
MTIO
A MULTI-THREADED PARALLEL I/O SYSTEM �

Sachin More Alok Choudhary
Dept.of Electrical and Computer Engineering

Northwestern University, Evanston, IL 60201 USA

Ian Foster
Mathematics and Computer Science Division,

Argonne National Laboratory, Argonne, IL 60439 USA

Ming Q. Xu
Platform Computing, Inc.,

North York, Ontario M2N 6P6 Canada

Abstract

This paper presents the design and evaluation of a multi-
threaded runtime library for parallel I/O. We extend the
multi-threading concept to separate the compute and I/O
tasks in two separate threads of control. Multi-threading in
our design permits a) asynchronous I/O even if the underly-
ing file system does not support asynchronous I/O; b) copy
avoidance from the I/O thread to the compute thread by
sharing address space; and c) a capability to perform col-
lective I/O asynchronously without blocking the compute
threads. Further, this paper presents techniques for col-
lective I/O which maximize load balance and concurrency
while reducing communication overhead in an integrated
fashion. Performance results on IBM SP2 for various data
distributions and access patterns are presented. The results
show that there is a tradeoff between the amount of concur-
rency in I/O and the buffer size designated for I/O; and there
is an optimal buffer size beyond which benefits of larger re-
quests diminish due to large communication overheads.

1. Introduction
Parallelism in I/O can be achieved by storing the data

across multiple disks so that it can be read/written in paral-
lel. Based on this idea, known asdata striping, a number
of parallel file systemswere designed ([1], [7], [4], [8]).
These parallel file systems support a UNIX-like file system
interface with a limited amount of control over the layout
of the data over the disks. While these parallel file systems
did provide an improvement in I/O performance over their
sequential counter-parts, it was found that they did not live
up to expectations under a typical production workload on

�This work was supported in part by NSF Young Investigator Award
CCR-9357840, NSF CCR-9509143 and in part by the Scalable I/O Ini-
tiative, contract number DABT63-94-C-0049 from Defense Advanced
Research Projects Agency(DARPA) administered by US Army at Fort
Huachuca.

a parallel computer([5], [2]).
Some of the performance problems associated with par-

allel file systems can be dealt effectively with if the user
application can betunedto the individual characteristics of
the parallel file systems. Efforts in this direction resulted
in number of runtime libraries that provide a parallel appli-
cation with a consistent and easy to use I/O interface([10]
[9]). However, many such I/O libraries uses the traditional
heavyweight UNIX processes to model both compute and
I/O tasks. The major drawbacks of such an approach are
low processor utilization, absence of asynchronous I/O and
overhead of context switching. Thus, a low cost mecha-
nism is needed to co-locate both compute and I/O tasks on
the same physical processor to maximize utilization of par-
allel computing resources as well as to reduce the overhead
of context switching.

This paper presents the design of a runtime library that
incorporates several important features for improving per-
formance as well as facilitating optimizations. First, the
library is based on a multi-threaded approach. Multi-
threading is a well-known technique for masking commu-
nication latencies in parallel programs. We extend this
concept to separate compute and I/O tasks in two separate
threads of control. Multi-threading in I/O in our design per-
mits a) asynchronous I/O even if the underlying file sys-
tem does not support asynchronous I/O; b) copy avoidance
from the I/O thread to the compute thread by sharing ad-
dress space; and c) a capability to perform collective I/O
asynchronously.

Further, we present techniques for collective I/O which
are implemented as part of this library. These techniques
attempt to maximize load balance, concurrency and request
size for I/O while reducing communication overhead of col-
lective I/O.

Section 2 presents the overall approach to theMTIO de-
sign. Details of the system design, techniques for collective
I/O and other optimizations are presented in Section 3. Sec-

1063 7133/97 $10.00 © 1997 IEEE Proceedings of the 11th International Parallel Processing Symposium (IPPS '97)
1063-7133/97 $10.00 © 1997 IEEE

tion 4 presents performance results on IBM SP2. Conclu-
sions are presented in Section 5.

2. Our Approach
In our programming model, we assume a set of com-

pute nodes and and an I/O subsystem. The I/O subsys-
tem is managed by file system software (external toMTIO)
which is responsible for data management. The user ap-
plication runs on multiple nodes. Although the collective
model proposed below tends to encourage a loosely syn-
chronous SPMD style programming,MTIO doesnot stip-
ulate it. A program consists of two components, compute
blocks and I/O blocks. Compute and I/O blocks occur alter-
nately in the program.MTIO uses two threads of control to
manage these two components. Acompute thread (CT)is
used to carry out the compute blocks. An I/O thread (IOT)
is used to service the I/O blocks. In this paper, we describe
two I/O models under this framework :

Individual Model The compute thread issues an I/O re-
quest to the co-located I/O thread. This model essentially
permits the overlapping of I/O and computation. However,
I/O is performed independently of other compute threads’
I/O requests.

Collective Model This model assumes thatall the com-
pute threads issue I/O request(s) at the same logical step
in the program. The I/O threads then consult each other
to arrive at a common I/O strategy. The Collective model
is useful when a file is shared by all the nodes in the pro-
gram and each node reads (possibly overlapping) parts of
the file. Note that I/O under collective model implies an im-
plicit global synchronization point in the program. Though
a powerful (and yet simple) technique by itself, collective
I/O cannot provide the expected level of performance when
used with the standard UNIX file system interface. A multi-
ple request interface coupled with collective I/O can provide
consistent performance improvements.

3. Algorithms
This section provides an overview of the system design

and some of the algorithms used inMTIO . For a detailed
description please refer to [6].

3.1. Threads Management and I/O Request
Communication

The functionsmtio init and mtio shutdown are
used to initialize and shutdownMTIO . Among other things,
they initialize internal data structures likeMTIO file table
and manage MPI (which is the message passing library used
by MTIO for inter-processor communication). The program
starts as a compute thread on each node. TheMTIO initial-
ization function creates the I/O thread on the same proces-
sor. This I/O thread acts as theI/O serverand serves re-
quests from the compute thread. Since compute thread and
the I/O thread share the same address space, the communi-
cation between the two is performed using shared memory.

When a compute thread invokes an I/O operation, its I/O
request is sent to the I/O thread. Compute thread then gives
up control of the processor (yields) explicitly so that the I/O
thread can get scheduled. After the I/O thread gets sched-
uled, it starts processing the I/O request. This processing
may or may not involve I/O threads running on other pro-
cessors depending on the type of I/O model. I/O thread then
prepares a response which is subsequently communicated
back to the compute thread. I/O thread then yields the pro-
cessor to the compute thread, which examines the response
and carries on with the computation. The exact sequence of
I/O processing depends on the type of the I/O request and is
explained in the following sections.
3.2. File Operations

Two functions,mtio open andmtio close are pro-
vided to open and close a file respectively. Note that a file
should be opened byall processors irrespective of whether
that processor uses the file or not. This restriction is placed
in order to ensure correct operation of collective model
functions. Additionally, the operation of opening a file im-
plies a global synchronization point in the program. How-
ever closing a file doesnot imply a synchronization point.
mtio read and mtio write are the generic functions
used to read from and write to a file.
3.3. Asynchronous I/O

Asynchronous operations are implemented on top of
their synchronous counterparts. This allows the asyn-
chronous capability to be orthogonal to other I/O optimiza-
tions done byMTIO . The key idea is to choreograph the
scheduling of compute and I/O threads to allow maximum
overlap between I/O and computation. Upon receiving an
asynchronous I/O request, the I/O thread prepares and sends
await handleto the compute thread. Note that the wait han-
dle merely sits in the shared memory and is not received by
the compute thread till the compute thread gets scheduled.
Now the I/O thread can either 1) yield the processor to the
compute thread explicitly or 2) it can start the I/O opera-
tion which will eventually block the I/O thread, enabling
the compute thread to proceed. In either case, the compute
thread will receive the wait handle and start computation.
The I/O operation is being carried out by the file system in
the background while the compute thread is doing compu-
tation. When the I/O operation is over, the I/O thread gets
unblocked. It starts executing when it is scheduled by the
threads scheduler. The compute thread executesmtio wait
call when it needs the data from the I/O operation. This re-
sults in the compute thread being blocked. The blocking of
the compute thread allows the I/O thread to be scheduled
as soon as the I/O operation is over. It is important to note
that MTIO provides asynchronous I/O capabilities even if
the underlying file system only supports synchronous I/O.

Proceedings of the 11th International Parallel Processing Symposium (IPPS '97)
1063-7133/97 $10.00 © 1997 IEEE

3.4. Collective I/O with Multiple Request
Speci�cation

The multiple I/O request specification interface (see [6]
for details) allows an application program to specify multi-
ple I/O requests in one call. This permits optimizations by
MTIO which otherwise will not be possible if the requests
are generated in different calls. The interface puts some
constraints on the collective I/O requests. All I/O requests
should belong to the same file descriptor. Also, all requests
should be of same type, that is they belong to the same
model and are either synchronous or asynchronous. Ma-
jor decisions/steps involved in collective I/O areI/O request
communication, I/O request reconfiguration, I/O scheduling
and I/O execution and data redistribution. The collective
I/O algorithm is executed by all processors. The other al-
ternative is to ask a distinguished processor to execute the
algorithm which then sends to other processors their respec-
tive I/O schedules. The first strategy was chosen because it
1) entails no communication and 2) processors other than
the distinguished processor sit idle while the distinguished
processor computes the I/O schedule.

In the first step all I/O requests are exchanged resulting
in a list containing I/O requests of all processors. Each item
in the list contains processor that issued this request, pro-
cessor that will serve this request (This is assigned at a later
stage), buffer space for the data, offset in file and length of
the request. Thus at the end of this step every processor
knows every other processor’s requests.

The next step is to combine the I/O requests so that there
are fewer and larger resultant I/O requests. An important
question here is : how muchextramemory does a proces-
sor have which can be used for the operation. The user
has to specify how much extra memory is available at run-
time. Also the size of this extra memory available should
be greater than or equal to the biggest I/O request issued
by any processor. Note that this is justifiable because in a
traditional model, an I/O request requires the memory be
available to store the data to be read/written.

The algorithm first tries to combine I/O requests that are
overlapping or consecutive. It then tries to combine I/O
requests that result from the previous step. The reason to
carry out the combine operation in two phases is : Com-
bining overlapping/consecutive requests is more profitable
than combining requests that have agapbetween them be-
cause the latter ends up reading/writing more data than the
combined size of the requests. Note that the algorithm never
breaks any I/O request across two resultant I/O requests.

One of the most important decision in collective I/O is to
decide which processor processes which I/O requests. The
following points need to be considered while assigning the
I/O requests to the processors.

Load Balancing ConsiderationsEach processor should
process approximately the same number of I/O requests.

Minimization of Inter-Processor Communication
(MIPC) Since inter-processor communication is an over-
head in collective I/O, the algorithm attempts to assign I/O
request in such a way that there is minimum amount of
inter-processor communication involved.

The above goals are sometimes conflicting. The load
balancing consideration calls for spreading the I/O requests
among all processors. While the MIPC criteria tries to lump
together I/O requests belonging to the same processor and
tries to assign them to that processor.

Another consideration here is : what happens to the re-
quests that are overlapping but that cannot be combined due
to memory constraints? Obviouslydata reusetechnique can
be used here to optimize the cost of I/O. To overcome this
problem we mark a request asto be served by the same pro-
cessorif it overlaps with the previous request but can not be
combined with it due to memory constraint.

It is obvious that it is not possible to fully satisfy both
load balancing criteria and MIPC criteria all the time.
Hence the algorithm uses a heuristic where it first tries to
optimize on the MIPC criteria by assigning a request whose
data belongs to a single processor to the same processor.
These are the requests that will definitely benefit from the
MIPC optimization. It then uses the load balancing criteria
for I/O assignment for the rest of the requests. It first checks
if the request is markedto be served by the same processor.
If so, it assigns it the same processor that the previous re-
quest in the list has. If not, it chooses a processor that has
minimum number of I/O requests assigned to it.

The algorithm then determines the processor that car-
ries out maximum number of requests. Let this number be
nmax. The I/O execution and data communication phase is
carried out innmax iterations. In each iteration the proces-
sor does I/O (if any). It is followed by apartial complete ex-
changewhere each processor sends any data that belongs to
some other processor(s) fetched by it to its recipient(s) and
receives any data that belongs its own I/O request(s) fetched
by some other processor(s).1 Additionally, it copies any
data that belongs to its own I/O request(s) that it fetched,
in appropriate buffers.

4. Performance Results
The development and performance evaluation of

MTIO was carried out on a IBM Scalable POWERparallel
System (SP) located at Argonne National Laboratory. The
MTIO library is built on top of several layers of software and
hardware. The MPI layer provides inter-process commu-
nication which is used by the compute threads to perform
application specific message passing. The Nexus [3] layer
provides the low level support for lightweight threads. The

1This is what happens in a read operation. Write operation is exactly
symmetric. First the data exchange takes place followed by I/O execution.
Note that in write operation the processor may have to read some data in
cases where combined requests have agapbetween them.

Proceedings of the 11th International Parallel Processing Symposium (IPPS '97)
1063-7133/97 $10.00 © 1997 IEEE

Buffer Processors

Size 1 2

(MB) sync. async. sync. async.

Time B/W Time B/W Time B/W Time B/W

(sec) (MB/s)(sec) (MB/s)(sec) (MB/s)(sec) (MB/s)

1 304 0.84 347 0.73 304 0.84 337 0.75

2 311 0.82 258 0.99 285 0.89 253 1.01

4 278 0.92 231 1.10 286 0.89 228 1.12

8 272 0.94 207 1.23 278 0.92 216 1.18

16 275 0.93 209 1.22 278 0.92 214 1.19

Processors

4 8

1 306 0.83 345 0.74 334 0.76 368 0.69

2 298 0.85 258 0.99 321 0.79 297 0.86

4 286 0.89 237 1.08 308 0.83 259 0.98

8 285 0.89 220 1.16 298 0.85 240 1.06

16 283 0.90 216 1.18 327 0.78 260 0.98

Table 1. Asynchronous I/O Results : The to-
tal size of the file is 256MB. The bandwidth
shown here is per node and each node reads
the entire file. For example, for the eight
processor combination the bandwidth for the
8MB buffer case would be 8.48 MB/s.

file system layer provides support for I/O operations. UNI-
TREE and IBM Parallel File System (PIOFS) were used as
secondary storage for the experiments. UNITREE is a Hi-
erarchical Storage Manager (HSM). The hierarchy consists
of two levels. At the higher level RAID disks are used and
at the lower level a tape robot system is used. The UNI-
TREE software takes care of migration and staging of the
files between the two levels. PIOFS [1] installed on Ar-
gonne National Laboratory’s IBM SP uses eight nodes of
the machine as server nodes.
4.1. Asynchronous I/O

The experiments presented here (using UNITREE HSM
as secondary storage) involved reading a 256MB file by
each node. Each node reads the whole file one block at a
time. It processes the data before reading the next block.
The results of the experiment are shown in Table 1. Except
for a few exceptions (discussed below) the asynchronous
algorithm outperforms the synchronous algorithm.

For smaller buffer sizes the performance of the asyn-
chronous algorithm is worse than the synchronous counter-
part. The reason is that the amount of I/O and computation
overlap achieved in that case is not sufficient to offset the
extra overhead associated with asynchronous I/O.

The success of asynchronous I/O depends on how much
overlap can be achieved between I/O and computation keep-
ing the overheads low. Since I/O is more expensive than
computation, the maximum amount of overlap that can be
achieved depends on computation time as well as the over-
head associated with asynchronous I/O. Figure 1 compares

0.0 5.0 10.0 15.0 20.0
Buffer Size (MB)

-50.0

0.0

50.0

100.0

O
ve

rl
ap

 (
se

c)

Observed I/O and Computation Overlap

1 processor
2 processors
4 processors
8 processors
maximum possible overlap

Figure 1.

the maximum theoretically possible overlap with the one
actually achieved.

As can be seen from the figure, except for a few cases
(very small buffer size)MTIO can successfully provide up
to 80 percent overlap between I/O and computation. We
performed experiments with various configurations and ob-
tained similar results. Furthermore, we experimented with
various scheduling policies for performing asynchronous
I/O (e.g. FIFO vs. time-shared). Due to lack of space these
results are not presented here.
4.2. Collective I/O

In a distributed memory machine, data structures such
as arrays are distributed across processors. Different dis-
tributions of data presents different access patterns to the
file system. Based on the distribution, each processor may
require several I/O calls to fetch (or write) non-contiguous
data from a file. In the next set of experiments we present
the performance results for collective I/O using different
data distributions. The experiments (using IBM PIOFS as
the secondary storage) use a1024X1024 array whose each
element is a double precision floating point number (total
file size = 8MB). Similar results were obtained for other
data sizes.

I/O under collective model involves three major compo-
nents; namely, communication overhead, computation over-
head and the time to carry out the rescheduled I/O (will be
called I/O time henceforth). Table 2 shows the time taken
by direct I/O and I/O under collective model for different
buffer sizes for 32 processors when the array is distributed
in column-blockfashion and is stored in a row-major order.
Each processor makes 1024 noncontiguous read requests of
size 256 bytes for a total of 256KB.

Proceedings of the 11th International Parallel Processing Symposium (IPPS '97)
1063-7133/97 $10.00 © 1997 IEEE

Direct I/O Total Time 19.56

Collective Model

Buffer Total I/O Comm. Processor

Size Time Time Time Concurrency

8MB 4.57 0.85 2.42 1

4MB 3.51 0.45 1.76 2

2MB 3.25 0.25 1.66 4

1MB 3.07 0.15 1.53 8

512KB 3.14 0.14 1.63 16

256KB 3.31 0.12 1.74 32

128KB 4.20 0.09 2.49 32

64KB 4.30 0.12 2.24 32

32KB 6.96 0.13 3.89 32

16KB 7.51 0.37 3.37 32

8KB 12.43 0.80 5.03 32

Table 2. Total time (and its components)
taken by collective read operation (array
size=1024 X 1024, column-block distribu-
tion, 32 processors). Processor concurrency
refers to the number of processors involved
in the I/O operation.

At one extreme we have 8MB of extra buffer on each
node. In this case only one processor reads the data in a
single read operation and distributes it among the rest of
the processors. As the buffer size decreases more proces-
sors are involved in the I/O so that processor concurrency
for I/O increases. In other words, the product of the number
of processors involved in I/O and buffer size per processor
remains constant. In this particular case, the maximum pro-
cessor concurrency for I/O is 32, which is reached when
the buffer size per processor is 256KB. Note that we get
more and more I/O parallelism as the number of proces-
sors doing I/O increases resulting in smaller and more I/O
requests (from a single 8MB request to thirty two 256KB
requests). At 256KB buffer sizeall the processors partici-
pate in the I/O operation. Each node executes exactly one
read request of size 256KB and then exchanges data with its
peers. As the buffer size dips below 256KB threshold, each
processor still reads 256KB of data but the I/O is carried
out in multiple phases. From buffer sizes 256KB to 1KB
the I/O parallelism does not increase but the number of re-
quests increases and size of each request decreases (from
thirty two 256KB requests to 8192 1KB requests). This re-
sults in poorer I/O performance.

When the buffer size is maximum (8MB), all the data is
read by one processor and then distributed among the rest.
This results in high communication overhead (one proces-
sor sends 31K messages of size 256 bytes). As the num-
ber of processors doing I/O increases the communication
overhead decreases due to better distribution of communi-
cation responsibility among the processors. This trend con-
tinues until we reach buffer size of 256KB. At this point

10
3

10
4

10
5

10
6

10
7

Buffer Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

I/O
 T

im
e (

se
c)

Figure 2. I/O time taken by collective
read operation (Array size=1024 X 1024,
Distribution=column-block,Processors=32)

the communication is still carried out in a single phase (that
is all the data exchanged by processorx and processory is
sent/received in a single step, as a results each node sends
992 messages of size 256 bytes). As the buffer size reduces
further, communication has to be carried out in amultiple
phases which incur extra overhead.

Hence at very small buffer sizes both the I/O and com-
munication performance is not good. As the buffer size in-
creases the performance also improves. This trend contin-
ues until we approach an optimal buffer size. Beyond this
point the performance starts degrading again. The size of
the optimal buffer size was found to be dependent on the
I/O access pattern. Performance of direct I/O was found to
depend heavily on the access patterns. In contrast the per-
formance of collective I/O was found to be stable against
changes in the access patterns. Table 3 summarizes results
for different number of processors and three different data
distributions. The table demonstrates that collective I/O de-
sign presented in this paper provides consistent and much
better performance than direct (traditional) I/O.

Due to lack of space, other experiments and features
of MTIO are omitted from this paper. In summary, those
features include : 1) Independent model of I/O in which
an I/O thread seeks services of other I/O threads to per-
form I/O on its behalf (note that other compute threads are
not involved in this request); 2) Experiments with different
thread scheduling techniques (e.g. FIFO, time-slicing); and
3) Thread yielding strategies employed by the I/O thread in
asynchronous I/O.

Proceedings of the 11th International Parallel Processing Symposium (IPPS '97)
1063-7133/97 $10.00 © 1997 IEEE

Distribution Processors

4 8 16 32

Direct Collective Direct Collective Direct Collective Direct Collective

Time Buffer Time Time Buffer Time Time Buffer Time Time Buffer Time

(sec) Size (sec) (sec) Size (sec) (sec) Size (sec) (sec) Size (sec)

Row-Block 0.480 2MB 0.363 0.273 1MB 0.330 0.168 512KB 0.292 0.146 256KB 0.290

Column-Block 5.935 1MB 1.096 4.792 1MB 0.782 11.619 512KB 0.631 8.987 1MB 3.072

Block-Block 4.216 2MB 0.950 4.792 1MB 0.782 4.881 512KB 1.740 19.564 1MB 1.399

Table 3. The table compares time taken to read the array by direct I/O and collective I/O (at optimal
buffer size) for different data distributions.

10
3

10
4

10
5

10
6

10
7

Buffer Size (bytes)

0.0

5.0

10.0

15.0

T
im

e
 (

s
e

c
)

Total Time
Communication Time

Figure 3. Communication time and Total
time taken by collective read operation (Ar-
ray size=1024 X 1024, Distribution=column-
block, Processors=32)

5. Conclusions
This paper focused primarily on the techniques asyn-

chronous I/O and collective I/O. A threads based approach
was used to buildMTIO and it was shown that a judicious
choice of I/O optimization techniques (or a combination of
them) can provide significant performance improvement.
The main contributions include a runtime implementation
of various I/O optimization techniques, providing asyn-
chronous I/O capability when the underlying file system
does not provide one and asynchronous I/O under collec-
tive model which is not provided by other runtime libraries
since collective I/O is inherently synchronous.

References
[1] F. E. Bassow. Installing, managing, and using the IBM AIX

Parallel I/O File System. IBM Document Number SH34-
6065-00, February 1995. IBM Kingston, NY.

[2] R. Bordawekar, A. Choudhary, and J. M. D. Rosario. An
experimental performance evaluation of Touchstone Delta
Concurrent File System. InProceedings of the 7th ACM In-
ternational Conference on Supercomputing, pages 367–376,

1993.
[3] I. Foster, C. Kesselman, and S. Tuecke. The nexus approach

to integrating communication and multithreading.Journal
of Parallel and Distributed Computing, 1996.

[4] J. Huber, C. Elford, D. Reed, A. Chien, and D. Blumenthal.
PPFS: A High Performance Portable Parallel File System.
Technical Report UIUCDCS-R-95-1903, University of Illi-
nois at Urbana Champaign, January 1995.

[5] D. Kotz and N. Nieuwejaar. Dynamic file-access character-
istics of a production parallel scientific workload. InPro-
ceedings of Supercomputing ’94, pages 640–649, November
1994.

[6] S. More. MTIO. Master’s thesis, Dept. of Electrical and
Computer Engineering, Syracuse University, August 1996.

[7] S. Moyer and V. Sunderam. PIOUS: A Scalable Parallel
I/O System for Distributed Computing Environments. In
Proceedings of the Scalable High-Performance Computing
Conference, pages 71–78, 1994.

[8] N. Nieuwejaar and D. Kotz. The Galley parallel file system.
In Proceedings of the 10th ACM International Conference
on Supercomputing, May 1996.

[9] K. E. Seamons and M. Winslett. Physical schemas for
large multidimensional arrays in scientific computing appli-
cations. InProceedings of the 7th International Working
Conference on Scientific and Statistical Database Manage-
ment, pages 218–227, September 1994.

[10] R. Thakur, A. Choudhary, R. Bordawekar, S. More, and
K. Sivaramakrishna. Passion: Optimized i/o for parallel ap-
plications.IEEE Computer, 29(6):70–78, June 1996.

Proceedings of the 11th International Parallel Processing Symposium (IPPS '97)
1063-7133/97 $10.00 © 1997 IEEE

