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Abstract 

We discuss the issues involved in implementing MPI-IO portably 
on multiple machines and file systems and also achieving high per- 
formance. One way to implement MPI-IO portably is to implement 
it on top of the basic Unix I/O functions (open, lseek, read, 
write, and close), which are themselves portable. We argue 
that this approach has limitations in both functionality and petfor- 
mancc. We instead advocatean implementation approach that com- 
bines a large portion of portable code and a small portion of code 
that is optimized separately for different machines and tile systems. 
We have used such an approach tu develop a high-performance, 
portable MPI-IO implementation, called ROMIO. 

In addition to basic I/O functionality, we consider the issues of 
supporting other MPI-IO features, such us 64-bit file sizes, non- 
contiguous accesses, collective I/O, asynchronous I/O, consistency 
and atomichy semantics, user-supplied hints, shared tile pointers, 
portable data representation, and file preallocatiou. We describe 
how we implemented each of these features on various machines 
and file systems. The machines we consider are the HP Exemplar, 
IBM SP, Intel Paragon, NEC SX-4, SGI OriginZOOO, and networks 
of workstations; and the file systemswe consider are HP HFS, IBM 
PIOFS, Intel PFS, NEC SFS, SGI XFS, NFS, and any general Unix 
file system (UFS). 

We also present our thoughts on how a file system can be dc- 
signed to better support MPI-IO. WC provide a list of features de- 
sired from a 6Ie system that would help in implementing MPI-IO 
conecdy and with high performance. 

1 Introduction 

Ponable parallel pmgramming has long been hampered by the lack 
of a standard, portable application pmgmmmiug interface (API) 
for parallel I/O. Most parallel file systems have a Unix-like API 
with variations that are nonportable. Futthennore, the Unix AF’I 
is not an appropriate API for parallel l/O: it lacks some of the 
features necessary to express access patterns cummu” in parallel 
programs, such as noncontiguous accesses and colIective I/O, re- 
suiting in poor performance [35]. To overcome these limitations, 
the MPI Forum defined a new API for pamUel II0 (commonly re- 
fened to as MPI-IO) as part of the MPI-2 standard [19]. MPI-IO 

is a comprehensive API with many features intended specilicaUy 
for II0 pamUelism, portability, and high pcrfonnauce. bnplcmcn- 
tations of MPI-IO, both portable and machine-spcciiic, are already 
available [7,13,23,24,34]. 

In this paper, we discuss the issues involved in implementing 
MPI-IO portably on multiple machines and file systems and also 
achieving high performance. We argue that if an implementation 
uses just the basic Unix I/O functions in order to achieve pottability, 
it will have limitations in both functionality and performance. We 
describe au alternative approach, called ADIO, that achieves porta- 
bility and performance by combining a large portion of portable 
code with a small portion of code that is optimized separately for 
different machines and file systems. We have used this approach in 
our portable MPI-IO implementation, ROMIO.’ 

Iu addition to implementing basic I/O functionality (open, close, 
read, write, seek), we consider the issues of supporting other MPI- 
IO features, such as 64-bit file sizes, noncontiguous accesses, col- 
lective I/O, asynchronous I/O, consistency and atomic@ seman- 
tics, user-supplied hints, shared file pointers, patable data repre- 
sentation, and file preallocation. We describe how we implemented 
each of these features on various machines and NC systems. The 
machines we consider are the HP Exemplar, IBM SP, Intel Paragon, 
NEC SX-4, SGI Origin2000, and networks of workstations; and the 
tile systems we consider are HP HFS, IBM PIOFS, Intel PFS, NEC 
SFS, SGI XFS, the Network File System (NFS), and any general 
Unix file system (UFS). 

We also describe how a file system can be designed to better 
support MPI-IO. We pmvide a list of features desired from a file 
system that would help in implementing MPI-IO correctly and with 
high performance. 

2 Achieving Portability and Performance 

The basic Unix I/O timctions (open, lseek. read, write, and 
close) [29] are supported without variation on all machines with a 
Unix-like operating system. One way to implement MPI-IO portably, 
therefore, is to implement MPI-IO functions on top of these basic 
Unix l/O functions. Since the Unix I/O functions are portable, such 
an MPI-IO implementation will be portable to many machines and 
tile systems. This approach, however, has limitations in both func- 
tionality and performance, as explained below: 

1. The basic Unix II0 functions are not sufficient tu implement 
all of MPI-IO on all file systems for tb,e following reasons: 

l Ihe basic Unix I/O fimctious are blocking functions. 
Many file systems provide a different set of (nonportable) 
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An alternative is to implement MPI-10 on top of the POSIT l/O 
interface 1121 instead of the basic Unix I/O functions. The POSIX 
interface is an international standard with greater functionality than 
basic Unix l/O. For example, POSIX supports asynchronous IJO 
and list-directed I/O. This approach, however, also has limitations. 
Although POSIX is a standard, it is not yet widely implemented. 
One, therefore, cannot assume that POSIX J/O functions will be 
available on all file systems. Furthermore, many vendors do no, fol- 
low the POSIX standard strictly. They implement only parts of it, 
and even the implemented portion may not conform strictly to the 
standard (particularly in the case of asynchronous l/O). Some ven- 
dors provide a separate set of functions for &%-bit file sizes. POSIX 
also does not support some features that MPI-IO suppons, for ex- 
ample, file preallocation and varying file-striping attributes. Non- 
standard functions must be used on file systems that suppon these 

functions for nonblocking l/O.2 

l Ott many file systems, the basic Unix l/O functions 
work only on files of size less than 2 Gbytcs. Differ- 
ent timction.s mu, be used for larger tiles, and these 
titnctions are also nonportable. (We note that an MPI- 
IO implementation is not required to support large file 
sizes, but most high-quality implementations will.) 

. Some file systems auow the user to control tile-striping 
amibutes with special, nonpatablc functions (e.g., IBM 
PIOFS and Intel PFS). 

. Some file systems support additional features such as 
file prealkxation (e.g., SGI XFS, Intel PFS, HP HFS) 
and a choice of atomic and nonatomic file-access modes 
(e.g., IBM PIOFS and Intel PFS). The corresponding 
functions are also nonportable. 

Since all these features are available at the MPI-IO level, an 
MPI-10 implementation cannot support them if it uses only 
the basic Unix J/O functions. 

Ahbougb the basic Unix J/O functions are supported on all 
file systems, they are often not the recommended fimctions 
(for perfommnce) on all file systems. For example, 

. On the Intel Paragon, the recommended functions are 
tread and cwrite. 

. Ott SGI IRIX 6.5, the recommended functions are 
pread64 and pwrite64; on IRIX 6.4 and earlier, 
they are called pread and pwrite. 

l On HP machines running the SPPUX operating sys- 
tem (and not HPUX), the recommended functions are 
pread64 andpwrite64. 

When using the Network File System (NFS), it is not suf- 
ficient to call just the Unix read/write functions. Since 
NFS performs noncoherent client-side caching by default, 
file consistency is not guaranteed if multiple processes write 
to a common file 1281. Client-side caching must be disabled 
by locking the portion of the file being accessed, by using 
fcntl. A lock and unlock are therefore needed across the 
read/write call. 

Many research file systems provide their own APIs [9,3,11, 
15,201. Implementing MPI-IO on top of Unix IJO functions 
will not be portable to these file systems. 

features. In all, implementing MPI-IO on top of POSIX l/O is not 
sufficient either. 

We believe that the only way to implement MPI-IO portably 
with complete functionality and high pcrfarmance is to have a mech- 
anism that can utilize the special features and functions of each tile 
system. We describe such an architecture, called ADIO, which we 
use in our MPI-IO implementation, ROM10 1341. 

2.1 Abstract-Device Interface for l/O 

AD10 1311, an abstnctdevice interface for l/O, is a mechanism 
specitically designed for implementing parallel-V0 APls portably 
on multiple tile systems. We developed AD10 before MPI-IO be- 
came a standard, as a means to implement and experiment with 
variotts parallel-I/O APls that existed at the time. 

AD10 consists of a small set of basic fu&ms forpar&l I/O. 
Any parallel-l/O API can be implemented portably on top of ADIO, 
and AD10 itself is implemented separately on each different file 
system. AD10 thus separates the machinedependentand machine- 
independent aspects involved in implementing an API. The AD10 
implementation on a particular file system is optimized for that file 
system. We used AD10 to implement Intel’s PFS API and subsets 
of IBM’s PIOFS API and the original MPI-IO proposal [36] on 
multiple tile systems. By following such an approach, we achieved 
portability with very low overhead [31]. 

Now that MPI-IO has emerged as tbc standard, we “se AD10 
as a mechanism for implementing MPI-IO portably (see Figure 1). 
lids MPI-IO implementation is called ROM10 [34]. ROM10 runs 
on the following machines: IBM Sp; Intel Paragon; Gray T3E; HP 
Exemplar; SGI Origin2000; NEC SX-4; other symmetric multi- 
processon fmm HP, SGI, Sun, DEC, and IBM, and networks of 
workstations (Sun, SGI, HP, IBM, DEC. Linux, and FrecBSD). 
Supported file systems are IBM PIOFS, Intel PFS, HP HFS, SGI 
XFS, NEC SFS, NFS, and any Unix file system ([IFS). All func- 
tions defined in the MPI-2 l/O chapter except support for file in- 
temperability, IlO error handling, and J/O error classes have been 
implemented in ROMIO. @be missing functions will be imple- 
mented in a future release.) ROM10 is designed to be used with 
any MPI-1 implementation--both portable and vendor-speci6c im- 
plementations. It works with, and is included as part of, tbrec MPI 
implementations: MPICH, HP MPI, and SGI MPI. 

Another application of AD10 is for implementing remote VO. 
An MPI-IO implementation can enable a program running on one 
machine to accessfiles from wnote machines by providing an AD10 
implementation that accesses data fmm an AD10 server running at 
a remote site, Such an implementation is described in [8] and also 
illustrated in Figure 1. 

A similar abstract-device interface is used in MPICH [lo] for 
implementing MPI portably. 

3 Implementing MPI-IO 

We describe how we implemented each feature of MPI-IO on vu- 
ious machines and file systems. The many variations among ma- 
chines clearly demonstrate the need for an ADlO-like approach to 
implementing MPI-IO portably, where the variations are accounted 
for in the AD10 implementation. 

3.1 Basic File Access 

We tint consider the basic file-access operations: open, close, read, 
write, and seek. We consider reads and writes in which data is 
contiguous in bath memory and file; noncontiguous accesses are 
considered in Section 3.2. 
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MPI-IO 

t- Portable Implementation 

Figure 1: ROM10 architecture: MPi-IO is implemented portably on top of an abstract-device interface called ADIO, and AD10 is optimized 
separately for different file systems. 

3.1.1 Open 

t4PLFileapen is a coNective function. One of its arguments 
is an MPI commurdcator fl8l that specifies the mow of processes 
that will call this open f&on anh any otbcr&ll&tiv~ MPI-IO 
function that the user may choose to use thereafter on the open file. 
Most file systems, other than Intel PFS, suppolt only the regular 
Unix open and do not have collective open functions. On these 
file systems, ROM10 just calls the open function on each process. 
lntel PFS supports two open functions: regular Unix open and 
gopen. The gopen function is a “global open:’ recommended 
to be used when all processes in the application open a common 
file. It cannot be used when a subset of processes open the file; 
the function will hang if all processes do not call it. MPI-IO also 
supports a few additional file-access modes that are not defined in 
Unix or POSIX. 

3.1.2 Close 

The close function on most file systems is identical to close 
in Unix 01 POSIX. NPI-File-close can be implemented in a 
straightfonvard manner on top of Unix close. If the file was 
opened with the mode MPInODE-DELETE-ON-CCLOSE, the im- 
plementation must delete the tile. Most file systems support the 
Unix function unlink for deleting a file. 

3.1.3 Large Files 

Most tile systems distinguish between files of size less than 2 Gbytcs 
and greater than or equal to 2 Gbytes. The reason is that file o&sets 
and file sizes are usually represented by 4-byte integers in the reg 
ular II0 functions. The largest number that can be represented by a 
4-byte signed integer is (2 Gbytes- 1). Witb the regular tile-system 
functions, it is therefore not possible to access data from locations 
beyond ZGbytes. To overcome this problem, many file systems 
provide separate functions that use 8-byte integers to represent file 
0tfsct.s. 

In MPI-IO, file offsets are of type NPI-Off set, which is a 
data type defined by the MPI-IO implementation. The implementa- 
tion is tiee to dctine it to be of any size; the MPI standard does not 

mandate that the implementation support large files. In ROMIO, 
however, on those file systems that support large files (such as IBM 
PIOFS, HP HFS, NEC SFS, and SGI XFS), all files are treated as 
large files; that is, ROMIO definesNPLOf f set as an 8-byte inte- 
ger and uses the corresponding file-system functions for large files 
(even though the file may be smaller than 2Gbytes). On file sys- 
tems that do not support large fdes, ROM10 also does not support 
large files and definesMPLOf fset as a O-byte integer. 

3.1.4 Seek 

MPI-IO has two kinds of file pointers, individual and shared, and, 
correspondingly, two seek functions to move these file pointers. 
Most file systems (other than Intel PFS), however, suppat only 
individual file pointers. In Section 3.9 we describe how an MPI- 
IO implementation can implement shared tile pointers on top of 
individual file pointers. 

Most file systems suppon the Unix lseek function. On some 
file systems we need to use a different function for large files: 
lseek64 on SGI XFS, HP HFS, and NEC SFS; llseek on IBM 
PIOFS. 

3.1.5 Contiguous Reads and Writes 

Contiguous reads and writes in MPI-IO can be mapped directly 
ottto the reads and writes of the underlying file system. The readlwite 
functions recommeoded for highest performance vary considerably 
among machines, however. ROM10 uses the following timctions: 

l xcresdL=write on Intel PFS. 

. pread64lpwrite64 onHPHFSiftheoperatingsystemis 
SPPUX and readh*rite if it is HPUX. 

. pread64lpwrite64 on SGI XFS if the operating system 
is IRIX 6.5. On IRIX 6.4 and earlier, the same functions are 
called preadlpwrite. 

l read/write elsewhere. 

The functions pread64lpwrite64 take the file offset as an ar- 
gument; therefore, a separate lseek64 is not required. 
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32 NoncontiguousAccesses 

MPI-IO allows usem to access noucomiguous data fmm a 6le into 
noncontiguous memoty locations with a single UO function call. 
The user can specify ttoncontiguous locations in the tic by creat- 
ing afire view whh h4FTs derived datatypes [WI. Noncontiguous 
locations in memory can be specified by using a derived datatype 
in the readhurite cau. 

The ability of usen to specify noncontiguous accesses in a sin- 
gle function cdl is very important, because noncuutiguous accesses 
are very cmnmon in parallel applications [1, 4, 21, 26, 27, 321. 
Most file systems, however, do IW~ provide fimctions for noncon- 
tiguous UO. ?he Unix functions readvhrritev are widely sup- 
ported, but they allow noncontiguity only in memory and not in 
the file. Nonconti@m~~ memory accesses are not as commonly 
needed in parallel applications as noncontiguous file accesses. Fur- 
thermore, most file systems impose a limit of at most sixteen non- 
contiguousmemory locationsioasinglereadv~itev call. 

Some file systems suppon the POSIX list-directed II0 function 
lie-listio, which allows usem to submit multiple UO requests 
at a time. ‘I%& function also has limitations because of the way 
it is defined. The POSIX standard [12] allows a mixture of read 
and write requests in the list and says that each of the requests will 
be submitted as a separate nonblocking(asyncbronous) UO request. 
Therefore, POSIX implementations cannot optimize UO for the en- 
tire list of requests. Furthermore, since the lie-listio interface 
is not coIlective, implementations also cannot perform collective 
UO. 

In the absence of proper support from the file system for uon- 
contiguous UO, one way to implement a noncontiguous MPI-IO 
request is to access each contiguous portion of the request sepa- 
rately by using the regular contiguous read/write functions of the 
file system. Such an implementation, however, results in a large 
number of small requests to the file system, and performance de- 
grades drastically [33]. ROM10 instead performs au optimization, 
called data sieving, to access noncontiguous data with high perfor- 
mance. The basic idea in data sieving is to make large II0 requests 
to the file system and extract, in memory, the data that is really 
needed. Details of this optimization can be found in [33]. 

3.3 Collective I/o 

MPI-IO provides coUective-UO functions, which must be called by 
all processes that together opened the file.’ This pmperty enables 
the MPI-IO implementation (or file system) to analyze and merge 
the requests of different processes. In many cases, the merged re- 
quest may be large and contiguous, although the individual requests 
of each process are noncontiguous. The merged request can there- 
fore be serviced efficiently. Such optimization is broadly referred 
to as collective IIO. Collective l/O has been shown to be a very im- 
portant optimization in parallel UO and can improve performance 
sigdicantly [S, 14,2.5,30,33]. 

Since nune of the file systems on which ROM10 is implemented 
perform collective UO, ROMIO pet-forms two-phase collective UO 
on top of the file system. In the communication phase, interpm- 
eess communication is used to rearrange data into large chunks. In 
the II0 phase, processes perform parallel UO in large chunks and 
therefore obtain high I/O performance. ROM10 has a very geu- 
eml implementation of two-phase UO: it suppats any noncontigu- 
ous access pattern us described by MPI datatypes, and the user can 
specify by means of hints the amount of temporary buffer space 
ROM10 can use for collective UO and the number of processes that 

should actually perform UO in the UO phase of the two-phase op- 
eration. Details of ROMlO’s collective-UO implementation cau be 
found in [33]. 

Figure 2 shows the performance of an astrophysics application 
template, DISKJD, when UO is performed in three ways: using 
Unix-stvle indeoendcnt UO. data sievine. and wUective UO. This , . -. 
application acccsscs a threedimensional distributed array of size 
512 x 512 x 512 fmm a tile. On some machines data sieving 
performed only slightly better than Unix-style independent l/o; 
on others it performed considerably better. Collective UO always 
performed the best and resulted in I/O bandwidths ranging from 
51 Mbyteslsec to 563 Mbyteslsec, depending on the machine. For 
detailed performance resul& see [33]. 

3.4 Split Collective I/O 

MPI-IO provides a restricted form of nonblocking collective UO 
called split colkwive IIO. The usa can call a “begin” function to 
start the collective-UO operation and an “end” function to com- 
plete the operation. The implementation is free to implement the 
collective-U0 operation either entirely during the begin function 01 
entirely during the end function or in the “background,” between 
the begin aad end fimctions. The MPI standard allows the user to 
have at must one active split collective operation on a particular 
file handle ut any time. In other words, the user cantmt issue two 
“begin” functions on the same file handle without calling an “end” 
function to complete the tirst begin. 

The must natural way to implement split collective UO in a 
uonblocking fashion is to spawn a thread that performs the entire 
collective-l/O operation in the background. ?be results in [6], how- 
ever, indicate that, on most machines, this approach performs much 
worse than if collective UO were done entirely in the main thread 
during the begin function. The performance is much better if only 
the UO portion of collective UO is done in a separate thread and the 
rest is done in the main thread. The splitcollective-UO functions 
in ROMIO, at present, perform the entire collective-U0 operation 
in the main thread during the begin function. We plan to imple- 
ment true nonblocking collective UO in ROM10 by incorporating 
the results of [6]. 

3.5 Nonblocking (Asynchronous) l/O 

Many file systems support nonblocking UO. One way to imple- 
ment MPI-IO’s nonblockingU0 functions is to use the uonblock- 
ing functions of the file system. Intel PFS supports nonstandard 
functions called iread and iwrite. Other vendors (SGI, IBM, 
DEC, Sun) support POSIX asynchronous J/O (aio) functions, hut, 
iu many cases, they do not follow the POSIX definition strictly. 
IBM supports nonblocking I/O on Unix and NFS tile systems, but 
not on PIOFS. HP supports nonblocking UO only on HPUX ver- 
sion 11.0 and higher, but not on SPPUX or earlier versions of 
HPUX. Nonblocking UO functions are not yet available in Linux, 
FreeBSD, or the NBC SX-4. 

Another way to implement nonblocking UO is by explicitly us- 
ing threads that call blocking UO functions. This approach, how- 
ever, requires good thread support on the machine and a thread-safe 
MPI implementation, neither of which is c~mmuu on parallel ma- 
chines as yet. 

ROM10 implements nonblocking UO by using the nonblocking 
UO functions of the tile system where available. On machines and 
tile systems that do not support nonblocking UO, ROM10 just calls 
the corresponding blocking UO functions. 
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3.6 Consistency Semantics

MPI-IO’s consistency semantics (Section 9.6 of [19]) define the
results users can expect with concurrent file accesses from multi-
ple processes. MPI-10's consistency semantics are actually weaker
than the consistency semantics in Unix [29] or POSIX [12]. In Unix
and POSIX, after a write function returns, the data is guaranteed to
be visible to every other process in the system. MPI-IO guaran-
tees that a write from one process is immediately visible only to
processes that belong to the communicator with which the file was
opened and only if atomic mode was enabled before the write. For
any other case, the data is visible to another process only after both
the writer and reader call MPI-File-sync.

MPI-IO’s  consistency semantics are therefore automatically
guaranteed on file systems that support Unix consistency seman-

across the reads and writes in order to turn off the noncoherent
client-side caching that NFS otherwise performs. Turning off client-
side caching reduces performance considerably but is, nonetheless,
necessary for correctness. We believe that the other file systems

Atomicity semantics define the results when multiple processes is-
sue concurrent requests to overlapping regions in the file, and one
or more of those requests are write requests. MPI-IO supports two
atomicity modes. The default mode is nonatomic, in which the
results of such concurrent requests are undefined. The user can
change the mode to atomic, in which case the overlapping region
will contain data from any one process only.

On tile systems that support Unix atomicity semantics correctly, the
atomic mode is therefore implemented by default at least for con-
tiguous MPI-IO  requests. If the MPI-IO  request is noncontiguous
in the file, and the implementation writes it by making more than

one write function call, then atomicity is not guaranteed for the en-
tire noncontiguous MPI-IO request. To guarantee atomicity in such
cases (when the user has set atomic mode and the request is non-
contiguous), ROMIO locks the range of bytes being accessed in the
file and then performs the necessary I/O.

On file systems that support only the atomic mode, the nonatomic
mode is also implemented by default, since it has weaker seman-
tics than the atomic mode. Some file systems, such as IBM PIOFS
and Intel PFS, support both modes, because the nonatomic mode
can result in higher performance. On PIOFS, the default mode is

ever, are “global” functions: all processes in the application must
call them. In MPI-IO,  users can create a communicator containing a
subset of all processes and open the file with this communicator. In
such cases, the MPI-IO  implementation cannot use the nonatomic
mode on PFS.

3.6 Hints

MPI-IO provides a mechanism for the user to pass hints to the
implementation. Hints, such as access-pattern information, can
help the implementation optimize file access [2, 22]. Hints do not
change the semantics of the MPI-IO interface; an implementation
may choose to ignore all hints, and the program would still be func-
tionally correct MPI-IO has some predefincd hints for specifying
file-striping parameters, access patterns, and so on. An implemen-
tation is free to define additional hints.

ROM10  supports some predefined hints and some additional
hints. The predefined hints supported are the file-striping param-
eters (number of disks and striping unit) and the buffer size and
number of processes to use for collective I/O. Additional hints sup-
ported by ROM10  are the disk number from which to begin striping
the file, buffer sizes for data sieving, and, on Intel PFS only, a hint
to turn on server buffering. ROM10  uses the file-striping hints only
on the two file systems that allow the striping parameters to be var-
ied, namely, Intel PFS and IBM PIOFS;  they an ignored on other
file systems. On PFS, ROM10  uses the fcntl function to vary
file-striping parameters. On PIOFS, the function is piof aioctl.



MPI-IO also allows users to query the clmen, value of a hint. 
With this featme, “sell can. for example, determine the default file- 
striping parameters 01 the buffer sizes ROM10 uses for data sieving 
and collective I/O. 

3.9 Shared File P&ten 

Most ftk systems, other th, Intel PFS, do not support shared ti,e 
pointers. On such file systems, the MPI-IO implementation must 
implement shared 6lc pointers itself. Doing so requires some mech- 
anism for maintaining the value of the shared file pointer for each 
file and for processes to access and atomically update this value. 
One method is to store the value of the shared file pointer in a file 
and have pmcesscs update the value atomically by using file locks. 
Another method is to have one process or thread own the shared file 
pointer and have other processes access the value from this process 
or thread. This method, however, requires that the MPI implemcn- 
tation support dynamic processes, or one-sided communication, or 
multiple threads, and “one of these features are commonly sup- 
ported by MPI implementations as yet. A third method, applicable 
only if all processes have access to shared memory, is to maintain 
the shared file painter in shared memory and use s”me mechanism 
for atomically updating the value of the shared file pointer, such as 
semaphores. 

ROM10 uses the first method because it works in all envimn- 
menu. ROM10 stores the value of the shared tile pointer in a file 
in the same directory as the data file being accessed. When a pm- 
ccss needs to access data using the shared file painter, it locks the 
file containing the shared-file-pointer value, reads the value, incre- 
ments it by the anmunt of data to be read or written, writes the new 
value back, releases the lock, and the” pcrfonns the read or write of 
actual data. The shared-file-pointer file is created when the shared 
file pointer is first used in the program and is deleted when the user 
closes the data file. 

3.10 Portable Data Representation 

MPI-IO supports multiple data-storage representations: native, 
internal, external32, and also userdefincdrepresentations. 
native means that data is stored in the file as it is in memory; no 
data conversion is performed. internal is a” implcmentation- 
defined data representation that may provide some (implementation- 
defined) degree of file portability. external32 is a specit%, 
portable data representation defined in MPI-IO. A tile w&e” in 
external32 format on one machine is guaranteed to be readable 
on any machine with any MPI-IO implementation. MPI-IO also 
provides a mechanism for “sets to define a new data representa- 
tion by pmviding data-conversion functions, which MPI-IO use~to 
convert data t&m Ele format to memory format and vice versa. 

‘Ihe native representation is implemented by default, and 
an implementation can use external32 as its internal rep 
resentation. One way to implement external32 is to convert 
each datatype explicitly from/to the external32 representation, 
which may require byte swapping, truncation, or padding, depend- 
ing on the machine. Aoother way to implement external32 is 
via the dataconversion functions: the implementation can pmvide 
the data-conversion functions to translate from external32 to 
native representation (and vice versa) and use these functions to 
implement external32. 

ROM10 currently supports only the native representation. 
We plan to implement external32 via the data-conversion func- 
tions because this approach is modular, easily extensible to new 
platforms, and so that users can use the functions as a template to 
define other data representations. 

3.11 File Preallocation 

Only a few file systems pmvide a function to prealkxate disk space 
for a tile. Intel PFS has a fmtction called lsize, on SGI XFS 
one can prealkxate space via fcntl, and HP HFS has functions 
preallot and prealloc64. 0” other file systems that do not 
support 6le prealkxation, the MPI-IO implementation must allo- 
cate space by actually writing data to the file (which is expensive). 

3.12 Miscellaneous Issues 

Here we consider some miscellaneous issues in implementing MPI- 
10. 

3.12.1 Library wnus Client-Server Implementation 

A” MPI-IO implementer is faced with the choice of implement- 
ing it as a library or as a client-server implementation. We believe 
that if the underlying file system supports high-petfotmance access 
from multiple processes to a common file, a library approach is suf- 
ficient. Any further optbnizations needed, such as data sieving and 
collective I/O, can be implemented within the library. ‘Ihis is the 
case on parallel machines such as the IBM SP, Intel Paragon, SGI 
Origin2000, HP Exemplar, and NEC SX-4. 

A client-server approach is needed if no conmm” file system 
exists for all processes to access, for example, when the processes 
m” on clusters of independent machines, each with their own local 
tile system. I” such a case, the MPI-IO implementation would need 
to have savers that implement a virhml shared tile system on top 
of the individual file systems on these machines. Another example 
is when MPI-IO is used to access files from remote machines, as 
described in 181. 

3.12.2 Operating with Multiple MPI-1 Implementations 

MPI-IO can be implemented in a way that it can operate witb any 
MF’I-1 implementation that also has a few functions from the MPI-2 
external-interfaces chapter. These functions allow the MPI-IO im- 
plementation to access some of the internal data structures of the 
MPI implementation. The datatype-decoding functions, 
MPI.T-ype-get-envelope and MPI_Type.get.conte”ts, 
are the ““es m”st critically needed. Without them, the MPI-IO im- 
plementation cannot decipher what an MPI derived datatype rep- 
resents. A complete MPI-IO implementation would also need a 
few more functions from the MPI-2 external-interfaces chapter, 
namely, functions for filling in the status object, generalized re- 
quests, adding new emx codes and classes, attribute caching on 
datatypes, and duplicating datatypes. 

The “info” functions from the MPI-2 miscellaneous chapter are 
needed for passing hints to MPI-IO, and the subarray and distributed- 
army datatype co”s”uctors are very useful to users of MPI-IO. 
These functions, however, can be implemented portably on top of 
any MPI-1 implementation. 

ROMIO, at present, requires only that the MPI implementa- 
tion support the two datatype-decoding functions from MPI-2; the 
other external-interface functions mentioned above are not used. 
The MPI-2 info functions and the subarray and distributed-array 
datatype consrmcto~~ are implemented in ROMIO; however, if the 
MPI implementation also supports these functions, the ones pm- 
vided by the MPI implementation are used instead. 

ROM10 works with, and is included as part of, three MPI bn- 
plcmcntations, MPICH, HP MPI, and SGI MPI, all of which sup- 
port the datatype-acccssor functions that ROM10 needs. (ROM10 
may also work with the L4M MPI implementation, as LAM also 
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supports thcsc fimctions now, but we have not yet tested ROM10 
with LAM.) 

3.12.3 Automatic Detection of File-System Type 

ROM10 allows users to access files on multiple file systems in tbc 
same program; therefore, it needs to know the type of 6le system on 
which a given file resides. Users can specify the type of tile system 
explicitly by prefixing the 6lcname with a string (like nf 8 : ) or, on 
mast machines, ROMIO can determine the type of fde system on 
its own by using the function available for this purpose. On most 
tile systems the function is statvfs, on some it is statfs, on 
Intel PFS it is statpf 8, and on the NEC SX-4 it is stat. 

3.12.4 Automatic Configure and Build 

Many parts of the ROM10 source code are conditionally compiled, 
dependingon the features of the environment (machine, file system, 
MPI implementation). Tbcse features are detected automatically by 
using GNU’s autoconf utility. We distribute ROMIO in the form 
of source code, and users can build it on any machine by simply 
doing 

8 configure 
% make 

We learned early on to have the configure script look for features 
of a particular environment and not for specific version numbers of 
the underlying operating system and other software, By following 
this approach, we are able to adapt easily to constantly changing 
version numbers and features. Users are also able to build ROMIO 
easily on new environments where we, the developers, have never 
before built or tested ROMIO. 

4 Implications for File-System Design 

File-system designers may want to know how they could design 
their file system to better support MPI-IO. We provide a list of fea- 
tures desired from a file system that would help in implementing 
MPH0 conectly and with high perfomxmce. 

High-Performance Parallel File Access. Tbe file system 
must be designed to support high-performance access from 
multiple processes to a common file. This implies that con- 
current requests @articularly writes) must not be serialized 
within the tile system. 

Data-Consistency Semantics. ‘The data-consistency seman- 
tics in the presence of concunent accesses from multiple pro- 
cesses must be clearly defined and correctly implemented. 
The tile system must have a mode that supports byte-level 
consistency; it could support additional modes with weaker 
consistency semantics. (By byte-level consistency we mean 
that if a process writes some number of bytes stating from 
some location in the file, the data written must be visible to 
other pmccsscs immediately after the write fmm this pm- 
cess returns, without requiring an explicit cache flush.) Unix 
or POSIX consistency semantics, which support byte-level 
consistency, are sufficient for implementing MPI-IO. 

Atomicity Semantics. File systems can deliver higher per- 
formance if they are not required to guarantee atomicity of 
acccsscs. Furthemmrc, most applications do not perform 
concurrent overlapping accesses and, consequently, do not 
need the stricter atomic mode. We therefore recommend 
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File-Attribute Consistency. Ihe file system must also sup- 
port consistency of file attributes, such as file size. For ex- 
ample, if two processes open a new (nonexisting) tile, one 
process writes 100 bytes to the file, and the other process 
then calls a function that returns the size of the tile, tbc func- 
tion must return the tile size as 100 bytes. We encountered 
problems with this feature on NFS, because NFS caches file 
attributes on each process noncoherently. As a result, the 
second process read the file size as zero bytes. We solved 
this problem by mounting the NFS directory with the “now” 
option (no attribute caching). 

Interface Supportin Noncontiguous Accesses. Although 
an MPH0 implementation can perform data sieving to ac- 
cess noncontiguous data with high performance, we believe 
that the performance can be even better if data sieving is done 
within the file system. (Note that when data sieving is done 
within the file system. it is no different from regular caching; 
the extra data r&hvritten can remain in the cache and need 
not be discarded.) For this purpose, the file system must pm- 
vide an interface that supports noncontiguous accesses. A 
simple interface in which the user specifics a list of offsets 
and lengths is sufficient. (See Section 3.2 for reasons why 
POSIX 1i.o~listio is not appropriate.) A simple inter- 
face, such as the following, is desired: 

int read-list(int mem-list-count, 

6. Support Files Larger than 2 Gbytes. An increasing “um- 
ber of applications need to access files larger than 2 Gbytcs. 
It is thcrcfore critical that the file system be able to support 
large files. lhis means (hat the file-system interface and in- 
ternal data snuctues must use 64-bit integers to represent file 
ot%eu. 

long long +mem-offsets, 
int *men-lengths, 
int file-list count., 
long long l f iie-of f sets, 
int *file-lengths) 

(similarly for write-list) 

where maoffsets and memlengths are lists of off- 
sets and lengths representing noncontiguous memory loca- 
tions, memlistsxnnt is the number of entries in 
ma-offsets andmemlengths, file-offsets and 
file-lengths are lists of offsets and lengths representing 
noncontiguouslocations in the file, and f ile-list.count 
is the number of entries in file-offsets and 
file-lengths. This interface can be considered as a gen- 
eralization of Unix readv/writev to allow noncontiguity 
in the file. 

In MPI-IO, noncontiguousdata accesswith a single I/O timc- 
tion is allowed only to monotonically nondecreasing offsets 
in the file; memory obkcts can be in any order. The 
readJisth*rite-list functions, therefore, need only 
allOW monotonically nondecreasing offsets in 
file.offset*. This restriction can simplify the implc- 
mentation of these functions. 

that the file system support two modes: an atomic mode 
and a higher-performance nonatomic mode. Some file sys- 
tems, such as IBM PIOFS and Intel PFS. already support 
b&modes. 



7. Byte-Range Locking. The file system must support a lock- 
ing facility equivalent to the advisory record-locking feature 
(fcntl locks) in Unix and POSIX. ROMIO uses this fea- 
ture to implement MPI-IO’s atomic&y semantics for nottcon- 
tiguous file accesses, to implement data sieving for write re- 
quests, and to implement shared file pointers. 

8. Control over File Strlphtg. Since the best values for file- 
striping parameters often depend on the application’s access 
pattern, we recommend that the file system use a “good” set 
of values as the default and provide a facility for users to vary 
these parameters on a per-file basis. 

9. Variable Caching/Prefetching Policies. Parallel applica- 
tions exhibit such a wide variation in access patterns that any 
one cachinglpnfetching policy is unlikely to perform well 
for all applications [27]. The tile system must therefore ei- 
ther detect and automatically adapt to changing access pat- 
tents [16,17 or provide an interface for the user to specify 
the accesspattern or caching/prefetching policy [Z, 221. 

10. File I’mallocation. It is easy and inexpensive for a file sys- 
tem to provide a function to preallocate disk space for a 6Ie. 
If such a function is not provided, the MPI-IO function 
MPI-E’ile-preallocate canbeimplementedonlybyac- 
hmUy writing data to the file, which is very expensive. 

11. Leave Ccdlective I/O to the MPI-IO Implementation. It is 
not entirely clear whether collective I/O is better if performed 
in the file system or as a library above the 6Ic system. Both 
techniques have been proposed in the literature [S, 14,251. 
Our opblion is that, for implementing MPIXSS collective- 
l/O functionality, it is best if the file system focused on deliv- 
ering the highest possible performance for independent @o- 
tentially noncontiguous) I/O requests fmm individual pm- 
cesses (as mentioned in item 5 above), and the MPI-IO im- 
plementation did the tasks of identifying the gmup of pro- 
cesscsparticipating in the coUcctive-VO operation, efficiently 
shuffling data among the processes, and making large I/O re- 
quests fmm each process wherever possible. This approach 
keeps the file-system code simpler and, as ROM10 demon- 
strates [33], can also deliver high performance. 

12. No shared 6Ie pointers. Implementing shared 6Ie pobxers 
within the file system also requires the file system to know 
which processes share the shared tile pointer; that is, the file 
system must support the notion of MPI cotmmmicato,s or 
process groups or their equivalent. We believe that it would 
be simpler if the MPI-IO implementation instead implements 
shared iiIe pointers on top of the file system by using any of 
the three methods described in Section 3.9. 

13. Nonblocl&g(Asynchmnous) II0 OptionaL It is not manda. 
tory for the file system to provide nonblocking UO functions. 
An MPI-IO implementation can perform nonbl&ing I/O 
by using threads that call the blwking I/O functions. This 
method, however, requires proper thread support from the 
machine and a thread-safe hfP1 implementation. 

We note that the semantics and interface provided by a POSIX 
file system are sufficient for implementing MPI-IO correctly (as 
ROMIO demonstrates), but additional features would help an MPI- 
IO implementation achieve higher performance. (ROM10 com- 
pensates for the absence of these features by petfotig optimiza- 
tions such as data sieving and coUcctive I/O.) Among the features 
listed above, the following are not supported in POSIX: an inter- 
face for noncontiguous accesses, control over file striping, hints for 

cachinglprefetchingplicies, andfilepreaUocation. High-performance 
parallel file access and file sizes larger than 2Gbytes are not man- 
dated by POSIX but are considered “implementationdependent” 
features. 

5 Conclusions 

ROM10 demonstrates that it is possible to implement MPI-IO 
portably ott multiple machines and file systems and also achieve 
high petfomtance. The AD10 framework is the key component 
that makes this all possible, as it enables us to perform file-system- 
specific opdmizations within a largely portable implementation. 

The discussion in this paper covets numerous tiIe systems- 
almost all the file systems on commercially available machines. An 
important storage system that we did not discuss (mainly because 
ROMIO is not implemented on it) is HPSS [37]. HPSS is different 
from other file systems in its goals and design features; for exam- 
ple, it supports third-pa@ rronsfer. A group at Lawrence Liver- 
more National Laboratory has implemented MPI-IO on HPSS, and 
we refer interested readers to [13] for a discussion of issues related 
to implementing MF’I-IO on HPSS. 

By making MPI-IO available everywhere and also delivering 
high performance, we expect that it wiU be widely used and popu- 
lar among application pmgr-ers. We believe it will solve some 
of the J/O performance and portability problems currently expcri- 
enced in parallel applications. 
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