On Implementing MPI-10 Portably and with High Performance

Rajeev Thakur William Gropp Ewing Lusk
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439, USA
{thakur, gropp, lusk} émcs.anl.gov

Abstract

We discuss the issues involved in implementing MPI-IO portably
on multiple machines and file systems and also achijeving high per-
formance. One way to implement MPI-[O portably is to implement
it on top of the basic Unix {O functions (open, lseek, read,
write, and close), which are tliemselves portable. We argue
that this approach has limitations in both functicnality and perfor-
mance. We instead advocate an implementation approach that com-
bines a large porticn of portable code and a small portion of code
that is optimized separately for different machines and file systems.
We have used such an approach to develop a high-performance,
portable MPL-IO implementation, called ROMIO.

In addition to basic I/O functionality, we consider the issues of
supporting other MPI-TO featurcs, such as 64-bit file sizes, non-
contiguous accesses, collective I/, asynchronous /O, consistency
and atomicity semantics, user-supplied hints, shared file pointers,
portable data representation, and file preallocation. We describe
how we implemented cach of these features on various machines
and file systems. The machines we consider are the HP Exemplar,
IBM SP, Inte! Paragon, NEC SX-4, SGI Origin2000, and networks
of workstations, and the file systems we consider are HP HFS, IBM
PIOFS, Intel PFS, NEC SFS, SGI XFS, NFS, and any general Unix
file system (UFS).

We also present our thoughts on how a file system can be de-
signed to better support MPI-IO. We provide a list of {features de-
sired from a file system that would help in implementing MPI-1O
comectly and with high performance.

1 Introduction

Portable parallel programming has long been hampered by the lack
of a standard, portable application programming interface (APT)
for parallel I/O. Most parallel file systems have a Unix-like API
with variations that are nonportable. Furthermore, the Unix AP]
is not an appropriate API for parallel /O: it lacks some of the
features necessary to express access patterns common in parallel
programs, such as noncontiguous accesses and collective /O, re-
sulting in poor performance [35]. To overcome these limitations,
the MPI Forum defined a new API for parallel /O (commonly re-
ferred to as MPI-1O) as part of the MPL-2 standard [19]. MPI-IO
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is a comprehensive API with many features intended specifically
for I/O parallelism, portability, and high performance. Implemen-
tations of MPI-I0, both portable and machine-specific, are already
available [7, 13, 23, 24, 34].

In this paper, we discuss the issues involved in implementing
MPI-IO portably on multiple machines and file systems and also
achieving high performance. We argue that if an implementation
uses just the basic Unix I/O functions in order to achieve portability,
it will have limitations in both functionality and performance. We
describe an alternative approach, called ADIO, that achieves porta-
bility and performance by combining a large pertion of portable
code with a small portion of code that is optimized separately for
different machines and file systems. We have used this approach in
our pertable MPI-IO implementation, ROMIQ.!

In addition to implementing basic I/O functionality (open, close,
read, write, seek), we consider the issues of supporting other MPI-
10 features, such as 64-bit file sizes, noncontiguous accesses, col-
lective 1/O, asynchronous I/O, consistency and atomicity seman-
tics, user-supplied hints, shared file pointers, portable data repre-
sentation, and file preallocation. We describe how we implemented
each of these features on various machines and file systems. The
machines we consider are the HP Exemplar, IBM SP, Intel Paragon,
NEC $X-4, SGI Origin2000, and networks of workstations; and the
file systems we consider are HP HES, IBM PIOFS, Intel PFS, NEC
SFS, SGI XFS, the Network File System (NFS), and any general
Unix file system (UFS).

We also describe how a file system can be designed to better
support MPI-10. We provide a list of features desired from a file
system that would help in implementing MPE-10 correctly and with
high performance.

2 Achieving Portability and Performance

The basic Unix /O functions (open, 1seek, read, write, and
close) [29] are supported without variation on all machines with a
Unix-like operating system. One way to implement MPI-IO portably,
therefore, is to implement MPI-IO functions on top of these basic
Unix /O functions. Since the Unix 1/O functions are portable, such
an MPI-IO implementation will be portable to many machines and
file systems. This approach, however, has limitations in both func-
tionality and performance, as explained below:

1. The basic Unix /O functions are not sufficient to implement
all of MPI-IO on all file systems for the following reasons:

# The basic Unix I/O functions are blocking functions.
Many file systems provide a different setof (nonportable}
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functions for nonblocking [/0.2

¢ On many file systems, the basic Unix [/O functions
work only on files of size less than 2 Gbytes. Differ-
ent functions must be used for larger files, and these
functions are also nonportable. (We note that an MPI-
I0 implementation is not required to support large file
sizes, but most high-quality implementations will.)

¢ Some file systems allow the user to control file-striping
attribytes with special, nonportable functions (e.g., [BM
PIOFS and Intel PFS).

¢ Some file systems support additional features such as
file preallocation (e.g., SGI XFS, Intel PFS, HP HFS)
and a choice of atomic and nonatomic file-access modes
(c.g., IBM PIOFS and Intel PFS). The corresponding
functions are also nonportable,

Since all these features are available at the MPI-IO level, an
MPI-I0 implementation cannot support them if it uses only
the basic Unix I/O functions.

2. Although the basic Unix /O functions are supported on all
file systems, they are often not the recommended functions
(for performance) on all file systems. For example,

¢ On the Intel Paragon, the recommended functions are
cread and cwrite.

¢ On SGI IRIX 6.5, the recommended functions are
preadé64 and pwrite64; on IRIX 6.4 and earlier,
they are called pread and pwrite.

¢ On HF machines running the SPPUX operating sys-
tem (and not HPUX), the recommended functions are
preadé64 and pwriteé4.

3. When using the Network File System (NFS), it is not suf-
ficient to call just the Unix read/write functions. Since
NFS performs noncoherent client-side caching by default,
file consistency is not guaranteed if multiple processes write
to a common file [28]. Client-side caching must be disabled
by locking the portion of the file being accessed, by using
fentl. A lock and unlock are therefore needed across the
read/write call.

4. Many research file systems provide their own APIs [9, 3, 11,
15, 20]. Implementing MPI-IO on top of Unix /O functions
will not be portable to these file systems.

An alternative is to implement MPI-IO on top of the POSIX /O
interface [12] instead of the basic Unix IO functions. The POSIX
interface is an international standard with greater functionality than
basic Unix 1/O. For example, POSIX supports asynchronous /O
and list-directed I/O. This approach, however, also has limitations.
Although POSIX is a standard, it is not yet widely implemented.
One, therefore, cannot assume that POSIX /O functions will be
available on all file systems. Furthermore, many vendors do not fol-
low the POSIX standard strictly. They implement only parts of it,
and even the implemented portion may not conform strictly to the
standard (particularly in the case of asynchronous /0). Some ven-
dors provide a separate set of functions for 64-bit file sizes. POSIX
also does not suppert some features that MPI-IO supports, for ex-
ample, file preallocation and varying file-striping attributes. Non-
standard functions must be used on file systems that support these

11 is possible, however, to implement nonblocking /0 by spawning a thread that
calls a blocking I/O function.
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features. In all, implementing MPI-IQ on top of POSIX I/C is not
sufficient either.

We believe that the only way to implement MPI-IO portably
with compiete functionality and high performance is to have a mech-
anism that can utilize the special features and functions of each file
system. We describe such an architecture, called ADIO, which we
uvse in our MPI-10 implementation, ROMIO [34}.

2.1 Abstract-Device Interface for |/O

ADIO [31], an abstact-device interface for 1/O, is a mechanism
specifically designed for implementing parallel-1/O APIs portably
on multiple file systems. We developed ADIO before MPEIO be-
came 2 standard, as 2 means to implement and experiment with
various parallel-I/O APIs that existed at the time.

ADIO consists of 2 small set of basic functions for parallel [/O.
Any parallel-I/O API can be implemented portably on top of ADIO,
and ADIO itself is implemented separately on each different file
system. ADIO thus separates the machine-dependentand machine-
independent aspects involved in implementing an API. The ADIO
implementation on a particular file system is optimized for that file
system. We used ADIO to implement Intel’s PFS AP and subsets
of IBM’s PIOFS API and the original MPI-IO proposal [36] on
multiple file systems. By following such an approach, we achieved
portability with very low overhead [31].

Now that MPI-IO has emerged as the standard, we use ADIO
as a mechanism for implementing MPI-IO portably (see Figure 1).
This MPI-IO implementation is called ROMIO [34]. ROMIO runs
on the following machines: IBM SP; Inte]l Paragon; Cray T3E; HP
Exemplar; SGI Origin2000; NEC SX-4; other symmetric multi-
processors from HP, SGI, Sun, DEC, and IBM; and networks of
wotkstations (Sun, SGI, HP, IBM, DEC, Linux, and FreeBSD).
Supported file systems are IBM PIOFS, Intel PFS, HP HFS, SGI
XFS, NEC SFS, NFS, and any Unix file system (UFS). All func-
tions defined in the MPI-2 /O chapter except support for file in-
teroperability, /O error handling, and I/O error classes have been
implemented in ROMIO. (The missing functions will be imple-
mented in a future release.) ROMIO is designed to be used with
any MPI-1 implementation—both portable and vendor-specific im-
plementations. It works with, and is included as part of, three MPI
jmplementations: MPICH, HP MPI, and SGI MPIL.

Another application of ADIO is for implementing remote /0.
An MPL-IO implementation can enable a program ruaning on one
machine to accessfiles from remote machines by providing an ADIO
implementation that accesses data from an ADIQ server running at
a remote site. Such an implementation is deseribed in [8] and also
illustrated in Figure 1.

A similar abstract-device interface is used in MPICH [10] for
implementing MPI portably.

3 Implementing MPI-IO

We describe how we implemented each feature of MPI-IO on var-
ious machines and file systems. The many variations among ma-
chines clearly demonstrate the need for an ADIO-like approach to
implementing MPI-IO portably, where the variations are accounted
for in the ADIO implementation.

3.1 Basic File Access

We first consider the basic file-access operations: open, close, read,
wrile, and seek. We consider reads and writes in which data is
contiguous in both memory and file; noncentiguous accesses are
considered in Section 3.2,
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Figure 1: ROMIO architecture: MPI-I0 is implemented portably on top of an abstract-device interface called ADIO, and ADIO is optimized

separately for different file systems.

3.1.1 Open

MPI.File_open is a collective function. One of its arguments
is an MPI communuicator {18] that specifies the group of processes
that will call this open function and any other collective MPI-IO
function that the user may choose to use thereafter on the open file.
Most file systems, other than Intel PFS, support only the regular
Unix open and do not have collective open functions. On these
file systems, ROMIO just calls the open function on each process.
Intel PFS supports two open functions: regular Unix open and
gopen. The gopen function is a “global open,” recommended
10 be used when all processes in the application open a common
file. It cannot be used when a subset of processes open the file;
the function will hang if all processes do not call it. MPI-IO also
supports a few additional file-access modes that are not defined in
Unix or POSIX.,

3.1.2 Close

The close function on most file systems is identical to close
in Unix or POSIX. MPI_File_c¢lose can be implemented in a
straightforward manner on top of Unix close. If the file was
opened with the mode MPI_MODE.DELETE_ON.CLOSE, the im-
plementation must delete the file. Most file systems support the
Unix function unlink for deleting a file.

3.1.3 Large Files

Most file systems distinguish between files of size less than 2 Gbytes
and greater than or equal to 2 Gbytes. The reason is that file offsets
and file sizes are usually represented by 4-byte integers in the reg-
ular /O functions. The largest number that can be represented by a
4-byte signed integer is (2 Gbytes — 1). With the regular file-system
functions, it is thercfore not possible to access data from locations
beyond 2 Gbytes. To overcome this problem, many file systems
provide separate functions that use 8-byte integers to represent file
offsets.

In MPI-IO, file offsets are of type MPT_Offset, which is a
data type defined by the MPI-10 implementation. The implementa-
tion is free to define it to be of any size; the MPI standard does not
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mandate that the implementation support large files. In ROMIO,
however, on those file systems that support large files (such as [BM
PIOFS, HP HFS, NEC SFS, and SGI XFS), all files are treated as
large files; that is, ROMIO definesMPI_Of{set asan 8-byte inte-
ger and uses the corresponding file-system functions for large files
(even though the file may be smaller than 2 Gbytes). On file sys-
tems that do not support large files, ROMIO also does not support
large files and defines MPI_Of f£set as a 4-byte integer.

3.1.4 Seek

MPI-10 has two kinds of file pointers, individual and shared, and,
correspondingly, two seek functions to move these file pointers.
Most file systems (other than Intel PFS), however, support only
individual file pointers. In Section 3.9 we describe how an MPI-
IO implementation can implement shared file pointers on top of
individual file pointers.

Most file systems support the Unix 1seek function. On some
file systems we need to use a different function for large files:
1seek64 on SGI XFS, HP HFS, and NEC SFS; 11seek on IBM
PIOFS.

3.1.5 Contiguous Reads and Writes

Contiguous reads and writes in MPI-IO can be mapped directly
onto the reads and writes of the underlying file system, The read/write
functions recommended for highest performance vary considerably
among machines, however. ROMIO uses the following functions:

e _cread/ cwrite on Intel PFS.

» preadé4/pwrite64 on HP HFS if the operating system is
SPPUX and read/write if it is HPUX.

e preadé4/pwrite6d on SGI XFS if the operating system
is IRIX 6.5. On IRIX 6.4 and earlier, the same functions ate
called pread/pwrite.

e read/write elsewhere.

The functions pread64/pwrite64 take the file offset as an ar-
gument; therefore, a separate 1seek64 is not required.



3.2 Noncontiguous Accesses

MPI-IO allows users to access noncontiguous data from a file into
noncontiguous memory locations with a single [/O function call.
The user can specify noncontigucus locations in the file by creat-
ing a file view with MPI’s derived datatypes [19]. Noncontiguous
locations in memory can be specified by using a derived datatype
in the read/write call.

The ability of users to specify noncontiguous accesses in a sin-
gle function call is very important, because noncontiguous accesses
are very common in parallel applications {1, 4, 21, 26, 27, 32].
Most file systems, however, do not provide functions for noncon-
tiguous 1/O. The Unix functions readv/writev are widely sup-
ported, but they allow noncontiguity only in memory and not in
the file. Noncontiguous memory accesses are not as comumonly
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needed in paralle! applications as noncontigucus file accesses, Fur-

thermore, most file systems impose a limit of at most sixteen non-
contiguous memory locations in a single readv/writev call,
Some file systems suppott the POSIX list-directed I/O function
lio_listio, which allows users to submit multiple /O requests
at a time. This function also has limitations because of the way

it is defined. The POSIX standard [12] allows a mixture of read
and write requests in the list and says that each of the requests wiil
be submitted as a separate nonblocking (asynchronous) /0 request.
Therefore, POSIX implementations cannot optimize I/O for the en-
tire list of requests. Furthermore, since the lio_listio interface
is not collective, implementations also cannot perform collective
L/O.

In the absence of proper support from the file system for non-
contiguous /O, one way to implement 2 noncontiguous MPI-IO
request is to access each contiguous portion of the request sepa-
rately by using the regular contiguous read/write functions of the
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file system. Such an implementation, however, results in a large

number of small requests to the file system, and performance de-
grades drastically [33]. ROMIO instead performs an optimization,
called data sieving, to access noncontiguous data with high perfor-
mance. The basic idea in data sieving is to make large I/O requests
to the file system and extract, in memory, the data that is really
needed. Details of this optimization can be found in [33].

3.3 Collective 1/O

MPI-IO provides collective-1/0 functions, whlch must be called by
all processes that together opened the file.® This property enables
the MPI-IO implementation (or file system) to analyze and merge
the requests of different processes, In many cases, the merged re-
quest may be large and contiguous, although the individual requests
of each process are noncontiguous. The merged request can there-

fore be serviced efficiently. Such optimization is broadly referred
to as collective I/, Collective /O has been shown to be a very im-
portant optimization in parallel IO and can improve performance
significantly [5, 14, 25, 30, 33].

Since none of the file systems on which ROMIO is implemented
perform collective /O, ROMIO performs two-phase collective [/O
on top of the file system. In the communication phase, interpro-
cEss Commumnication is used to rearrange data inio laige chunks. In
the /O phase, processes perform paralle]l /O in large chunks and
therefore obtain high /O performance. ROMIO has a very gen-
eral implementation of two-phase [/O: it supports any noncontigu-
ous access pattern as described by MPI datatypes, and the user can
specify by means of hints the amount of temporary buffer space
ROMIO can use for collective /O and the number of processes that

3An MPI communicatoer is used in the open call to specify the participating pro-
cesses. The communicator could represent any subset (or all) of the processes of the
application.
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should actually perform /O in the /O phase of the two-phase op-
eration. Details of ROMIO’s collective-I/O implementation can be
found in [33).

Figure 2 shows the performance of an astrophysics application
tcmplatc DIST3D, when /O is pcrformed in three ways: using
Unix-style independent /O, data sieving, and collective 1/0. This
application accesses a three-dimensional distributed array of size
512 x 512 x 512 from a file. On some machines data sieving
performed only slightly better than Unix-style independent 1/0;

Collective 1/ n‘wn}:c
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on others it performed considerably better.

performed the best and resulted in 'O bandwidths ranging from
51 Mbytes/sec to 563 Mbytes/sec, depending on the machine. For
detailed performance results, see [33].
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3.4 Split Collective I/O

MPI-IO provides a restricted form of nonblocking collective 1/O
called split collective I/Q. The user can call a “begin” function to
start the collective-1/O operation and an “end” function to com-
plete the operation. The implementation is free to implement the
collective-I/O operation either entirely during the begin function or
entirely during the end function or in the “background,” between
the begin and end functions. The MP! standard allows the user to
have at most one active split collective operation on a particular
file handle at any time. In other words, the user cannot issue two

“begin” functions on the same file handle without calling an “end”
function tn comnlete the first begin,
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The most natural way to mplcment split collective I/O in a
nonblocking fashion is to spawn a thread that performs the entire
collective-I/O operation in the background. The results in [6], how-
ever, indicate that, on most machines, this approach performs much
worse than if collective /O were done entirely in the main thread
during the Degln function. The penormance is much beiter if only
the O pomon of collective 1/O is done in a separate thread and the
rest is done in the main thread. The split-collective-I/O functions
in ROMIO, at present, perform the entire collective-1/O operation
in the main thread during the begin function. We plan to imple-
ment true nonblocking collective VO in ROMIQ by incorporating
the results of [6].

3.5 Nonblocking (Asynchronous) /O

Many file systems support nonblocking /0. One way to imple-
ment MPI-IO’s nonblocking I/O functions is to use the nonblock-
ing functions of the file system Intel PFS supports nonstandard
functions called iread and iwrite. Other vendors (SGI, IBM,
DEC, Sun) support POSIX asynchronous 1/O (aio) functions, but,
in many cases, they do not follow the POSIX definition sirictly.
IBM supports nonblocking /O on Unix and NFS file systems, but

not on PIOFS. HP supports nonblocking /0 only on HPUX ver-

sion 11.0 and higher, but not on SPPUX or earlier versions of
HPUX. Nonblocking I/O functions are not vet available in Linux,
FreeBSD, or the NEC 8X-4.

Another way to implement nonblocking I/O is by explicitly us-
ing threads that call blocking /O functions. This approach, how-
ever, requires good thread support on the machine and a thread-safe
MPI implementation, neither of which is common on parallel ma-
chines as yet.

ROMIO implements nonblocking I/O by using the nonblocking
/O functions of the file system where available. On machines and
file systems that do not support nenblocking /O, ROMIO just calls
the cortesponding blocking I/O functions.
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3.6 Consistency Semantics

MPI-IO's consistency semantics (Section 9.6 of [19]) define the
results users can expect with concurrent file accesses from multi-
ple processes. MPI-10's consistency semantics are actualy weaker
than the consistency semantics in Unix [29] or POSIX [12]. In Unix
and POSIX, after a write function returns, the data is guaranteed to
be visible to every other process in the system. MPI-IQ guaran-
tees that a write from one process is immediately visible only to
processes that belong to the communicator with which the file was
opened and only if atomic mode was enabled before the write. For
any other case, the data is visible to another process only after both
the writer and reader call MPI_File.sync.

MPL-10’s consistency semantics are therefore automatically
guaranteed on file systems that support Unix consistency seman-
tics.* NFS, by default, does not [28]. To obtain Unix consis-
tency semantics on NFS, ROMIO usesbyte-range locking (fentl)
across the reads and writes in order to turn off the noncoherent
client-side caching that NFS otherwise performs. Turning off client-
side caching reduces performance considerably but is, nonetheless,
n for correctness. We believe that the other file systems
on which ROMIOQ is implemented do suppott Unix consistency se-
mantics correctly.

3.7 Atomicity Semantics

Atomicity semantics define the results when multiple processes is-
sue concurrent requests to overlapping regions in the file, and one
or more of those requests are write requests. MPI-IQ supports two
atomicity modes. The default mode is nonatomic, in which the
results of such concurrent requests are undefined. The user can
change the mode to atomic, in which case the overlapping region
will contain data from any one process only.

The atomic mode is the only mode supported in Unix and POSIX.

On tile systems that support Unix atomicity semantics correctly, the
atomic mode is therefore implemented by default at least for con-
tiguous MPI-10 requests. If the MPI-IQ request is noncontiguous
in the file, and the implementation writes it by making more than

*1f the MPI-1O implementation performs its own buffering on top of the file sys-
tem, it must take additional steps to ensure that MPL-IO consistency semantics are
maintained.
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one write function call, then atomicity is not guaranteed for the en-
tire noncontiguous MPIIQ request. To guarantee atomicity in such
cases (when the user has set atomic mode and the request is non-
contiguous), ROMIOQ locks the range of bytes being accessed in the
file and then performs the necessary 1/0.

On file systems that support only the atomic mode, the nonatomic
mode is aso implemented by default, since it has weaker seman-
tics than the atomic mode. Some file systems, such as IBM PIOFS
and Intel PFS, support both modes, because the nonatomic mode
can result in higher performance. On PIOFS, the default mode is
nonatomic (called NORMALY); the user can change the access mode
to atomic (called CAUTTIOUS) with the function piofsiocctl.
On PFS, the default mode is atomic (called M_UNIX); nonatomic
mode (called M_ASYNC) can be selected by using either the func-
tion gopen or setiomode. Both gopen and setiomode, how-
ever, are “globa” functions: all processes in the application must
cal them. In MPI-IO, users can create a communicator containing a
subset of al processes and open the file with this communicator. In
such cases, the MPI-I0 implementation cannot use the nonatomic
mode onPFS.

3.6 Hints

MPI-IO provides a mechanism for the user to pass hints to the
implementation. Hints, such as access-pattern information, can
help the implementation optimize file access [2, 22]. Hints do not
change the semantics of the MPI-IQ interface; an implementation
may choose to ignore al hints, and the program would still be func-
tionally correct MPI-IQ has some predefined hints for specifying
file-striping parameters, access patterns, and so on. An implemen-
tation is free to define additional hints.

ROMIQ supports some predefined hints and some additional
hints. The predefined hints supported are the file-striping param-
eters (number of disks and striping unit) and the buffer size and
number of processes to use for collective I/Q. Additiona hints sup-
ported by ROMIQ are the disk number from which to begin striping
the file, buffer sizes for data sieving, and, on Intel PFS only, a hint
to turn on server buffering. ROMIO uses the file-striping hints only
on the two file systems that alow the striping parameters to be var-
ied, namely, Intel PFS and IBM PIOFS; they an ignored on other
file systems. On PFS, ROMIO uses the £entl function to vary
file-striping parameters. On PIOFS, the function is piof sioctl.



MPIL-IO also allows users to query the cument value of a hint.
‘With this feature, users can, for example, determine the default file-
striping parameters or the buffer sizes ROMIO uses for data sieving
and collective I/0.

3.9 Shared Flle Pointers

Most file systems, other than Intel PFS, do not support shared file
pointers. On such file systems, the MPI-IQ implementation must
implement shared file pointers itself. Doing so requires some mech-
anism for maintaining the value of the shared file pointer for each
file and for processes to access and atomically update this value,
One method is to store the value of the shared file pointer in a file
and have processes update the value atomically by using file locks.
Another method is to have one process or thread own the shared file
pointer and have other processes access the value from this process
or thread. This method, however, requires that the MPI implemen-
tation support dynamic processes, or one-sided communication, or
multipie threads, and none of these features are commonly sup-
ported by MPI implementations as yet. A third method, applicable
only if all processes have access to shared memory, is to maintain
the shared file pointer in shared memory and use some mechanism
for atomically updating the value of the shared file pointer, such as
semaphores.

ROMIO uses the first method because it works in all environ-
ments. ROMIO stores the value of the shared file pointer in a file
in the same dircctory as the data file being accessed. When a pro-
cess needs to access data using the shared file pointer, it locks the
file containing the shared-file-pointer value, reads the value, incre-
ments it by the amount of data to be read or written, writes the new
value back, releases the lock, and then performs the read or write of
actual data. The shared-file-pointer file is created when the shared
file pointer is first used in the program and is deleted when the user
closes the data file.

3.10 Portable Data Representation

MPI-IO supports multiple data-storage representations: native,
internal, external32, and also user-defined representations.
native means that data is stored in the file as it is in memory; no
data conversion is performed. internal is an implementation-
defined data representation that may provide some (implementation-
defined) degree of file portability. external32 is a specific,
portable data representation defined in MPI-1Q. A file written in
external32 format on one machine is guaranteed to be readable
on any machine with any MPI-IQ implementation, MPI-IO also
provides a mechanism for users to define a new data representa-
tion by providing data-conversion functions, which MPI-[O usesto
convert data from file format to memory format and vice versa.

The native representation is implemented by default, and
an implementation can use external32 asits internal rep-
resentation. One way to implement external32 is to convert
each datatype explicitly from/to the external32 representation,
which may require byte swapping, truncation, or padding, depend-
ing on the machine. Another way to implement external32 is
via the dataconversion functions: the implementation can pravide
the data-conversion functions to translate from external32 to
native representation (and vice versa) and use these functions to
implement external32.

ROMIO currently supports only the native representation.
‘We plan to implement external 32 via the data-conversion func-
tions because this approach is modular, easily extensible to new
platforms, and so that users can use the functions as a template to
define other data representations.
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3.11 Flle Preallocation

Only a few file systems provide a function to preallocate disk space
for a file. Inte! PFS has a function called 1size, on SGI XFS
one can preallocate space via fontl, and HP HFS has functions
prealloc and prealloc64. On other file systems that do not
support file preallocation, the MPI-IO implementation must allo-
cate space by actually writing data to the file (which is expensive).

3.12 Miscellaneous [ssues

Here we consider some miscellaneous issues in implementing MPI-
10.

3.12.1 Library versus Client-Server Implementation

An MPI-IO implementer is faced with the choice of implement-
ing it as a library or as a client-server implementation. We believe
that if the underlying file system supports high-performance access
from multiple processes to a commen file, a library approach is suf-
ficient. Any further optimizations needed, such as data sieving and
collective 1/0, can be implemented within the library. This is the
case on parallel machines such as the IBM SP, Intel Paragon, SGI
Origin2000, HP Exemplar, and NEC SX-4.

A client-server approach is needed if no common file system
exists for all processes to access, for example, when the processes
run on clusters of independent machines, each with their own local
file system. In such a case, the MPI-IO implementation would need
to have servers that implement a virtual shared file system on top
of the individual file systems on these machines. Another example
is when MPI-10 is used to access files from remote machines, as
described in {8].

3.12.2 Operating with Multipte MPI-1 Implementations

MPI-IO can be implemented in a way that it can operate with any
MPI-1 implementation that also has a few functions from the MPI-2
external-interfaces chapter. These functions allow the MPI-1O im-
plementation to access some of the internal data structures of the
MPI  implementation. The datatype-decoding functions,
MPI_Type.get_envelope and MPI_Type_get_contents,
are the ones most critically needed. Without them, the MPI-IO im-
plementation cannot decipher what an MPI derived datatype rep-
resents. A complete MPI-IO implementation would also need a
few more functions from the MPI-2 external-interfaces chapter,
namely, functions for filling in the status object, generalized re-
quests, adding new error codes and classes, attribute caching on
datatypes, and duplicating datatypes.

The “info” functions from the MPI-2 miscellaneous chapter are
needed for passing hints to MPI-I0, and the subarray and distributed-
array datatype constructors are very useful to users of MPI-IO.
These functions, however, can be implemented portably on top of
any MPI-1 implementation.

ROMIO, at present, requires only that the MPI implementa-
tion support the two datatype-decoding functions from MFPI-2; the
other external-interface functions mentioned above are not used.
The MPI-2 info functions and the subarray and distributed-array
datatype construclors are implemented in ROMIO; however, if the
MPI implementation also supports these functions, the ones pro-
vided by the MPI implementation are used instead.

ROMIO works with, and is included as part of, three MPI im-
plementations, MPICH, HP MPI, and SGI MPI, all of which sup-
port the datatype-accessor functions that ROMIO needs. (ROMIO
may also work with the LAM MPI implementation, as LAM also



supports these functions now, but we have not yet tested ROMIO
with LAM.)

3.12.3 Automatic Detection of File-System Type

ROMIO allows users to access files on multiple file systems in the
same program; therefore, it needs to know the type of file system on
which a given file resides. Users can specify the type of file system
explicitly by prefixing the filename with a string (like nfs:) or,on
most machines, ROMIO can determine the type of file system on
its own by using the function available for this purpose. On most
file systems the function is statvfs, on some it is statfs, on
Intel PFS it is statpfs, and on the NEC SX-4 it is stat.

3.12.4 Automatic Configure and Bulld

Many patts of the ROMIO source code are conditionally compiled,
depending on the features of the environment (machine, file system,
MPI implementation). These features are detected automatically by
using GNU’s autoconf utility. We distribute ROMIO in the form
of source code, and users can build it on any machine by simply
doing

% configure
% make

We leamed early on to have the configure script look for features
of a particular environment and not for specific version nutnbers of
the underlying operating system and other software. By following
this approach, we are able to adapt easily to constantly changing
version nembers and features. Users are also able to build ROMIO
casily on new environments where we, the developers, have never
before built or tested ROMIQ.

4 Implications for File-System Design

File-system designers may want to know how they could design
their file system to better support MPI-10. We provide a list of fea-
tures desired from a file system that would help in implementing
MPI-IO cormrectly and with high performance.

1. High-Performance Parallel File Access. The file system
must be designed to support high-performance access from
multiple processes to a common file. This implies that con-
current requests (particularly writes) must not be serialized
within the file system.

2. Data-Consistency Semantics. The data-consistency seman-
tics in the presence of concutrent accesses from multiple pro-
cesses must be clearly defined and correctly implemented.
The file system must have a mode that supports byte-level
consistency; it could support additional modes with weaker
consistency semantics. (By byte-level consistency we mean
that if a process writes some number of bytes starting from
some location in the file, the data written must be visible to
other processes immediately after the write from this pro-
cess returns, without requiring an explicit cache flush.) Unix
or POSIX consistency semantics, which support byte-level
consistency, are suffictent for implementing MPI-1O.

3. Atomicity Semantics. File systems can deliver higher per-
formance if they are not required to guarantee atomicity of
accesses. Furthermore, most applications do not perform
concurrent overlapping accesses and, consequently, do not
need the stricter atomic mode. We therefore recommend
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that the file system support two modes: an atomic mode
and a higher-performance nonatomic mode. Seme file sys-
tems, such as [BM PIOFS and Intel PFS, already support
both modes.

. File-Attribute Consistency. The file system must also sup-

port consistency of file attributes, such as file size. For ex-
ample, if two processes open a new (nonexisting) file, one
process writes 100 bytes to the file, and the other process
then calls a function that returns the size of the file, the func-
tion must return the file size as 100 bytes. We encountered
problems with this feature on NFS, because NFS caches file
attributes on each process noncoherently. As a result, the
second process read the file size as zero bytes. We solved
this problem by mounting the NFS directory with the “noac”
option (no attribute caching).

. Interface Supporting Noncontiguous Accesses. Although

an MPI-1I0 implementation can perform data sieving to ac-
cess noncontiguous data with high performance, we believe
that the performance can be even better if data sieving is done
within the file system. (Note that when data sieving is done
within the file system, it is no different from regular caching;
the extra data read/written can remain in the cache and need
not be discarded.) For this purpose, the file system must pro-
vide an interface that supports noncontiguous accesses. A
simple interface in which the user specifies a list of offsets
and lengths is sufficient. (See Section 3.2 for reasons why
POSIX lio_listio is not appropriate.) A simple inter-
face, such as the following, is desired:

int read_list(int mem_list_count,
long long *mem offsets,
int *mem_lengths,
int file list_count,
long long *file offsets,
int *file lengths}

(similarly for write_list)

where mem of fsets and mem_lengths are lists of off-
sets and lengths representing noncontiguous memory loca-
tions, mem.list.count is the number of entries in
mem.offsets and mem lengths, file offsets and
file_lengths are lists of offsets and lengths representing
noncontiguous locations in the file, and £ile_list_count
is the opumber of entries in file offsets and
file_lengths. This interface can be considered as a gen-
eralization of Unix readv/writev to allow noncontiguity
in the file.

In MPI-I0, noncontiguous data access with a single /O func-
tion is allowed only to monotonically nondecreasing offsets
in the file; memory offscts can be in any order. ‘The
read_list/write_list functions, therefore, need only
allow  monotonically nondecreasing offsets  in
file_offseta. This restriction can simplify the imple-
mentation of these functions.

. Support Files Larger than 2 Gbytes. An increasing num-

ber of applications need to access files larger than 2 Gbytes.
1t is therefore critical that the file system be able to support
large files. This means that the file-system interface and in-
ternal data structures must use 64-bit integers to represent file
offsets.



. Byte-Range Locking. The file system must support a lock-
ing facility equivalent to the advisory record-locking feature
(fentl locks) in Unix and POSIX. ROMIO uses this fea-
ture to implement MPI-IQ’s atomicity semantics for roncon-
tiguous file accesses, to implement data sieving for write re-
quests, and to implement shared file pointers.

. Control over File Striping. Since the best values for file-
striping parameters often depend on the application’s access
pattern, we recommend that the file system use a “good” set
of values as the default and provide a facility for users to vary
these parameters on a per-file basis.

. Variable Caching/Prefetching Policies. Parallel applica-
tions exhibit such a wide variation in access patterns that any
one caching/prefetching policy is unlikely to perform well
for all applications [27]. The file system must therefore ei-
ther detect and automatically adapt to changing access pat-
tems [16, 17] or provide an interface for the user to specify
the access pattern or caching/prefetching policy [2, 22}.

10. File Preallocation. It is easy and inexpensive for a file sys-
tem to provide a function to preallocate disk space for a file.
If such a function is not provided, the MPI-IO function
MPI_File.preallocate canbe implemented only by ac-

tually writing data to the file, which is very expensive.

Leave Collective I/O to the MPI-IO Implementation. It is
not entirely clear whether collective [/O is better if performed
in the file system or as a library above the file system. Both
techniques have been proposed in the literature [5, 14, 25).
Our opinion is that, for implementing MPI-IO’s collective-
I/O functionality, it is best if the file system focused on deliv-
ering the highest possible performance for independent {po-
tentially noncontiguous) IO requests from individual pro-
cesses (as mentioned in item 5 above), and the MPI-IO im-
plementation did the tasks of identifying the group of pro-
cesses participating in the collective-1/Q operation, efficiently
shuffling data among the processes, and making large /O re-
quests from each process wherever possible. This approach
keeps the file-system code simpler and, as ROMIQO demon-
strates [33], can also deliver high performance.

11.

12. No shared file pointers. Implementing shared file pointets
within the file system also requires the file system 1o know
which processes share the shared file pointer; that is, the file
system must support the notion of MPI communicators or
process groups or their equivalent. We believe that it would
be simpler if the MPI-10 implementation instead implements
shared file pointers on top of the file system by using any of
the three methods described in Section 3.9,

13. Nonblocking (Asynchronous) I/O Qptional. It is not manda-
tory for the file system to provide nonblocking /O functions.
An MPI-IO implementation can perform nonblocking /O
by using threads that call the blocking 1/O functions. This
method, however, requires proper thread support from the

machine and a thread-safe MPI implementation.

We note that the semantics and interface provided by a POSIX
file system are sufficient for implementing MPL-IO correctly (as
ROMIOQ demonstrates), but additional features would help an MPI-
10 implementation achieve higher performance. (ROMIO com-
pensates for the absence of these features by performing optimiza-
tions such as data sieving and collective I[/0.) Among the features
listed above, the following are not supported in POSIX: an inter- -
face for noncontiguous accesses, control over file striping, hints for
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caching/prefetching policies, and file preallocation. High-performance
parallel file access and file sizes larger than 2 Gbytes are not man-
dated by POSIX but are considered “implementation-dependent”
features.

5 Conclusions

ROMICO demonstrates that it is possible to implement MPI-IO
portably on multiple machines and file systems and also achieve
high performance. The ADIO framework is the key component
that makes this all possible, as it enables us to perform ftle-system-
specific optimizations within a largely portable implementation.

The discussion in this paper covers numerous file systems—
almost all the file systems on commercially available machines. An
important storage system that we did not discuss (mainly because
ROMIO is not implemented on it) is HPSS [37). HPSS is different
from other file systems in its goals and design features; for exam-
ple, it supports third-party transfer. A group at Lawrence Liver-
more National Laboratory has implemented MPI-IO on HPSS, and
we refer interested readers to [13] for a discussion of issues related
to implementing MPI-IO on HPSS.

By making MPI-IO available everywhere and also delivering
high performance, we expect that it will be widely used and popu-
lar among application programmers. We believe it will solve some
of the I/O perfonmance and portability problems currently experi-
enced in parallel applications.
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