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Chapter 1. Introduction 

Section 1.1. Parallel communication challenges 
We do not know if parallel communications were first used for bandwidth enhancement or 

for fault-tolerance. Laying the first transatlantic cable took entrepreneur Cyrus Field twelve years 
and four failed expeditions. Cables were constantly snapping and could not be recovered from the 
ocean floor. On 5 August 1858 a cable started to operate, but for a very short time. It stopped 
operating on September 18. Eight years later, on 13 July 1866, the Great Eastern, by far the 
largest ship, began laying a cable, this time made of a single piece, 2730 nautical miles long, 
insulated with a new resin from the gutta-percha tree growing in Malay Archipelago. When two 
weeks later, on 27th of July 1866, the cable began operating, the mission for Cyrus Field was not 
yet accomplished. He immediately sent back the Great Eastern to sea for landing the second 
parallel cable. By 17 September 1866, not one, but two parallel circuits were sending messages 
across the Atlantic. 

 

Figure 1. Loading the transatlantic cable into the ‘Great Eastern’ in 
1865 

This transatlantic cable station was transmitting messages nearly 100 years. It was still in 
operation when in March 1964, in the middle of the cold war, Paul Baran wrote an article “On 
Distributed Communications Networks”. At that time Paul Baran was working on a 
communication method which could withstand a nuclear attack and enable transmissions of vital 
information across the country [Baran64], [Baran65]. Paul Baran concluded that extremely 
survivable networks can be built if structured with parallel redundant paths. He has shown that 
even moderated redundancy permits withstanding extremely heavy weapon attacks. In 1965, the 
Air Force approved testing of Baran’s theory. Four years later, on 1st October 1969, the 
progenitor of the global Internet, the Advanced Research Projects Agency Network (ARPANET) 
of the U.S. Department of Defense, was born. 
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Figure 2. Diagrams from the 51-page report of Paul Baran to the U.S. 
Air Force, 1964 

While the inspiration for structuring the early Internet with parallel paths came from the 
challenge to achieve a high tolerance to failures, almost a decade later IBM, at a much smaller 
scale, invented a parallel communication port for achieving faster communications. Since then, 
many other research directions relying on parallel and distributed communications have 
developed. Thanks to parallel communications uniform battery power consumption maximizing 
the network lifetime can be achieved in sensor and ad-hoc networks (energy efficiency and 
power-aware routing) [Ping06], [Luo06], [Kim06]. Parallelizing the communications across 
independent networks aims at offering additional security and protection of information, e.g. in 
voice over IP networks. Redundant parallel transmissions can be required for precision purposes, 
e.g. in GPS. 

Section 1.2. Capacity enhancement and fault-tolerance 
The focus of the research in parallel communications is maximizing the capacity and the 

fault-tolerance. Bandwidth is enhanced by using several parallel circuits between a source and a 
destination [Hoang06]. Yet a greater level of parallelism can be achieved by distributing the 
sources and destinations across the network. For example distributing storage resources in 
parallel I/O systems parallelizes both the I/O access and the communications. 

Regarding fault-tolerance, the nature has created many systems relying on parallel 
structures. When developing its distributed network models (the seeds of the Internet), Paul Baran 
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was inspired himself from discussions with neurophysiologist Warren Sturgis McCulloch about 
the capability of the brain to recover lost functions by bypassing a dysfunctional region thanks to 
parallel structures. The living multi-cellular organisms from insects to vertebrates demonstrate 
numerous other examples of duplicated organs that are functioning in parallel. The evolution of 
life on earth made reduplicated organs nearly a universal property of living bodies 
[Gregory35]. 
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Figure 3. Kidney blood filtering in the human organism 

Very often, the primary purpose of duplication of organs is the tolerance to failures while 
the capacity enhancement is of a secondary importance. The ideas of achieving extremely high 
levels of fault-tolerance in bio-inspired electronic systems of the future (e.g. by reproducing and 
healing) have always intrigued engineers and stimulated their imaginations [Bradley00]. 
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Figure 4. Pulmonary circuit of the human organism 

Maintaining an idle parallel resource has been already used in many mission-critical man-
made systems. In networking the communication can switch (often automatically) to a backup 
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path in case of failures of primary links. An appealing approach is however to use the parallel 
resources simultaneously, similarly to biological organisms (see Figure 3 and Figure 4). This is 
possible thanks to packetized communications where the communication can be routed 
simultaneously over several parallel paths. Individual failures should cause only minimal 
damages to the communication flow. 

Section 1.3. Fine-grained and coarse-grained network 
paradigms 

1.3.1. Packet switching or hot potato routing 
Store and forward routing was simultaneously and independently invented by Donald 

Davies and Paul Baran. The term “packet switching” comes from Donald Davies. Paul Baran 
called this technique “hot potato routing” [Boehm64], [Davies72], [Baran02]. Today’s 
internet relies on a store-and-forward policy: each switch or router waits for the full packet to 
arrive before sending it to the next switch. The first store and forward routers of ARPANET were 
called Interface Message Processors (see Figure 1). 

 

Figure 5. One of the first Interface Message Processor (IMP) of 
ARPANET connecting UCLA with SRI in August 1969 

The router in packet switched networks maintains queues for processing, routing and 
transmitting through one of the outgoing interfaces. No circuit is reserved from a source to a 
destination. There is no bandwidth reservation policy. This may lead to contentions and 
congestions. To avoid congestions in the packet discarding method, if a packet arrives at a switch 
and no room is left in the buffer, the packet is simply discarded (e.g., UDP). The adjustable 
window method gives the original sender the right to send N packets before getting permission to 
send more (e.g., TCP). 
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Figure 6. Packet switching network: packets are entirely stored at each 
intermediate switch and then only forwarded to the next 
switch 

Since the packets are completely stored at each intermediate switch before being 
transmitted to the next hop, a communication delay propagates between the end nodes as the 
number of hops separating the nodes increases. The communication delay is a function of the 
number of intermediate switches multiplied by the size of the packet. 

1.3.2. Wormhole routing 
Wormhole or cut-through routing is used in multiprocessor and cluster computer networks 

aiming at high performance and low latency. Store and forward switching technology cannot 
meet the strict bounds on the communication latencies dictated by requirements of a computing 
cluster. Wormhole routing technology is solving the problem of the propagation of the delay 
across a multi-hop communication path in store-and-forward switching. 

The short address is translated at an intermediate switch before the message itself arrives. 
Thus, as soon as the message starts arriving, the switch very quickly examines the header without 
waiting for the entire message, decides where to send the message, sets up an outgoing circuit to 
the next switch and then immediately starts directing the rest of the message that is being received 
to the outgoing interface. The switch transmits the message out, through an outgoing link, at the 
same time as the message arrives. By quickly setting up the routing at each intermediate switch 
and by directing the message content to the outgoing circuit without storing the message, the 
message traverses the network at once, simultaneously through all intermediate links of the path. 
The destination node, even if it is many hops away, starts receiving the message nearly as soon as 
the sending node starts its transmission. The message is simply “copied” from the source to the 
destination without being ever entirely stored anywhere in between (Figure 7). 

This technique is implemented by breaking the packets into very small pieces called flits 
(flow units). The first flit sets up the routing behavior for all subsequent flits associated with the 
message. The messages rarely (if ever) have any delay as they travel though the network. The 
latency between two nodes, even if separated by many hops, becomes similar to the latency of 
directly connected nodes. 

 5



 

Figure 7. Wormhole or cut-through routing network: a packet is 
“copied” through the communication path from the source 
directly to the destination without being stored in any 
intermediate switch 

MYRINET is an example of a wormhole routing network for cluster supercomputers. MPI 
is the most popular communication library for these networks. 

Wormhole routing and store-and-forward packet switching are examples from two well 
known network paradigms. Packet switching belongs to the fine-grained network paradigm and 
wormhole routing is an example of the coarse-grained circuit switching paradigm. Nearly all 
coarse-grained networks are aiming at low latencies and use connection oriented transmission 
methods. ATM, frame relay, TDM, WDM or DWDM, all-optical switching, light-path on-
demand switching, Optical Burst Switching (OBS), MYRINET, wormhole routing, cut-through 
and virtual cut-through routing are all broadband or local area network examples of the coarse-
grained switching paradigm [Worster97], [Qiao99]. 

Section 1.4. Three topics in parallel communications 
It is hard to imagine a single study consistently covering all areas of parallel and distributed 

communications. In this dissertation we are focusing on three anchor topics. The first topic is 
parallel I/O in computer cluster networks. The second topic addresses the problems in high-speed 
low-latency networks arising from simultaneous parallel transmissions, e.g. those of parallel I/O 
requests. The third topic addresses fault-tolerance in fine-grained packetized networks. 

These three topics are the main bold sides of the domains covered by parallel 
communications. While all these three topics rely on parallel communications, they are pursuing 
three orthogonal goals. For achieving the desired results we rely on techniques derived from 
different disciplines, such as graph theory or erasure resilient coding. 

1.4.1. Problems and the objectives 
Parallel I/O relies on distributed storage. The main objectives pursued in parallel I/O are a 

good load balance, the scalability as the number of I/O nodes grows and the throughput efficiency 
when multiple computing nodes are accessing concurrently a shared parallel file. Parallel I/O is 
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used in computer clusters, interconnected with high performance coarse-grained network (such as 
MYRINET) that can meet strict latency bounds. In such networks, large messages are “copied” 
across the network from the source computer directly to the destination computer. During of such 
a “copy” process, all intermediate switches and links are simultaneously involved in directing the 
content of the message. Low latency however induces an increased tendency to congestions. 
When the network paths of several transmissions overlap, an attempt to carry out them in parallel 
will unavoidably cause a congestion. The system becomes more prone to congestions as the size 
of the messages and the number of parallel transmissions increase. The routing scheme and the 
topology of the underlying network have significant impact. Properly orchestrating the parallel 
communications is necessary to achieve a true benefit in terms of the overall throughput. 

In the context of fine-grained packet-switching, achieving fault tolerance by streaming 
information simultaneously across multiple parallel paths is a very attractive idea. Naturally, this 
method minimizes losses occurring from individual failures on the parallel paths, but the large 
number of parallel paths increases also the overall probability of individual failures influencing 
the communication. Streaming across parallel paths can be combined with injection at the source 
of a certain amount of redundant packets generated with channel coding techniques. Such a 
combination ensures the delivery of the information content during individual link failures on 
parallel paths. We propose a novel technique to measure the advantageousness of parallel routing 
for this combined method of parallel streaming with redundant packets. 

Each of the three topics is addressed by a detailed analysis of the corresponding problems 
and by proposing a novel method for their solutions. 

1.4.2. Structure of the thesis 
The parallelism in I/O access and communication relies on distribution of the storage 

resources. A high level of parallelism with a high load balance can be achieved thanks to fine 
granularity. The drawbacks of fine granularity are the network communication and storage access 
overheads. In Chapter 2, we present a library called Striped File I/O (SFIO) which combines fine 
granularity with high performance thanks to several important optimizations. We describe the 
interface and the functional architecture of the SFIO system along with the the optimization 
techniques and their implementation. Chapter 2 is concluded by benchmarking results. 

Optimized parallel I/O results in simultaneous transmissions of large data chunks over the 
underlying network. Since parallel I/O is mostly used in supercomputer cluster networks having 
strict bounds on the latency and the throughput, the underlying network typically relies on coarse-
grain switching. Such networks are prone to congestions when many parallel transmissions carry 
very large messages. Depending on the network topology, the rate of congestions may grow so 
rapidly that the overall throughput is reduced despite the increase of the number of the 
contributing nodes. The gain achieved from the aggregation of communications in parallel I/O at 
the connection layer can be outperformed by losses due to blocked messages occurring at the 
network layer. Solving congestions locally by default FIFO method may result in idle times of 
other critical resources. Scheduling of transmissions at their sources aiming at an efficient 
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utilization of communication resources can optimally increase the application throughput. In 
chapter 3 we present a collective communication scheduling technique, called liquid scheduling, 
which in coarse-grained networks achieves the throughput of a fine-grained network or that of a 
liquid flowing through a network of pipes. 

Chapter 4 is dedicated to fault-tolerant multi-path streaming in packetized fine-grained 
networks. We demonstrate that in packet-switched networks combination of the channel coding at 
the packet level with the multi-path parallel routing, significantly improves the fault-tolerance of 
communication, especially in real-time streaming. We show that further development of the path 
diversity in multi-path parallel routing patterns often brings additional benefit to the streaming 
application. We designed capillary routing algorithm generating parallel routing patterns of 
increasing path diversity. We also introduced a method for rating multi-path routing patterns of 
any complexity with a single scalar value, called ROR, standing from Redundancy Overall 
Requirement. 
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Chapter 2. Parallel I/O solutions for cluster 
computers 

This chapter presents the design and evaluation of a Striped File I/O (SFIO) library providing high 
performance parallel I/O within a Message Passing Interface (MPI) environment. Uniform 
parallelization of I/O access requests and a good load balance when accessing and transferring data 
to and from distributed global storage rely on small striping units. Small stripe unit size, however, 
increases the communication and disk access cost. Thanks to the optimizations of the 
communications and disk accesses, SFIO exhibits high performance at very small striping factors. 
We present the functional architecture of SFIO system. Using MPI derived datatype capabilities, 
we transmit highly fragmented data over the network by single network operations. By analyzing 
and merging the I/O requests at the compute nodes a substantial performance gain is obtained in 
terms of I/O operations. At the end of the chapter we present the parallel I/O performance 
benchmarks on the Swiss-Tx cluster supercomputer consisting of DEC Alpha computers, 
interconnected with both, Fast Ethernet and a coarse-grained low latency communication network, 
called TNET. 

Section 2.1. Introduction 
The parallelism in I/O access and communication relies on distribution of the storage 

resources. A high level of parallelism with a high load balance can be achieved thanks to fine 
granularity. The drawbacks of fine granularity are the network communication and storage access 
overheads. The overheads resulting from fine granularity may considerably reduce the gain in 
throughput achieved by parallelism. 

Combination of extremely fine granularity for the best load balance with a very high 
throughput exhibiting nearly linear scalability is the subject of the topic. Scalability and the high 
performance at extremely small stripe unit sizes are achievable thanks to three proposed 
optimization techniques. 

Firstly, multi-block user interface permitting the library to recognize the overall pattern of 
multiple user requests is a must. Multi-block interface permits a greater network and disk access 
aggregation. Highly fragmented multi-block patterns of the logical file may also turn out to be 
relatively contiguous patterns at the level of physical sub-files. Without considering multi-block 
interface the optimization potential of the parallel I/O library would be seriously constrained. 

Secondly, the compute nodes are equipped with a caching system of I/O requests. It 
aggregates all network communication transfers to and from individual I/O nodes. Network 
aggregation of the incoming traffic is computed and requested also by the compute nodes. The 
data segments are therefore traversing the network combined into very large messages, reducing 
thus the communication overhead to the minimum. The drawback of this method is an increase of 
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the risk of congestions, which is the subject of the second topic addressed in this document (see 
Chapter 3). 

Thirdly, the caching system preprocessor at the compute nodes the collected I/O requests 
addressed to each individual destination. It removes the overlapping segments and sorts the 
requests according to their offsets. The caching preprocessor merges multiple remote I/O requests 
into single contiguous I/O requests, whenever it is possible. Since network transmissions to 
individual destinations are already being aggregated in both directions, by merging multiple 
requests into simple ones, no additional gain is achieved in terms of network communication. 
However, the performance gain from request merging at the I/O nodes is however considerable. 

All three forms of optimizations carried out on the cached I/O requests are realized only at 
the level of memory pointers and disk offsets without accessing or copying the actual data. Once 
the pointers and offsets stored in the cache are optimized, a zero-copy implementation is 
streaming the actual data directly between the network and the fragmented memory pattern. The 
zero-copy implementation relies on MPI derived datatypes, built on the fly. 

Section 2.2. Challenges 
In 1998, the Swiss Federal Institutes of Technology in Lausanne (EPFL) and Zurich 

(ETHZ), the Swiss Commission for Technology and Innovation (CTI), Supercomputing Systems 
(SCS), and Compaq Computer Corporation, in a cooperation with two laboratories in the United 
States: the Sandia National Laboratory (SNL) and the Oak Ridge National Laboratory (ORNL), 
started a common project called Swiss-Tx with the aim to develop and build the first Swiss 
teraflop supercomputer. The goal was to design supercomputing systems based mainly on 
commodity parts. During this project several Swiss-Tx supercomputers were installed, all based 
on commodity Compaq Alpha Servers. Only the communication hardware and communication 
software are custom-made, because available off-the-shelf products, such as Ethernet with the 
socket interface, do not offer the necessary bandwidth, latency, and functionality. 

In the course of this project, was developed and installed a new efficient communication 
library for commodity supercomputing, called Fast Communication Interface (FCI) and a custom-
made communication hardware for the Swiss-Tx supercomputers, called TNET. TNET is a 
proprietary high performance network aiming at low-latency and high-bandwidth. A full 
implementation of the standardized MPI for TNET network was also written (on top of FCI). 
Early Swiss-Tx supercomputers were using EasyNet, a bus-based low-latency network. The 
switch-based TNET network, which is designed specifically for large and complex network 
topologies, has replaced EasyNet in all recent Swiss-Tx architectures [Brauss99A], 
[SwissTx01]. 
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Figure 8. Swiss-Tx supercomputer in June 2001 

In many parallel applications I/O is a major bottleneck. In 1998 parallel I/O was a hot topic 
(Appendix A). At the Peripheral Systems Laboratory of EPFL we were in charge of the design of 
an MPI based parallel I/O system for the Swiss-Tx parallel supercomputer. 

Although the I/O subsytems of parallel machines may be designed for high performance, a 
large number of applications achieve only about a tenth or less of the peak I/O bandwidth 
[Thakur98]. The main reason for poor application-level I/O performance is that parallel-I/O 
systems are optimized for large accesses (of the order of megabytes), whereas parallel 
applications typically make many small I/O requests (of the order of kilobytes or even less). The 
small I/O requests made by parallel programs are due to the fact that in many parallel 
applications, each process needs to access a large number of relatively small pieces of data that 
are not contiguously located in the file [Baylor96], [Crandall95], [Kotz96], 
[Smirni96], [Thakur96A]. 

We designed the SFIO library which optimizes not only large data size accesses but also 
small data size accesses of an order of a fraction of one kilobyte. The extremely small stripe unit 
size (e.g. hundred bytes) provides very high level of load balance and parallelism. The support of 
a multi block Application Program Interface (API) enables the underlying I/O system to better 
optimize accesses to fragmented data both in memory and in the logical file. The multi-block 
interface of SFIO allowed us also to implement a portable MPI-I/O interface 
[Gabrielyan01]. Finally, thanks to the overlapping of communications and I/O and the 
underlying optimizations of I/O requests cached at the compute nodes, SFIO exhibits a highly 
competitive performance and a nearly scalable throughput even at very low stripe unit sizes (such 
as 75 bytes). 
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Section 2.3. File striping 
For I/O bound parallel applications, parallel file striping may represent an alternative to 

Storage Area Networks (SAN). In particular, parallel file striping offers high throughput I/O 
capabilities at a much cheaper price, since it does not require a special network for accessing the 
mass storage sub-system [Bancroft00]. 

 

Figure 9. File Striping 

Parallel I/O systems should offer highly concurrent access capabilities to the common data 
files by all parallel application processes. They should exhibit linear increase in performance 
when increasing both the number of I/O nodes and the number of application’s processing nodes. 
Parallelism for input/output operations can be achieved by striping the data across multiple disks 
so that read and write operations occur in parallel (see Figure 9). A number of parallel file 
systems were designed ([More97], [Oldfield98], [Messerli99], 
[Chandramohan97], [Gorbett96], [Huber95], [Kotz97]), which rely on parallel file 
striping. 

MPI is a widely used standard framework for creating parallel applications running on 
various types of parallel computers [Pacheco97]. A well known implementation of MPI, called 
MPICH, has been developed by Argone National Laboratory [Thakur99A]. MPICH is used on 
different platforms and incorporates MPI-1.2 operations [Snir96] as well as the MPI-I/O subset of 
MPI-II ([Gropp98], [Gropp99], [MPI2-97B]). MPICH is most popular for cluster architecture 
supercomputers, based on Fast or Gigabit Ethernet networks. MPICH’s MPI-I/O underlying I/O 
implementation is sequential and is based on NFS [Thakur99A], [Thakur98]. 

Due to the locking mechanisms needed to avoid simultaneous multiple accesses to the 
shared NFS file, MPICH MPI-I/O write operations could be carried out only at a very slow 
throughput (this version of MPICH was used in 2001). 
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Another factor reducing peak performance is the read-modify-write operation useful for 
writing fragmented data to the target file. Read-modify-write requires reading the full contiguous 
extension of data covering the data fragments to be written, sending it over the network, 
modifying it and transmitting it back. In the case of high data fragmentation, i.e. small chunks of 
data spread over a large data space within the file, network access overhead becomes dominant. 

SFIO aims at offering scalable I/O throughput. The fine granularity, required for the best 
parallelization and load balance, dramatically increases the communication and disk access costs. 
Our SFIO parallel file striping implementation integrates efficient optimizations merging sets of 
fragmented network messages and disk accesses into single contiguous messages and disk access 
requests. The merging operation makes use of the MPI derived datatypes. 

The SFIO library interface does not provide non-blocking operations, but internally, 
accesses to the network and disks are made asynchronously. Disk and network communications 
are overlapping in time resulting in additional gain in overall performance. 

Section 2.4 presents the overall architecture of the SFIO implementation as well as the 
software layers providing an MPI-I/O interface on top of SFIO. The SFIO interface description 
and small examples are provided in Section 2.5. Optimization principles are presented in Section 
2.6. The details of the system design, caching techniques and other optimizations are presented in 
Section 2.7. Throughput benchmarks are given for various configurations of the Swiss-Tx 
supercomputer [Kuonen99A]. The performances of SFIO on top of MPICH and on top of the 
native FCI communication system are given in Section 2.8. 

Section 2.4. Implementation layers 
The SFIO library is implemented using MPI-1.2 message passing calls. It is therefore as 

portable as MPI-1.2. The local disk access calls, which depend on the underlying operating 
system are non-portable. However, they are separately integrated into the source for the Unix and 
Windows implementations. 

The SFIO parallel file striping library offers a simple Unix like interface extended for 
multi-block operations. We then show how to provide an isolated MPI-I/O interface on top of 
SFIO [Gabrielyan01]. In MPICH’s MPI-I/O implementation there is an intermediate level, 
called ADIO [Thakur96B], [Thakur98], which stands for Abstract Device interface for parallel 
I/O. We successfully modified the ADIO layer of MPICH to route calls to the SFIO interface 
(Figure 10). 
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Figure 10. SFIO integration into MPI-I/O 

On the Swiss-T1 machine, SFIO can run on top of MPICH as well as on top of MPI/FCI. 
MPI/FCI is an MPI implementation making use of the low latency and high throughput coarse-
grained wormhole-routing TNET network [Horst95], [Brauss99A]. 

Unlike the majority of file access sub-systems SFIO is not a block-oriented library 
[Gennart99], [Chandramohan97], [Lee95], [Lee96], [Lee98]. Independence from 
block orientation provides a number of advantages. There is no need to send entire blocks over 
the network or to access them on the disk. The stripe units do not form blocks; neither network 
transfers nor disk accesses are rounded to the size of the stripe unit size. The amount of data 
accessed on the disk and transferred over the network is the size resulting from SFIO calls. 

Section 2.5. The SFIO Interface 
This section presents the most frequent interface functions of SFIO. The full list of API 

functions is given in Appendix B. Two functions, mopen and mclose are provided to open and 
close a striped file. These functions are collective operations for all processing nodes. A file 
should be opened by all compute nodes irrespectively of whether that node uses the file or not. 
This restriction is placed in order to ensure the correct behavior of future collective parallel I/O 
functions. Additionally, the operation of opening as well as of closing a file implies a global 
synchronization point in the program. The function mopen returns a descriptor of the global 
parallel file. This function has a very simple interface. First argument of mopen is a single string 
specifying the global file name, which contains the locations and names of all subfiles. The 
second argument of mopen is the stripe unit size in bytes. The global file name format is a simple 
semi-column separated concatenation of local subfile names (including their hostnames) in the 
right order. The format is as follows: 

“<host1>,<file1>;<host2>,<file2>;<host3>,<file3>;…” 

For example, the following call opens a parallel file with a stripe unit size of 5 bytes 
consisting of two local subfiles located on hosts node1 and node2: 
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f=mopen(“node1,/tmp/a.txt;node2,/tmp/a.txt”,5); 

Other file management operations, such as mdelete or mcreate (see B.1 for file 
management operations) also rely on this simple format for the global file name. SFIO does not 
maintain any global metafile, neither it maintains any hidden metadata in the subfiles. The sum of 
sizes of all local subfiles is exactly the size of the logical parallel file. 

The generic functions for read and write accesses to a file are respectively mreadc and 
mwritec. These functions have four arguments. The first argument is the previously opened 
parallel file descriptor, the second argument is the offset in the global logical file, the third 
argument is the buffer and the forth argument is its size in bytes. The multiple I/O request 
specification interface allows an application program to specify multiple I/O requests within one 
call. This permits the library to carry out additional optimizations which otherwise would not be 
possible. The multiple I/O request operations are mreadb and mwriteb. See Appendix B for the 
full list of SFIO API functions. 

The following C source code shows a simple SFIO example. The striped file with a stripe 
unit size of 5 bytes consists of two subfiles. It is assumed that the program is launched with one 
computing MPI process. A single compute node opens a striped file with two subfiles /tmp/a1.dat 
at t0-p1 and /tmp/a2.dat at t0-p2. Then it writes a message “Hello World” and closes the global 
file. 

#include <mpi.h> 
#include "/usr/local/sfio/mio.h" 
int _main(int argc, char *argv[]) 
{ 
    MFILE *f; 
    f=mopen("t0-p1,/tmp/a1.dat;t0-p2,/tmp/a2.dat;",5); 
    //writes in the global file 11 characters at location 0 
    mwritec(f,0,"Hello World",11); 
    mclose(f); 
} 

Below is an example of multiple compute nodes simultaneously accessing the same striped 
file. We assume that the program is launched with three compute nodes and two I/O MPI 
processes. The global striped file consisting of two sub-files has a stripe unit size of 5 bytes. It is 
accessed by three compute nodes. Each of them writes at different positions simultaneously. 

#include <mpi.h> 
#include "/usr/local/sfio/mio.h" 
int _main(int argc, char *argv[]) 
{ 
    MFILE *f; 
    char bu[]=”Hello*World!*”; 
    int r=rank(); 
    //Collective open operation 
    f=mopen("t0-p1,/tmp/a.dat;t0-p2,/tmp/a.dat;", 5); 
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    //each process writes 13 characters at its own position 
    mwritec(f,13*r,bu,13); 
    mclose(f);  //Collective close operation 
} 

In MPI, the function rank returns to each compute process its unique identifier (0, 1 and 2 
in this example). Thus each compute processor running the same MPI program can follow its own 
computing scenario. In the above example, the compute nodes use their ranks to write at their 
respective (different) locations in the global file. After the writing to the parallel file is completed 
in the above example, the global file contains the text combined from the fragments written by 
the first, second and third compute nodes, i. e: 
“Hello*World!*Hello*World!*Hello*World!*” 

The text is distributed across the two subfiles such that the first subfile contains: 
“Hellod!*Heorld!o*Wor” 

And the second subfile contains (see Figure 11): 

“*Worlllo*W*Hellld!*” 

 

Figure 11. Distribution of a striped file across subfiles 

The SFIO call mclose is a collective operation and is a global synchronization point for all 
three computing processes of the example. 

Section 2.6. Optimization principles 
In our programming model, we assume a set of compute nodes and an I/O subsystem. The 

I/O subsystem comprises a set of I/O nodes running I/O listener processes. Both compute 
processes and I/O listeners are MPI processes within a single MPI program. This allows the I/O 
subsystem to optimize the data transfers between compute nodes and I/O nodes using MPI 
derived datatypes. The user is allowed to directly use MPI operations for computation purposes 
only across the compute nodes. The I/O nodes are available to the user only through the SFIO 
interface. 

When a compute node invokes an I/O operation, the SFIO library takes control of that 
compute node. The library holds the requests in the cache of the compute nodes queuing the 
requests individually for each I/O node. The library then tries to minimize the cost of disk 
accesses and network communications by preparing new aggregated requests taking care of 

Hello *World!*Hello*World!*Hello*Wor ld!* 

Hellod!*Heorld!o*WorFirst subfile 

*Worlllo*W ld!**Hell

Global 
file 

Second subfile
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overlapped requests and their order. Transmission of the requests and data chunks is followed by 
confirmation replies sent by I/O listeners to the compute node. 

Optimizations of network communications and the disk accesses on the remote I/O node 
are im

Optimized remote I/O node requests are kept in the cache of the compute nodes. They are 
launch

sized when dealing with the low 
stripe 

plemented on the compute node. Requests queued for each I/O node are sorted according to 
their offsets on the remote disk subfile. Then all overlapping or consecutive I/O requests hold in 
the cache are combined, and a new optimized set of requests is formed (Figure 12). This also 
creates new fragmentation patters in the memory of the computing processes. 

 

Figure 12. Disk access optimization 

Disk 

Compute Nod

ed either at the end of the SFIO function call or when the compute node estimates that the 
buffer size reserved on the remote I/O listener for data reception may not be sufficient. Memory 
is not a problem on the compute node, since data always remains in the user memory and is not 
buffered. When launching I/O requests, the SFIO library performs a single data transmission to 
each of the I/O nodes. It creates on the fly derived datatypes pointing to the fragmented memory 
patterns in user space associated to each of the I/O nodes. Thanks to these dynamically created 
derived datatypes, the data is transmitted to or from each I/O node in a single stream without 
additional copies. The I/O listener also receives or transmits the data as a contiguous chunk. Once 
the optimized data exchange pattern is established between the memory of a compute node and 
the remote I/O nodes, the corresponding local disk access operations are triggered by read/write 
instructions received at the I/O node through the MPI transport. 

The efficiency of these optimizations is especially empha
unit sizes. Figure 13 shows a comparison of the generic (un-optimized) write operation 

with its optimized counterpart. 
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Figure 13.  Comparison of the optimized write access with a generic write 
access on the scale of the file striping granularity (3 I/O nodes, 
1 compute node, global file size is 660 Mbytes) 

The performance gain achieved with multi-block access operations, thanks to the relevant 
network optimizations is presented in Figure 14. Support of the multi-block interface permits to 
fully benefit from the optimization subsystem. 
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Figure 14.  Comparison of the optimized multi-block write access with a 
generic write access on the scale of the user memory 
fragmentation (Fast Ethernet, stripe unit size is 1005 bytes) 

Section 2.7. Functional architecture and implementation 
In this section we describe the implementation of the access functions and the functional 

architecture of the underlying optimization methods. 
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An overall diagram of the implementation of the SFIO access function is shown in Figure 
15. On the top of the diagram we have the application’s interface to data access operations and at 
the bottom, the I/O node operations. The mread and mwrite operations are the non-optimized 
single block access functions and the mreadc and mwritec operations are their optimized 
counterparts. The mreadb and mwriteb operations are multi-block access functions. 

 

Figure 15. SFIO functional architecture 

All the mread, mwrite, mreadc, mwritec, mreadb, mwriteb file access interface functions 
are operating at the level of the logical file. For example the SFIO write access operation 
mwritec(f,0,buffer,size) writes data to the beginning of the logical file f. Access interface 
functions are unaware of the fact that the logical file is striped across subfiles. In the SFIO 
library, all the interface access functions are routed to the mrw cyclic distribution module. This 
module is responsible for data striping. Contiguous requests (or a set of contiguous requests for 
mwriteb and mreadb operations) are split into small fragments according to the striping factor. 
The small requests generated by the mrw module contain information on the selected subfile, and 
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the node on which the subfile is located. Global pointers are translated to subfile pointers. Subfile 
access requests contain enough information to execute and complete the I/O operation. 

Thus, for the non-optimized mread and mwrite operations, the library routes the requests to 
the sfp_read and sfp_write modules that are responsible to send appropriate single sub-requests to 
the I/O nodes using MPI as the transport layer. The rest of the diagram (the right half) is 
dedicated to optimized operations. 

The network communication and disk access optimization is represented by the hierarchy 
below the mreadc, mwritec, mreadb, mwriteb access functions. For these optimized operations 
the mrw module routes the requests to the sfp_readc and sfp_writec functions. These functions 
access the sfp_rdwrc module which stores the sub-requests into a two-dimensional cache (2D 
cache). The 2D cache structure comprises as one dimension the I/O nodes and as a second 
dimension the set of subfiles each I/O node is dealing with. Often, on each I/O node there is one 
subfile per global file. 

Each entry of the cache can be flushed. Flushing happens either because the user operation 
terminates, i.e. when a signal is communicated down through the sfp_rflush and sfp_wflush 
functions; or it can happen if the sfp_rdwrc module predicts a possible overflow of reception 
buffers on the remote I/O nodes. The sfp_rdwrc function makes sure that all generated requests fit 
within the buffers of the remote I/O nodes. The entries to be flushed are passed to the flushcache 
operation that also frees the corresponding resources within the 2D cache. 

When the flushcache operation is invoked, typically a large list of the sub-requests is 
already been collected and needs to be processed. At this point the library can carry out an 
effective optimizations in order to save network communications and disk accesses. Note that the 
data itself is never cached, and always stays in user space avoiding costly copies from the user 
memory to the system memory. Three optimization procedures are carried out, before an actual 
transmission takes place. The requests are sorted by their offsets in the remote subfiles. This 
operation is carried out by the sortcache module. Overlapping and consecutive requests are 
merged whenever possible into single requests by the bkmerge module. This merging operation 
reduces the number of disk access calls on the remote I/O nodes. 

The mkbset module creates on the fly a derived MPI datatype pointing to the fragmented 
pieces of user data in the user’s memory. This allows to efficiently transmit the data associated to 
many requests over the network in a single contiguous stream. The data can be transmitted or 
received without any memory copy at the application or library level. If a zero-copy MPI 
implementation, relying on hardware Direct Memory Access (DMA), is used, the entire process 
becomes copy-less, such that the actual data (even if fragmented) is transmitted directly from the 
user space to the network. 

The actual data transmission to the I/O nodes is carried out by the sfp_readb and sfp_writeb 
functions together with the I/O instructions. 
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Section 2.8. SFIO performance 
In this section we explore the scalability of our parallel I/O implementation (SFIO) as a 

function of the number of contributing I/O nodes. Performance results have been measured on the 
Swiss-T1 machine [Kuonen99A]. The Swiss-T1 supercomputer is based on Compaq 
AlphaServer DS20 machines and consists of 64 Alpha processors grouped in 32 nodes. Two 
types of networks are interconnecting the processors, TNET and Fast Ethernet.  

To have an idea about the Fast Ethernet network capabilities, throughput as a function of 
number of nodes is measured by a simple MPI program. The nodes are equally divided into 
transmitting and receiving nodes and an all-to-all traffic of relatively large blocks is generated. 
Figure 16 demonstrates the cluster’s communication throughput scalability over Fast Ethernet. 
The Fast Ethernet network of T1 consists of a full crossbar switch and Figure 16 exhibits the 
corresponding linear scaling. Each pair of nodes (one receiver and one sender) is contributing to 
the overall throughput a capacity of a single link. 
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Figure 16. Aggregate throughput of Fast Ethernet as a function of the 
number of the contributing nodes 

Let us now analyze the performances of the SFIO library on the Swiss-T1 machine on top 
of MPICH using Fast Ethernet. We assign the first processor of each com¬pute node to a 
compute process and the second processor to an I/O listener (Figure 17). 
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Figure 17. SFIO architecture on Swiss-T1 

SFIO performance is measured for concurrent write access from all compute nodes to all 
I/O nodes, the striped file being distributed over all I/O nodes. The number of I/O nodes is equal 
to the number of compute nodes. The size of the striped file is 2Gbyte and the striped unit size is 
200 bytes only. The application’s SFIO performance as a function of the number of compute and 
I/O nodes is measured for the Fast Ethernet network. It is presented in Figure 18. The white graph 
represents the aver¬age throughput and the gray graph the peak performance. The fall of the 
performance may be possi¬bly due to a non-efficient implementation of data intensive collective 
operations in the version of MPICH that we used (2001). 
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Figure 18. SFIO/MPICH all-to-all I/O performance for a 200 bytes stripe 
size 

Let us analyze the capacities of the TNET network of the Swiss-T1 machine. TNET is a 
high throughput and low latency network (less than 20ms MPI latency and more than 50MB/s 
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bandwidth) [Brauss99B]. A high performance MPI implementation called MPI/FCI is 
available for communication through TNET [Brauss99B]. 

The Swiss-T1’s TNET network [Kuonen99B] consists of eight 12-port full crossbar 
switches (Figure 20). The gray arrows in the figure indicate the static routing between switches 
that do not have direct connectivity [Kuonen99A]. The topology together with the routing 
information defines the network’s peak collective throughput over the subset of processors 
assigned to a given application. 

The TNET throughput as a function of the number of nodes is measured by a simple MPI 
program. The contributing nodes are equally divided into transmitting and receiving nodes 
(Figure 19). Due to TNET’s specific network topology (Figure 20), communication throughput 
does not increase smoothly. A significant increase in throughput occurs when the number of 
nodes increases from 8 to 10, 16 to 18 and 24 to 26 nodes. 
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Figure 19. Aggregate throughput of TNET as a function of the number of 
the contributing nodes 
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Figure 20. The Swiss-T1 network interconnection topology 

The performances of the SFIO library relying on MPI/FCI using the proprietary TNET 
network of the Swiss-T1 supercomputer is measured according to an allocation of I/O and 
compute nodes identical to that of Figure 17. As before, the first processor of each compute node 
is assigned to a compute process and the second processor to an I/O listener process. Therefore, 
each node acts both as a compute node and as an I/O node.  

As in SFIO/MPICH, the performance of SFIO over MPI/FCI is measured for concurrent 
write accesses from all compute nodes to all I/O nodes, the striped file being distributed over all 
I/O nodes. 

In order to limit operating system caching effects, the total size of the striped file linearly 
increases with the number of I/O nodes. With a global file size proportional to the number of 
contributing I/O nodes, we keep the size of subfiles per I/O node fixed at 1GB/subfile.  

The stripe unit size is 200 bytes. The MPI/FCI application’s I/O performance is measured 
as a function of the number of compute and I/O nodes (Figure 21). For each configuration, 53 
measurements are carried out. At job launch time, pairs of I/O and compute processes are 
assigned randomly to processing nodes. 
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SFIO on top of MPI/FCI
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Figure 21. SFIO all-to-all I/O performance on TNET 

The I/O throughput on MPI/FCI scales well when increasing the number of nodes. This 
configuration a stress test of SFIO system at extreme conditions in terms of the number of I/O 
nodes (scalability), the number of compute nodes (resistance to simultaneous concurrent access) 
and the extremely low stripe unit size (efficient optimizations of communication and disk access). 

The speed-up may vary due to the communication topology of the TNET network (Figure 
20) associated with the particular node allocation scheme. The effect of topology on I/O 
performance is studied in Chapter 3. It turns out that after the half of the cluster nodes are 
allocated the network topology becomes a major bottleneck, if the network transmissions are not 
properly coordinated and scheduled. 

Section 2.9. MPI-I/O implementation on top of SFIO 
Typical scientific applications make a large number of small I/O requests. A typical 

example is access to columns or blocks of out of core matrices resulting in a large number of 
highly fragmented non contiguous requests. MPI’s derived datatypes provide the functionality for 
dealing with fragmented data in memory.  

Most parallel file systems (at the time of the design of SFIO) allowed a user to access only 
a single, contiguous chunk of data at a time from a file. Noncontiguous data sets must therefore 
be accessed by making separate function calls to access each individual contiguous piece. 

With such an interface, the file system cannot easily detect the overall access pattern. 
Consequently, the file system is constrained in the optimizations it can perform. To overcome the 
performance and portability limitations of existing parallel-I/O interfaces, the MPI Forum defined 
a new interface for parallel I/O as part of the MPI-2 standard [MPI2-97] referred as  MPI-IO 
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interface. It is a rich interface with many features designed specifically for performance and 
portability. Some of the features are the support for noncontiguous accesses, non-blocking I/O, 
and a standard data representation. 

The MPI-I/O interface design allows the underlying parallel I/O subsystem to optimize 
access operations. This is however possible only if the underlying I/O subsystem (on which MPI-
I/O interface is to be implemented) supports and optimizes multi-block access requests. 

Thanks to the optimizations of multi-block access in SFIO, an implementation of MPI-I/O 
on top of SFIO can be both efficient and will benefit from the advanced features of the MPI-I/O 
design. 

For specifying fragmentation patterns for different purposes, MPI-I/O interface does not 
use arrays or vectors of locations and sizes. The fragmentation both in the memory and in the file 
is specified by derived datatype objects. 

In MPI-I/O the file view is a global concept, which influences all data access operations. 
Each process obtains its own view of the shared data file. In order to specify the file view the user 
creates a derived datatype. Since each memory access operation may use another derived datatype 
that specifies the fragmentation in memory, there are two orthogonal aspects to data access: the 
fragmentation in memory and the fragmentation of the file view (see Figure 22). This figure 
presents four fragmentation scenarios from the perspective of one computing MPI process. The 
file view pattern can be different from one process to another. 

 

Figure 22. The use of derived datatypes in MPI-I/O interface 

MPI-1 provides recursive techniques for creating datatype objects having an arbitrary data 
layout in memory (see Figure 23). A derived opaque datatype object can be used in various MPI 
operations (e.g. communication between compute nodes). The main obstacle for implementation 
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of a portable MPI-I/O interface is that the derived datatypes are opaque objects. Once created by 
the user they cannot be decoded. 

 

Figure 23. The recursive construction of derived datatypes in MPI 
(“Contiguous” is a derived datatype obtained by joining a 
repeated number of times another datatype, which in its turn 
can be fragmented) 

To implement an MPI-I/O interface we need to access the flattened fragmentation pattern 
of a datatype created by a user. The difficulty is that the layout information, once encapsulated in 
a derived datatype, can not be extracted with standard MPI-1 functions. While the standard MPI-1 
interface provides complete functionality for creating derived datatypes, once they are created the 
information cannot be retrieved back from these opaque objects with standard MPI-1 operations 
(see Figure 24). 

A solution for figuring out the flattened fragmentation patterns (in the memory and in the 
file) could be to understand in each particular MPI-1 implementation the internal structure of the 
derived datatypes created by the user (see Figure 24). The disadvantage is that (1) only the 
operations for constructing the derived datatypes are standardized and the internal 
implementation of the opaque datatype objects can significantly vary from one implementation of 
MPI-1 to another and (2) the source code of a particular MPI-1 implementation is often not 
available or undergo to frequent updates by the vendor. Our objective is to design a portable 
implementation-independent solution for MPI-I/O running on top of any MPI-1 implementation. 
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MPI-I/O Interface Implementation 
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Figure 24. MPI-I/O implementation requires a method for retrieving the 
fragmentation patterns of opaque MPI derived datatypes 

Our method relies on reverse engineering technique for discovering the flattened pattern of 
a user-created derived datatype. 

Extension of the derived datatype is the size of the minimal contiguous space fitting the 
fragmented pattern of the derived datatype. The size of the derived datatype is the sum of sizes of 
all contributing contiguous pieces of the datatype. Standard MPI-1 provides functions for 
retrieving both, the extension and the size of a derived datatype. 

Derived datatypes can be used in many MPI operations. A typical MPI receive operation, 
called MPI_Recv, receives a contiguous network stream and distributes it in memory according to 
the data layout of the datatype. If the memory is previously initialized with a “gray color”, and 
the network stream has a “black color”, then analysis of the memory after data reception will give 
us the necessary information on the data layout. Instead of sending and receiving, it is possible to 
use the MPI_Unpack standard MPI-1 operation for carrying this procedure in a single compute 
node. The operation MPI_Unpack reads from a contiguous memory block having a size equal to 
the size of a single unit of a derived datatype and writes to a contiguous block having a size equal 
to the extension of that derived datatype (see Figure 25). 
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Derived 
datatype X 

Buffer of the 
size of the X’s 

extentBuffer of the 
size of the 
datatype X 

Contiguous 
datatype 

MPI_Send(source,size,MPI_BYTE,…) 
 MPI_Recv(destination,1,X,…)

Figure 25. A reverse engineering method for discovery the fragmentation 
pattern of an opaque datatype built by the user 

Typically the derived datatypes are used as repetition units to describe fragmentation 
pattern over large spaces. Decoding of only one unit is sufficient to discover the pattern. Once 
derived datatype is decoded its vector map is associated with the MPI opaque object for all 
further reuses. 

With the technique for derived datatype decoding, it becomes possible to create an isolated 
MPI-I/O solution on top of any standard MPI-1. The Argonne National Laboratory’s (ANL) 
MPICH implementation of MPI-I/O is used with our datatype reverse engineering technique and 
a subset of MPI-I/O operations has been implemented (Figure 26). 
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Figure 26. Isolated implementation of a portable MPI-I/O interface 
functional on any MPI-1 implementation 

Isolated MPI-I/O package automatically gives to every MPI-1 owner MPI-I/O facilities, 
without any requiring to change or modify the current MPI-1 implementation. 

Section 2.10. Conclusions and the recent developments in 
Parallel I/O 

For cluster computing, SFIO is a cheap alternative to specialized dedicated I/O hardwires. 
It is a light-weight portable parallel I/O system for MPI programmers. 

Since the design of SFIO, there were additional developments of parallel I/O. The impact 
of the underlying network topology and the allocation scheme of the I/O and compute nodes is 
studied in [Wu05A]. Further performance optimizations were achieved by scheduling of I/O 
access requests, taking into account the global knowledge in the case of off-line access requests 
and using pre-fetching relying on the predictions and estimations in the case of on-line access 
requests [Abawajy03], [Kallahalla02]. There is an implementation suggesting to 
increase the overall performance of collective read access operations not only by striping but also 
by simple replication of data across several I/O nodes [Wu05B] and [Liu03]. Replication and 
caching at I/O nodes requires a careful sequencing of all I/O operations in order to maintain the 
consistency of replicated copies and of a global parallel file from the perspective of all compute 
nodes. Relying on the file locking mechanisms may add a significant performance drawback. 
Moreover file locking is not always implemented in large scale systems. Several methods were 
proposed for allowing replications at I/O nodes and caching at compute nodes by maintaining the 
consistency of the global file by relying on orthogonal MPI level communications between 
compute nodes without using file locking mechanisms [Wu05B], [Coloma04]. There are 
implementations suggesting parallel communications not only between a compute node and 
different I/O nodes but also between a compute node and each individual I/O node. By doing this 
a greater network throughput performance can be achieved [Liu03] and [Ali05]. The author 
of [Ali05] reported an overall throughput of 291 Mbps with 18 compute and I/O processors. 
The throughput of SFIO from 150 to 350 Mbps with 31 compute and I/O nodes still remains 
competitive. In terms of the developments of parallel I/O interfaces, portable implementations of 
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MPI-I/O interface have been released [Thakur99B], [Baer04]. The fine granularity with the 
resulting high level of load balance remains the strong point of SFIO, whose underlying 
optimizations allows as small as a 75-byte stripe size with only negligible loss in performance. 
Usually the parallel I/O systems are optimized for striping unit sizes not smaller than a few 
kilobytes [Thakur99B]. For a balanced I/O workload in the servers an alternative suggestion 
for dynamically adapting striping factors and dynamic data distribution was suggested [Ma03B]. 
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Chapter 3. Liquid scheduling of parallel 
transmissions in coarse-grained low-
latency networks 
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Chapter 4. Capillary routing: parallel multi-path 
routing for fault-tolerant real-time 
communications in fine-grain packet-
switching networks 

In off-line streaming, packet level erasure resilient Forward Error Correction (FEC) codes rely on 
the unrestricted buffering time at the receiver. In real-time streaming, the extremely short 
playback buffering time makes FEC inefficient for protecting a single path communication against 
long link failures. It has been shown that one alternative path added to a single path route makes 
packet level FEC applicable even when the buffering time is limited. Further path diversity, 
however, increases the number of underlying links increasing the total link failure rate, requiring 
from the sender possibly more FEC packets. We introduce a scalar coefficient for rating a multi-
path routing topology of any complexity. It is called Redundancy Overall Requirement (ROR) and 
is proportional to the total number of adaptive FEC packets required for protection of the 
communication. With the capillary routing algorithm, introduced in this chapter we build 
thousands of multi-path routing patterns. By computing their ROR coefficients, we show that 
contrary to the expectations the overall requirement in FEC codes is reduced when the further 
diversity of dual-path routing is achieved by the capillary routing algorithm. 

Section 4.1. Introduction 
Packetized IP communication behaves like an erasure channel. Information is chopped into 

packets, and each packet is either received without error or not received. Packet level erasure 
resilient FEC codes can mitigate packet losses by adding redundant packets, usually of the same 
size as the source packets. 

In off-line streaming erasure resilient codes achieve extremely high reliability in many 
challenging network conditions [MacKay05]. For example, it is possible to deliver voluminous 
files (e.g. recurrent updates of GPS maps) via satellite broadcast channel without feed-backs to 
millions of motor vehicles under conditions of fragmental visibility (see [Honda04] and Raptor 
codes [Shokrollahi04]). In the film industry, the day’s film footage can be delivered from 
the location it has been shot to the studio that is many thousands of miles away not via FedEx or 
DHL, but over the lossy internet even with long propagation delays (see [Hollywood03] and 
LT codes [Luby02]). Third Generation Partnership Project (3GPP), recently adopted Raptor 
[Shokrollahi04] as a mandatory code in Multimedia Broadcast/Multicast Service 
(MBMS). The benefit of off-line streaming from application of FEC relies on time diversity, i.e. 
on the receiver’s right to not forward immediately to the user the received information. Long 
buffering is not a concern, the receiver can unrestrictedly hold the received packets, and as a 
result packets representing the same information can be collected at very distant periods of time. 
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In real-time single-path streaming FEC can only mitigate short failures of fine granularity. 
See [Choi06] using RS(24,20) packet level code with 20 source packets and 4 redundant packets 
or also [Johansson02], [Huang05], [Padhye00] and [Altman01]. Due to restricted 
playback buffering time, packets representing the same information cannot be collected at very 
distant periods of time. Instead of relying on time-diversity FEC in real-time streaming can rely 
on path-diversity. Recent publications show the applicability of FEC in real-time streaming with 
dual-path routes. Author of [Qu04] shows that strong FEC sensibly improves video 
communication following two disjoint paths and that in two correlated paths weak FEC codes are 
still advantageous. [Tawan04] proposes adaptive multi-path routing for Mobile Ad-Hoc 
Networks (MANET) addressing the load balance and capacity issues, but mentioning also the 
potential advantages for FEC. Authors of [Ma03A] and [Ma04] suggests replacing in MANET 
the link level Automatic Repeat Query (ARQ) by a link level FEC assuming regenerating nodes. 
Authors of [Nguyen02] and [Byers99] studied video streaming from multiple servers. The 
same author [Nguyen03] later studied real-time streaming over a dual-path route using a static 
Reed-Solomon RS(30,23) code (FEC blocks carrying 23 source packets and 7 redundant packets). 
[Nguyen03], similarly to [Qu04], compares dual-path scenarios with the single OSPF routing 
strategy and has shown clear advantages of the dual-path routing. The path diversity in all these 
studies is limited to either two (possibly correlated) paths or in the most general case to a 
sequence of parallel and serial links. Various routing topologies have so far not been regarded as 
a space to search for a FEC efficient pattern. 

In this chapter we try to present a comparative study for various multi-path routing 
patterns. Single path routing is excluded from our comparisons, being considered too hostile. 
Steadily diversifying routing patters are built layer by layer with the capillary routing algorithm 
(Section 4.2). 

In order to compare multi-path routing patterns, we introduce Redundancy Overall 
Requirement (ROR), a routing coefficient relying on the sender’s transmission rate increases in 
response to individual link failures. By default, the sender is streaming the media with static FEC 
codes of a constant weak strength in order to tolerate a certain small packet loss rate. The packet 
loss rate is measured at the receiver and is constantly reported back to the sender with the 
opposite flow. The sender increases the FEC overhead whenever the packet loss rate is about to 
exceed the tolerable limit. This end-to-end adaptive FEC mechanism is implemented entirely on 
the end nodes, at the application level, and is not aware of the underlying routing scheme 
[Kang05], [Xu00], [Johansson02], [Huang05] and [Padhye00]. The overall number 
of transmitted adaptive redundant packets for protecting the communication session against link 
failures is proportional (1) to the usual packet transmission rate of the sender, (2) to the duration 
of the communication, (3) to the single link failure rate, (4) to the single link failure duration and 
(5) to the ROR coefficient of the underlying routing pattern followed by the communication flow. 
The novelty brought by ROR is that a routing topology of any complexity can be rated by a single 
scalar value (Section 4.3). 
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In Section 4.4, we present ROR coefficients of different routing layers built by the 
capillary routing algorithm. Network samples are obtained from a random walk MANET with 
several hundreds of nodes. We show that path diversity achieved by the capillary routing 
algorithm reduces substantially the amount of redundant FEC packets required from the sender. 

Section 4.2. Capillary routing 
In subsection 4.2.1 we present a simple Linear Programming (LP) method for building the 

layers of capillary routing. A more reliable algorithm is described in subsection 4.2.2. In 
subsection 4.2.3 we present the discovery of bottlenecks at each layer of capillary routing, 
required for construction of successive layers. 

4.2.1. Basic construction 
Capillary routing can be constructed by an iterative LP process transforming a single-path 

flow into a capillary route. First minimize the maximal value of the load of all links by 
minimizing an upper bound value applied to all links. The full mass of the flow will be split 
equally across the possible parallel routes. Find the bottleneck links of the first layer (see 
subsection 4.2.3) and fix their load at the found minimum. Minimize similarly the maximal load 
of all remaining links without the bottleneck links of the first layer. This second iteration further 
refines the path diversity. Find the bottleneck links of the second layer. Minimize the maximal 
load of all remaining links, but now without the bottlenecks of the second layer as well. Repeat 
this iteration until the entire communication footprint is enclosed in the bottlenecks of the 
constructed layers. 

Figure 27, Figure 28 and Figure 29 show the first three layers of the capillary routing on a 
small network. The top node on the diagrams is the sender, the bottom node is the receiver and all 
links are oriented from top to bottom. 

 

Figure 27. In the first 
layer the flow is equally 
split across two paths, two 
links of which, marked by 
thick dashes, are the 
bottlenecks. 
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Figure 28. The second 
layer minimizes to 1/3 the 
maximal load of the 
remaining seven links and 
identifies three bottlenecks. 
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Figure 29. The third layer 
minimizes to 1/4 the 
maximal load of the 
remaining four links and 
identifies two bottlenecks. 
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Figure 30 shows the 10-th layer of capillary routing between a pair of end nodes on a 
network with 180 nodes and 1374 links. Links not carrying traffic are not shown. The solid lines 
of the diagram represent 55 bottleneck links belonging to one of the 10 layers. The dashed lines 
represent a min-cost solution of the remaining flow not enclosed in bottlenecks after the 10-th 
layer. There could be several tens of additional routing layers until complete capillarization is 
achieved. 

      links: 1374
      nodes: 180
     layers: 10
bottlenecks: 55
  remaining: 155

 1: 1.00000
 2: 0.50000
 3: 0.20000
 4: 0.16667
 5: 0.14286
 6: 0.11111
 7: 0.10714
 8: 0.10000
 9: 0.09524
10: 0.08571

 

Figure 30. Routing pattern of layer 10 built by the capillary routing 
algorithm on a network sample with 150 nodes 

4.2.2. Numerically stable version 
Although the described LP process is completely valid, it is numerically instable. The 

precision errors propagating through the layers of capillary routing reach noticeable sizes and, 
when dealing with tiny loads, result in infeasible LP problems. We have found a different, stable 
LP method which maintains the values of parameters and variables in the same order of 
magnitude at all times. 

Instead of decreasing the maximal value of loads of the links, the routing path is discovered 
by solving max flow problems defined by the flow-out coefficients at each node. Initially only the 
peer nodes have non-zero flow-out coefficients: +1 for the source and –1 for the sink (Figure 31 
and Figure 32). 
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Figure 31. Initial problem 
with one source and one 
sink node 

 

Figure 32. Maximize the 
flow, fix the new flow-out 
coefficients at the nodes and 
find the bottleneck links 
(layer 1, 21 =F ) 

 

Figure 33. Remove the 
bottleneck links from the 
network and adjust the 
flow-out coefficients at the 
adjacent nodes 

At each subsequent layer (Figure 33 to Figure 36) we have a bounded multi-source/multi-
sink problem: a uniform flow from a set of sources to a set of sinks, where all rates of 
transmissions by sources and all rates of receptions by sinks increase proportionally in respect to 
each node’s flow-out coefficient (either positive or negative). The multi-source/multi-sink 
problems arise since the LP problem at each successive layer is obtained by complete removal of 
the bottlenecks from the previous LP problem. By removing the bottlenecks we adjust 
correspondingly the flow-out coefficients of the adjacent nodes (to respect the flow conservation 
rule) and thus possibly produce new sources and sinks in the network. Except for the unicast 
problem of the first layer, the successive layer problems do not belong in general to the simple 
class of “network linear programs” [Fourer03]. 

 

Figure 34. Maximize the 
flow in the new sub-
problem, fix the new flow-
out coefficients at the nodes 
and find the new 
bottlenecks (layer 2, 

) 5.12 =F

  

Figure 35. Again remove 
the bottleneck links from 
the network and adjust 
correspondingly the flow-
out coefficients at the 
adjacent nodes 

 

Figure 36. Maximize the 
flow in the obtained new 
problem, fixing the new 
resulting flow-out 
coefficients at the nodes and 
find the new bottlenecks 
(layer 3, ) 3/43 =F
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We define the bounded multi-source/multi-sink problem at layer l by the sets of nodes and 
links and by the flow-out coefficients for sources and sinks (all indexed with an upper index l) as 
follows: 

• set of nodes , lN
• set of links , where  and , lLji ∈),( lNi∈ lNj ∈

• flow-out coefficients  for all  l
if

lNi∈

• at layer l the max-flow solution yields the flow increase factor lF  and the set of 
bottlenecks lB , where ll LB ⊂  

Then, the equations for computing the sets , 1+lN 1+lL  and the flow-out coefficients  of 

the next layer  are as follows:  

1+lf

ll NN =+1
 (1)

lll BLL −=+1
 (2)
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j

l
j Fff ⋅=+1

 
)1(

),(
∑
∈

++
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add 1 for each 

incoming bottleneck 
link  ),( ji

subtract 1 for each 
outgoing bottleneck 

link  ),( kj

After a certain number of applications of the max-flow objective with corresponding 
modifications of the problem, we will finally obtain a network having no source and sink nodes. 
At this point the iteration stops. All links followed by the flow in the capillary routing are 
enclosed in bottlenecks of one of the layers. 

In order to restore the original proportions of the flow, the flow increases, induced by the 
preceding max-flow solutions must all be compensated. The true value of flow traversing the 

bottleneck link  of layer l is the initial single unit of flow divided by the product of the 
flow increase factors 

jir ,

lBji ∈),(
iF  (where li ≤≤1 ) of the present and all preceding layers: 

 ∏
=

= l

i

i
ji

F
r

1

,
1  where l  is the layer for 

which  lBji ∈),( (4)

The max-flow approach proves to be very stable, because it maintains all values of 
variables and parameters in the same order of magnitude (even for very deep layers with tiny 
loads) and also because it enables us to detect and correct errors in the flow-out coefficients of the 
LP problem generated for the next layer of capillary routing. 

In the next subsection we show how to identify bottlenecks after the max-flow solution of 
the capillary routing layer is found. 
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4.2.3. Bottleneck hunting loop 
In the example of Figure 37 with three transmitting nodes and two receiving nodes, the 

flow can be proportionally increased at most by a factor of 4/3 and the bottleneck links are among 
four maximally loaded suspected links {a, b, d, e}, marked in Figure 38 by thick dashes. 

 

Figure 37. An example of a bounded multi-
source/multi-sink problem (obtained during 
construction of the capillary routing from a 
network with one source and one destination 
node) 

 

Figure 38. A max-flow solution with the flow 
increase factor of 4/3, containing four 
maximally loaded candidate links {a, b, d, e} 

At each layer, after minimizing the maximal load of links, the bottlenecks of the layer are 
discovered in a bottleneck hunting loop. At each iteration of the hunting loop, we minimize the 
load of the traffic over all links having maximal load and being suspected as bottlenecks. Links 
not maintaining their load at the maximum are removed from the suspect list. The bottleneck 
hunting loop stops if there are no more links to remove. 

In the example of Figure 38 the sum of loads of all four suspected links can be minimized 
(by an LP objective) to 3 (see Figure 39). Now only three links {a, b, e}, marked by thick dashes, 
continue to maintain the maximal load. The sum of loads of three remaining suspected links can 
be further reduced to 2 (see Figure 40). These two remaining links {b, e}, marked by thick 
dashes, maintained the maximal load at all times and are the true bottleneck links since the sum of 
their loads cannot be further reduced. 

 

Figure 39. Cost reduction applied to four 
fully loaded links of Figure 38 reduces the 
load of suspected link d, and the suspect list is 
now {a, b, e}. 

 

Figure 40. Cost reduction applied to the 
three fully loaded links of Figure 39 reduces 
the load of another suspected link a, and the 
true bottleneck links are {b, e}. 

In this example the two bottlenecks are found in two iterations. 
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For capillary routing layers built simultaneously on 200 independent network samples each 
with 300 nodes (in average 2,555.7 links per network), Figure 41 shows the decrease in the 
number of suspected links during the bottleneck hunting loop of each capillary routing layer from 
1 to 10. 
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Figure 41. Decrease of the number of suspected links during the 
bottleneck hunting loop of each of 10 capillary routing layers 

At the end of each hunting loop (from 14 to 23 iterations) the suspect list consists of only 
true bottleneck links, in average between 5.9 and 9.9 bottlenecks per network. 

Section 4.3. Redundancy Overall Requirement (ROR) 
The definition and equations of ROR are given in subsection 4.3.1. Computation of 

transmission FEC block size as a function of the packet loss rate p is presented in subsection 
4.3.2. Equation of ROR for a particular case of very large FEC blocks is presented in subsection 
4.3.3. 

4.3.1. Definition of ROR 
We assume a combination of a small static tolerance of the media stream to weak failures, 

with a dynamically added adaptive FEC for combating serious failures exceeding the tolerable 
packet loss rate. 

For a given routing pattern, ROR is defined as the sum of all transmission rate overheads 
required from the sender for combating each non-simultaneous link failure in the route. For 
example, if the communication footprint consists of five links, and in response to each individual 
link failure the sender increases the packet transmission rate by 25%, then the ROR coefficient 
will be equal to the sum of these five FEC transmission rate increases, i.e. . 
If P is the usual packet transmission rate and  is the increased rate of the sender, responding to 
the failure of a link 

25.1%255 =⋅=ROR
lP

Ll∈ , where L is the set of all links, then: 
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PROR 1  (5)

Let us consider a long communication, and let D be the total failure time of a single 
network link during the whole duration of the communication. D is the product of the average 
duration of a single link failure, the frequency of a single link failure and the total communication 
time. According to equation (5): 

 RORPD ⋅⋅  ∑
∈

⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅=

Ll

l

P
PPD 1  (6)

  ( )∑
∈

⋅−⋅=
Ll

l PDPD  (7)

Assuming one single link failure at a time and a uniform probability and duration of link 
failures, according to equation (7), RORPD ⋅⋅  is the number of adaptive redundant packets that 
the sender actually needs to transmit in order to compensate for all network failures occurring 
during the total communication time. Therefore ROR is a routing coefficient for computing the 
overall number of required redundant packets. 

Redundant packets are injected into the original media stream for every block of M source 
packets. During streaming, M is supposed to stay constant. However, the number of redundant 
packets for each block of M media packets is variable, depending on the conditions of the erasure 
channel. The M source packets with their related redundant packets form a FEC block. By  

we denote the FEC block size chosen by the sender in response to a packet loss rate p. We assume 
that by default the media is streamed in FEC blocks of length of  such that the flow has a 

static tolerance to weak losses 

pFEC

tFEC

10 <≤ t . When the loss rate p measured at the receiver is about to 
exceed the tolerable limit t, the sender increases its transmission rate by injecting additional 
redundant packets. 

The random packet loss rate, observed at the receiver during the failure time of a link in the 
communication path, is the portion of the traffic still being routed toward the faulty link. Thus, a 
complete failure of a link l carrying a relative traffic load of 1)(0 ≤≤ lr  according to the routing 
pattern, produces at the receiver a packet loss rate equal to the same relative traffic load . )(lr

Equation (5) for ROR can thus be re-written as follows: 

 =ROR  ∑
<≤∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1)(|

)( 1
lrtLl t

lr

FEC
FEC

(8)

  
a sum over all links 

carrying a flow exceeding 
the tolerable loss limit 

The links carrying the entire traffic are skipped in the sum index of equation (8), since the 
FEC required for the compensation of failures of such links is infinite. By construction (Section 
4.2), none of the considered multi-path routing schemes pass their entire traffic through a non-
critical single link. 
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4.3.2. Computing FEC block size 
We compute the  function assuming a Maximum Distance Separable (MDS) code 

[
pFEC

Seroussi86], [Schwarz02]. With an MDS code we can successfully decode the M source 
packets if we receive any M packets of the transmission FEC block. 

In order to collect a mean of M packets at the receiver under random loss rate p, )1/( pM −  

packets must be transmitted at the sender. However the probability of receiving 1−M  packets or 
2−M  packets (which makes the decoding impossible) remains high. In order to maintain a very 

low probability δ  of receiving less than M packets, we must send many more redundant packets 
in the block than is necessary to receive an average of M packets at the receiver side. We must fix 
the acceptable Decoding Error Rate (DER), such that DER≤δ , in order to compute the 

 function. MFECp ≥

The probability ( NnPn )  of having exactly n losses (erasures) in a block of N packets with 

a random loss probability p is computed according to the binomial distribution: 

( ) nNn
p qp

n
N

NnP −⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=   (9)

where 
)!(!

!
nNn

N
n
N

−⋅
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 and pq −=1  

The probability of having 1+−MN  or more losses, i.e. the decoding failure probability, is 
computed as follows: 

∑
+−=

−⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

N

MNn

nNn qp
n
N

1
δ  (10)

Therefore for computing the carrier block’s minimal length for a satisfactory 
communication (i.e.  function), it is sufficient to steadily increase the block length N until 

the desired decoding error rate (DER) is met. 
pFEC

pFEC  functions divided by M (i.e. transmission rate increase factors ) are 
bounded above by  when 

MFEC p /
)(log DERp 1=M  and below by )1/(1 p−  when  (for packet 

loss rates much larger a very small DER). The higher the number of media packets in the block 
the closer the transmission rate increase can approach the lowest theoretical limit. For M from 1 
to 10 these transmission rate increase factors are plotted in Figure 42 (for ). 

∞→M

510−=DER
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Figure 42. Transmission rate increase factor as a function from the 
packet loss rate ( ) 510−=DER

4.3.3. Streaming with large FEC blocks 
The larger the number of media packets M in the FEC block, the smaller the cost of FEC 

overhead is, but the longer the buffering time at the receiver must be. For example VOIP with 20 
ms sampling rate restricts the number of media packets M in a single FEC block to 20 – 25 
packets. 

If the playback buffering time can be a couple of minutes long, with thousands of source 
packets in a FEC block (for example in packetized TV) we can assume that )1/( pMFEC p −= . 

Although for large numbers of source packets MDS codes do not exist, other capacity-
approaching LDPC [MacKay96], [Richardson01] or fountain codes [MacKay05] can 
decode a large block of source packets requiring only a very little excess of packets (in this 
context this excess can be ignored). 

In such case, taking into account the above assumptions and equation (8), the ROR 
coefficient of a multi-path routing pattern is computed according to the following equation: 

∑
<≤∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

=
1)(|

1
)(1

1
lrtLl lr

tROR  (11)

Path diversity can be required in off-line large file downloads aiming at avoiding the idle 
times of the last kilometer bottleneck occurring due to arbitrary failures elsewhere, within the 
lossy Internet. Thanks to multi-path routing, the sender with an adaptive transmission rate can 
feed the last kilometer bottleneck link constantly at its maximal bandwidth (see [Nguyen02] 
and [Byers99] for video streaming from multiple servers). In this case also, the choice of the 
multi-path routing pattern can be rated by equation (11). Note that according to equations (8) and 
(11) the ROR coefficient of a routing pattern depends also on the static tolerance t of the 
streaming media to weak failures. 
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Section 4.4. Redundancy Overall Requirement in capillary 
routing 

For capillary routing layers 1 to 10, we compute the average ROR coefficients 
simultaneously over several networks. The network samples are drawn from timeframes of a 
random walk MANET. Initially the nodes are randomly distributed on a rectangular area, and 
then, at every timeframe, they move according to a random walk algorithm. If two nodes are 
close enough (and are within the coverage range) then there is a link between them. At the same 
time we consider also streaming media at 15 different strengths of static FEC codes which 
tolerate small packet loss rates from 3.6% to 7.8% respectively (with an increment of 0.3%). 

Figure 43, represents a MANET with 115 nodes and 300 timeframes (each representing 
one network sample) divided into seven sets of network samples. For each set of samples and for 
each static FEC strength we plot the average ROR coefficient (over all considered network 
samples) as the routing layer increases. Figure 43 shows that the overall requirement in adaptive 
FEC packets decreases with capillarization. The ROR coefficients of the routing samples are 
computed assuming a short playback buffering time according to equation (8), where the FEC 
block size (as function of the packet loss rate p) is computed according to equation (10), the 
number of media packets (M) per transmission block is 20 and the desired decoding failure rate 
(DER) is . 510−
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Figure 43. Average ROR as a function from the capillary routing layer 

Figure 44 represents a MANET with 120 nodes and 150 timeframes divided into four sets 
of network samples. The upper 15 curves similarly to the curves of Figure 43 are computed 
according to equations (8) and (10), where 20=M  and . However, the lower 15 
curves of Figure 44 are computed according to equation (11) for streaming with large FEC 
blocks. 

510−=DER
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Figure 44. Average ROR computed assuming real-time streaming (the 
group of curves above) and off-line streaming (the group 
below) 

When streaming with large blocks the Redundancy Overall Requirement is twice as low as 
in streaming with restricted playback buffering time, but the capillarization of routing is 
beneficiary in both cases. 

Logically, the ROR curve of the media stream is shifted down as the statically added 
tolerance increases, but the increase of the weak static tolerance emphasizes the efficiency gain 
achieved by capillarization. The drawback of path diversity in general is that by forming long 
paths we increase the number of links in the communication footprint raising the overall failure 
rate and thus possibly increasing the overall requirement in FEC codes. However, Figure 43 and 
Figure 44 show that despite the communication footprint becomes larger; with the routing patters 
built by the capillary routing algorithm the requirement in redundant packets decreases noticeably 
most of the time. 

Section 4.5. Conclusions 
The reliability issues of packetized real-time streaming are of growing importance. 

Commercial real-time streaming applications however do not consider channel coding at the 
packet level as a serious solution for improving the reliability of communication. That is because 
in single path communications, even heavy FEC overheads cannot protect against failures lasting 
more than the short duration of the playback buffer. Recent studies demonstrated that path 
diversity makes FEC applicable for real-time streaming. By studying a wide range of routing 
topologies, we show that combination of channel coding with appropriate multi-path routing 
allows reliable real-time streaming with a low overall requirement in FEC codes. 

For this purpose we introduced a layer by layer strategy for building multi-path capillary 
routing patterns. The first layer provides a simple multi-path solution. As the layer number 
increases, the underlying routing pattern relies on the network more securely. Unlike max-flow or 

 45



shortest path solutions, for a given source and destination, by construction (Section 4.2) there 
exists only one solution of capillary routing. 

We introduced ROR coefficient, a method for rating multi-path routing patterns by a single 
scalar value. The ROR rating corresponds to the total redundancy overhead that the sending node 
must provide in order to combat the losses occurring from non-simultaneous failures of links in 
the communication path. Despite the fact that the spreading out of the routing results in the 
increase of the overall failure rate of underlying links, with capillarization the overall requirement 
in adaptive FEC packets decreases substantially. 

Capillary routing can be applicable to multi-hop mobile wireless networks, where wireless 
content can be streamed to and from the user via multiple base stations; or to the public internet, 
where, if the physical routing cannot be accessed, an overlay network can be used [Guven04]. 
We hope that our investigation will provide some guidelines for future design of path diversity-
based real-time streaming systems. 
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Appendix A. Rate of publications on parallel I/O 
Parallel I/O was a hot topic in 1998. For a period from 1986 through 2006, the chart below 

shows the rate of IEEE publications related to parallel I/O on a relative scale. 
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Figure 45. Yearly fractions of IEEE publications related to Parallel I/O 
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Appendix B. SFIO function calls 
This appendix presents the API functions of the SFIO library. The SFIO interface consists 

of file management, data access and error management operations. 

B.1. File management operations 
File management operations are mopen, mclose, mchsize, mdelete and mcreate. 

MFILE* mopen(char *name, int stripeUnitSz); 
void mclose(MFILE *f); 
void mchsize(MFILE *f, long size); 
void mdelete(char *name); 
void mcreate(char *name); 

All the presented file management operations are collective. Operation mopen returns to 
the compute node a pointer to the logical striped file descriptor. The striped file name required for 
the mopen, mdelete and mcreate commands is a string containing the specification of the I/O 
nodes together with the paths of subfiles representing the global striped file. The format of the 
name is a sequence of subfiles, separated by semicolon: 

 “<host>,<path>;<host>,<path>...” 

For example: 

“tonep0,/tmp/a.dat;tonep1,/tmp/a.dat;” 

The mchsize operation changes the size of the logical file. If the specified size is smaller 
than the current, the operation truncates the logical file to the new size. 

B.2. Data access operations 
There are single block and multi-block data access requests. 

void mread(MFILE *f, long offset, 
    char *buffer, unsigned size); 
void mwrite(MFILE *f, long offset, 
    char *buffer, unsigned size); 
void mreadc(MFILE *f, long offset, 
    char *buffer, unsigned size); 
void mwritec(MFILE *f, long offset, 
    char *buffer, unsigned size); 
void mreadb(MFILE *f, 
    unsigned numberOfBlocks, 
    long offsets[], 
    char *buffers[], 
    unsigned sizes[]); 
void mwriteb(MFILE *f, 
    unsigned numberOfBlocks, 
    long offsets[], 
    char *buffers[], 
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    unsigned sizes[]); 

The data access requests are blocking and non-collective. The functions mreadc and 
mwritec are the optimized versions of the mread and mwrite functions. The multiple block data 
access operations mreadb and mwriteb are optimized. The numberOfBlocks argument in mreadb 
and mwriteb operations specifies the number of blocks to be accessed by the single operation in 
the logical file. The information about each block has to be provided by three arrays offsets, 
buffers and sizes each having a number of elements given by the variable numberOfBlocks. The 
offsets array contains the positions of each block in the logical file. The buffers array contains the 
addresses of each block in the user memory and the sizes array provides the size of each memory 
block in bytes. 

B.3. Error management operations 
Error management is provided by merror and its collective counterpart merrora functions. 

void merrora(unsigned long *ioerr); 
void merror(unsigned long *ioerr); 
void prioerrora(); 

Functions merror and merrora return an array of error statistics accumulated on all I/O 
nodes. At the same time, they reset the error counters at the I/O nodes. Statistics are accumulated 
for operating system I/O calls and listed according to open, close, creat, unlink, ftruncate, lseek, 
write and read local OS functions. The function prioerrora is a collective opera¬tion which prints 
the error statistics to the standard output of the application. 
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VPN  Virtual Private Network 
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SFIO  Striped File I/O 

TNET  High-performance switch-based communication network aiming at low-
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EPFL  École Polytechnique Fédérale de Lausanne, Swiss Federal Institute of 
Technology Lausanne, http://www.epfl.ch/
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Technology Zurich 
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MPICH  “CH” in MPICH stands for “Chameleon”, symbol of adaptability to one’s 
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ADIO  Abstract Device Interface for Portable Parallel I/O 

DMA  Direct Memory Access 

ANL  Argonne National Laboratory, http://www.anl.gov/
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