma(t) = \text{loss rate at time } t$
- $\delta(t) = \text{outflow rate at time } t$
DEFINING PROCESSES ASSUMPTIONS

- The time horizon is an interval \([0, T]\).
- The inflow rate process \(\{\alpha(t)\}_{t=0}^T\) satisfies
 - with probability 1, the sample paths \(\alpha(\mathbb{X})\) are piecewise continuous and continuously differentiable in their continuity intervals.
- The service rate process \(\{\beta(t)\}_{t=0}^T\) satisfies
 - with probability 1, the sample paths \(\beta(\mathbb{X})\) are piecewise continuous and continuously differentiable in their continuity intervals.
- The buffer capacity rate process \(\{c(t)\}_{t=0}^T\) satisfies
 - with probability 1, the sample paths \(c(\mathbb{X})\) are piecewise continuous and continuously differentiable in their continuity intervals.
• Suppose that with probability 1, all defining processes of the basic CFM satisfy
 • all defining sample paths are piecewise constant
 • the number of jumps in finite time intervals is finite

• Then
 • the CFM is a DEDS (Discrete-Event Dynamic System)
 • the CFM can be simulated by a discrete-event simulation
 • the superposition of all jump time points of all defining processes over any finite interval can be written (with probability 1) as a strictly increasing finite sequence

\[\{(t_i, t_{i+1})\}_{i=0}^N \]

• in particular, for any initial interval,

\[t_0 = 0, \quad t_{N+1} = T \]
WORKFLOW PROCESS

• The workload process \(\{x(t)\}_{t=0}^T \) is governed by

\[
\frac{dx(t)}{dt} = \begin{cases}
0, & \text{if } x(t) = 0 \text{ and } \alpha(t) \leq \beta(t) \\
c(t), & \text{if } x(t) = c(t) \text{ and } \alpha(t) - \beta(t) \geq 3c(t) \\
\alpha(t) - \beta(t), & \text{otherwise}
\end{cases}
\]

• Let all defining sample paths be piecewise constant, with finite number of jumps in finite time intervals
• then the workload process is piecewise linear, and its values at event times can be computed recursively by

\[
x_{i+1} = \min\{ \max\{ x(t_i) + [\alpha(t_i) - \beta(t_i)][t_{i+1} - t_i], 0\}, c(t_{i+1})\}
\]

for a given initial value \(x(0) = x_0 \)
The outflow rate process \(\{\delta(t)\}_{t=0}^{T} \) is defined by

\[
\delta(t) = \begin{cases}
\alpha(t), & \text{if } x(t) = 0 \\
\beta(t), & \text{if } x(t) > 0
\end{cases}
\]

if the defining sample paths are piecewise constant, then the loss rate process is piecewise constant, and can be computed from the workload process.

The average outflow (throughput) over \([0,T]\) is

\[
\bar{\delta}(T) = \frac{1}{T} \int_{0}^{T} \delta(t) \, dt
\]
The loss rate process \(\{ \gamma(t) \}_{t=0}^{T} \) is defined by

\[
\gamma(t) = \begin{cases}
\alpha(t) - \beta(t) - c(t), & \text{if } x(t) = c(t) \text{ and } \\
0, & \text{otherwise}
\end{cases}
\]

if the defining sample paths are piecewise constant, then the loss rate process is piecewise constant, and can be computed from the workload process.
The loss volume $L(t_1,t_2)$ over $[t_1,t_2]$ is defined by

$$L(t_1,t_2) = \int_{t_1}^{t_2} \gamma(t) dt$$

Let all defining sample paths be piecewise constant, with finite number of jumps in finite time intervals. Then the partial loss volumes over $[t_1,t_2)$ are given by

$$L(t_i,t_{i+1}) = \begin{cases} \int [\alpha(t_i) - \beta(t_i)] [t_{i+1} - t_i] + x(t_i) - c(t_{i+1}), & \text{if } x(t_i) = c(t_{i+1}) \\ 0, & \text{otherwise} \end{cases}$$

The loss fraction over $[t_1,t_2)$ is defined by

$$L_f(t_1,t_2) = \int_{t_1}^{t_2} \gamma(t) dt / \int_{t_1}^{t_2} \alpha(t) dt$$
Defining Processes
\(\alpha_i(t) \) = inflow rate at node \(i \)
\(\beta_i(t) \) = service rate at node \(i \)
\(c_i(t) \) = capacity rate at node \(i \)

Derived Processes
\(x_i(t) \) = workload at node \(i \)
\(\gamma_i(t) \) = loss rate at node \(i \)
\(\delta_i(t) \) = outflow rate at node \(i \)
CFM NETWORKS (Cont.)

- A **CFM network** is a set of *interacting* basic CFM nodes
 - shared buffer
 - shared server

- **Basic CFM nodes may be interconnected**
 - flows have an itinerary of multiple nodes
 - flows may split and merge

- **For piecewise constant defining processes**
 - CFM network is a DEDS, with all derived processes being piecewise constant
 - CFM network is amenable to discrete-event simulation
MULTIPLE-FLOW CFM’s

\[c(t) = c_1(t) + c_2(t) \]

\[\gamma_1(t) \]
\[\alpha_1(t) \]
\[\alpha_2(t) \]
\[\gamma_2(t) \]
\[\beta(t) = \beta_1(t) + \beta_2(t) \]
\[\delta_1(t) \]
\[\delta_2(t) \]

Defining Processes

\[\alpha_i(t) = i - \text{th inflow rate} \]
\[\beta_i(t) = i - \text{th service rate} \]
\[\beta(t) = \text{total service rate} \]
\[c_i(t) = i - \text{th capacity rate} \]
\[c(t) = \text{total buffer capacity} \]

Derived Processes

\[x_i(t) = i - \text{th workload} \]
\[\gamma_i(t) = i - \text{th loss rate} \]
\[\delta_i(t) = i - \text{th outflow rate} \]
INTERACTING EQUAL-PRIORITY FLOWS

• Basic equal-priority CFM₁ and CFM₂

• Defining processes
 • inflow rates are $\alpha_i(t), i=1,2$
 • service rates are $\beta_i(t), i=1,2$, subject to a shared total service rate $\beta(t) = \beta_1(t) + \beta_2(t)$
 • buffer capacities are $c_i(t), i=1,2$, subject to a shared total buffer capacity $c(t) = c_1(t) + c_2(t)$

• Derived processes
 • workloads $x_i(t), i=1,2$, computed separately
 • loss rates $\gamma_i(t), i=1,2$, computed separately
 • outflow rates $\delta_i(t), i=1,2$, computed separately
INTERACTING PREEMPTIVE-PRIORITY FLOWS

- Basic CFM₁ of higher priority than basic CFM₂
- Defining processes
 - Inflow rates are \(\alpha_i(t), \ i = 1, 2 \)
 - Service rates are \(\beta_i(t), \ i = 1, 2 \) subject to
 a shared total service rate \(\beta(t) = \beta_1(t) + \beta_2(t) \) such that
 \[
 \beta_1(t) = \begin{cases}
 \beta(t), & \text{if } x_1(t) > 0 \\
 \alpha_1(t), & \text{if } x_1(t) = 0
 \end{cases}
 \]
 \[
 \beta_2(t) = \beta(t) - \beta_1(t)
 \]
 - Buffer capacities are \(c_i(t), \ i = 1, 2 \) subject to a shared total buffer capacity \(c(t) = c_1(t) + c_2(t) \) such that
 \[
 c_1(t) = \begin{cases}
 c(t), & \text{if } x_1(t) > 0 \\
 0, & \text{if } x_1(t) = 0
 \end{cases}
 \]
 \[
 c_2(t) = c(t) - c_1(t)
 \]
- Derived processes are computed separately
NETWORK SERVICE RATE ALLOCATION

• CFM simulation requires a service rate allocation algorithm, invoked on state changes

• Input
 • network nodes \(\{1, \frac{1}{4}, n\} \)
 • current inflow rate at each node \(\{\alpha_j : j = 1, \ldots, n\} \)
 • current workload at each node \(\{x_j : j = 1, \ldots, n\} \)
 • network total service rate \(\beta \) to be allocated to nodes

• Output
 • service rates at each node \(\beta_j, j = 1, \ldots, n \), such that
 \[
 \sum_{j=1}^{n} \beta_j = \beta
 \]
SERVICE RATE ALLOCATION ALGORITHM

• Initialize

 set \(N \leftarrow \{1^{1/4}, n\} \)

 set \(Z \leftarrow \{j \in N : x_j = 0 \text{ and } \alpha_j < \beta/n\} \)

 set \(b \leftarrow \beta \)

• Main loop

 while \((Z \neq \emptyset) \)

 set \(\beta_j \leftarrow \alpha_j \) for all \(j \in Z \)

 set \(b \leftarrow b - \hat{\alpha}_j z \alpha_j \)

 set \(N \leftarrow N - Z \)

 set \(Z \leftarrow \{j \in N : x_j = 0 \text{ and } \alpha_j < \beta/|N|\} \)

• Finalize

 if \((N \neq \emptyset) \)

 set \(\beta_j \leftarrow b/|N| \) for all \(j \in N \)
FLUID VS. PACKET TRANSPORT

- Main simulation events in packet-based transport
 - arrivals, service completions, packet loss

- Main simulation events in CFM
 - changes in arrival rate, service rate and capacity rate

- Comparison of Computational Complexity
 - packet-based transport has enormous number of events, each being local
 - CFM transport has far fewer events in single-node models
 - events in CFM transport are global (rate re-computation)
 - in feed-forward CFM networks, rate re-computation is fast, but events grow quadratically via the *ripple effect*
 - in general CFM networks, rate re-computation is hard, and events can grow explosively via the *echo effect*
PROPOSED CFM RESEARCH

• CFM telecommunications applications
 • network design, planning and provisioning
 • network resource allocation

• CFM software tools
 • object-oriented CFM simulator architecture and software