
Acknowledgements

 i

Summary

 ii

Résumé

 iii

Table of Contents
Acknowledgements.. i
Summary ... ii
Résumé... iii
Table of Contents... iv
Chapter 1. Introduction... 1

Section 1.1. Parallel communication challenges... 1
Section 1.2. Capacity enhancement and fault-tolerance ... 2
Section 1.3. Fine-grained and coarse-grained network paradigms 4

1.3.1. Packet switching or hot potato routing ... 4
1.3.2. Wormhole routing... 5

Section 1.4. Three topics in parallel communications .. 6
1.4.1. Problems and the objectives.. 6
1.4.2. Structure of the thesis.. 7

Chapter 2. Parallel I/O solutions for cluster computers.. 9
Section 2.1. Introduction... 9
Section 2.2. Challenges... 10
Section 2.3. File striping ... 12
Section 2.4. Implementation layers... 13
Section 2.5. The SFIO Interface ... 14
Section 2.6. Optimization principles... 16
Section 2.7. Functional architecture and implementation... 18
Section 2.8. SFIO performance... 21
Section 2.9. MPI-I/O implementation on top of SFIO.. 25
Section 2.10. Conclusions and the recent developments in Parallel I/O 30

Chapter 3. Liquid scheduling of parallel transmissions in coarse-grained low-latency
networks 32
Chapter 4. Capillary routing: parallel multi-path routing for fault-tolerant real-time
communications in fine-grain packet-switching networks ... 33

Section 4.1. Introduction... 33
Section 4.2. Capillary routing ... 35

4.2.1. Basic construction... 35
4.2.2. Numerically stable version ... 36
4.2.3. Bottleneck hunting loop.. 39

Section 4.3. Redundancy Overall Requirement (ROR).. 40
4.3.1. Definition of ROR... 40
4.3.2. Computing FEC block size ... 42
4.3.3. Streaming with large FEC blocks ... 43

Section 4.4. Redundancy Overall Requirement in capillary routing 44
Section 4.5. Conclusions... 45

Appendix A. Rate of publications on parallel I/O.. 47
Appendix B. SFIO function calls ... 48

B.1. File management operations ... 48
B.2. Data access operations .. 48
B.3. Error management operations ... 49

 iv

Bibliography ... ii
Biography... viii
Personal Bibliography.. ix
Glossary .. x
Table of Figures ... xiii

 v

Chapter 1. Introduction

Section 1.1. Parallel communication challenges
We do not know if parallel communications were first used for bandwidth enhancement or

for fault-tolerance. Laying the first transatlantic cable took entrepreneur Cyrus Field twelve years
and four failed expeditions. Cables were constantly snapping and could not be recovered from the
ocean floor. On 5 August 1858 a cable started to operate, but for a very short time. It stopped
operating on September 18. Eight years later, on 13 July 1866, the Great Eastern, by far the
largest ship, began laying a cable, this time made of a single piece, 2730 nautical miles long,
insulated with a new resin from the gutta-percha tree growing in Malay Archipelago. When two
weeks later, on 27th of July 1866, the cable began operating, the mission for Cyrus Field was not
yet accomplished. He immediately sent back the Great Eastern to sea for landing the second
parallel cable. By 17 September 1866, not one, but two parallel circuits were sending messages
across the Atlantic.

Figure 1. Loading the transatlantic cable into the ‘Great Eastern’ in
1865

This transatlantic cable station was transmitting messages nearly 100 years. It was still in
operation when in March 1964, in the middle of the cold war, Paul Baran wrote an article “On
Distributed Communications Networks”. At that time Paul Baran was working on a
communication method which could withstand a nuclear attack and enable transmissions of vital
information across the country [Baran64], [Baran65]. Paul Baran concluded that extremely
survivable networks can be built if structured with parallel redundant paths. He has shown that
even moderated redundancy permits withstanding extremely heavy weapon attacks. In 1965, the
Air Force approved testing of Baran’s theory. Four years later, on 1st October 1969, the
progenitor of the global Internet, the Advanced Research Projects Agency Network (ARPANET)
of the U.S. Department of Defense, was born.

 1

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baran64.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baran65.pdf

Figure 2. Diagrams from the 51-page report of Paul Baran to the U.S.
Air Force, 1964

While the inspiration for structuring the early Internet with parallel paths came from the
challenge to achieve a high tolerance to failures, almost a decade later IBM, at a much smaller
scale, invented a parallel communication port for achieving faster communications. Since then,
many other research directions relying on parallel and distributed communications have
developed. Thanks to parallel communications uniform battery power consumption maximizing
the network lifetime can be achieved in sensor and ad-hoc networks (energy efficiency and
power-aware routing) [Ping06], [Luo06], [Kim06]. Parallelizing the communications across
independent networks aims at offering additional security and protection of information, e.g. in
voice over IP networks. Redundant parallel transmissions can be required for precision purposes,
e.g. in GPS.

Section 1.2. Capacity enhancement and fault-tolerance
The focus of the research in parallel communications is maximizing the capacity and the

fault-tolerance. Bandwidth is enhanced by using several parallel circuits between a source and a
destination [Hoang06]. Yet a greater level of parallelism can be achieved by distributing the
sources and destinations across the network. For example distributing storage resources in
parallel I/O systems parallelizes both the I/O access and the communications.

Regarding fault-tolerance, the nature has created many systems relying on parallel
structures. When developing its distributed network models (the seeds of the Internet), Paul Baran

 2

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ping06.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Luo06.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Hoang06.pdf

was inspired himself from discussions with neurophysiologist Warren Sturgis McCulloch about
the capability of the brain to recover lost functions by bypassing a dysfunctional region thanks to
parallel structures. The living multi-cellular organisms from insects to vertebrates demonstrate
numerous other examples of duplicated organs that are functioning in parallel. The evolution of
life on earth made reduplicated organs nearly a universal property of living bodies
[Gregory35].

Renal
vein

Renal
vein

Renal
artery

Renal
artery

U
re

te
r

U
re

te
r

Figure 3. Kidney blood filtering in the human organism

Very often, the primary purpose of duplication of organs is the tolerance to failures while
the capacity enhancement is of a secondary importance. The ideas of achieving extremely high
levels of fault-tolerance in bio-inspired electronic systems of the future (e.g. by reproducing and
healing) have always intrigued engineers and stimulated their imaginations [Bradley00].

Pu
lm

on
ar

y
ar

te
ry

Pu
lm

on
ar

y
ar

te
ry

Pu
lm

on
ar

y
ve

in

Pu
lm

on
ar

y
ve

in

Figure 4. Pulmonary circuit of the human organism

Maintaining an idle parallel resource has been already used in many mission-critical man-
made systems. In networking the communication can switch (often automatically) to a backup

 3

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gregory35.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Bradley00.pdf

path in case of failures of primary links. An appealing approach is however to use the parallel
resources simultaneously, similarly to biological organisms (see Figure 3 and Figure 4). This is
possible thanks to packetized communications where the communication can be routed
simultaneously over several parallel paths. Individual failures should cause only minimal
damages to the communication flow.

Section 1.3. Fine-grained and coarse-grained network
paradigms

1.3.1. Packet switching or hot potato routing
Store and forward routing was simultaneously and independently invented by Donald

Davies and Paul Baran. The term “packet switching” comes from Donald Davies. Paul Baran
called this technique “hot potato routing” [Boehm64], [Davies72], [Baran02]. Today’s
internet relies on a store-and-forward policy: each switch or router waits for the full packet to
arrive before sending it to the next switch. The first store and forward routers of ARPANET were
called Interface Message Processors (see Figure 1).

Figure 5. One of the first Interface Message Processor (IMP) of
ARPANET connecting UCLA with SRI in August 1969

The router in packet switched networks maintains queues for processing, routing and
transmitting through one of the outgoing interfaces. No circuit is reserved from a source to a
destination. There is no bandwidth reservation policy. This may lead to contentions and
congestions. To avoid congestions in the packet discarding method, if a packet arrives at a switch
and no room is left in the buffer, the packet is simply discarded (e.g., UDP). The adjustable
window method gives the original sender the right to send N packets before getting permission to
send more (e.g., TCP).

 4

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Boehm64.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Davies72.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baran02.pdf

Figure 6. Packet switching network: packets are entirely stored at each
intermediate switch and then only forwarded to the next
switch

Since the packets are completely stored at each intermediate switch before being
transmitted to the next hop, a communication delay propagates between the end nodes as the
number of hops separating the nodes increases. The communication delay is a function of the
number of intermediate switches multiplied by the size of the packet.

1.3.2. Wormhole routing
Wormhole or cut-through routing is used in multiprocessor and cluster computer networks

aiming at high performance and low latency. Store and forward switching technology cannot
meet the strict bounds on the communication latencies dictated by requirements of a computing
cluster. Wormhole routing technology is solving the problem of the propagation of the delay
across a multi-hop communication path in store-and-forward switching.

The short address is translated at an intermediate switch before the message itself arrives.
Thus, as soon as the message starts arriving, the switch very quickly examines the header without
waiting for the entire message, decides where to send the message, sets up an outgoing circuit to
the next switch and then immediately starts directing the rest of the message that is being received
to the outgoing interface. The switch transmits the message out, through an outgoing link, at the
same time as the message arrives. By quickly setting up the routing at each intermediate switch
and by directing the message content to the outgoing circuit without storing the message, the
message traverses the network at once, simultaneously through all intermediate links of the path.
The destination node, even if it is many hops away, starts receiving the message nearly as soon as
the sending node starts its transmission. The message is simply “copied” from the source to the
destination without being ever entirely stored anywhere in between (Figure 7).

This technique is implemented by breaking the packets into very small pieces called flits
(flow units). The first flit sets up the routing behavior for all subsequent flits associated with the
message. The messages rarely (if ever) have any delay as they travel though the network. The
latency between two nodes, even if separated by many hops, becomes similar to the latency of
directly connected nodes.

 5

Figure 7. Wormhole or cut-through routing network: a packet is
“copied” through the communication path from the source
directly to the destination without being stored in any
intermediate switch

MYRINET is an example of a wormhole routing network for cluster supercomputers. MPI
is the most popular communication library for these networks.

Wormhole routing and store-and-forward packet switching are examples from two well
known network paradigms. Packet switching belongs to the fine-grained network paradigm and
wormhole routing is an example of the coarse-grained circuit switching paradigm. Nearly all
coarse-grained networks are aiming at low latencies and use connection oriented transmission
methods. ATM, frame relay, TDM, WDM or DWDM, all-optical switching, light-path on-
demand switching, Optical Burst Switching (OBS), MYRINET, wormhole routing, cut-through
and virtual cut-through routing are all broadband or local area network examples of the coarse-
grained switching paradigm [Worster97], [Qiao99].

Section 1.4. Three topics in parallel communications
It is hard to imagine a single study consistently covering all areas of parallel and distributed

communications. In this dissertation we are focusing on three anchor topics. The first topic is
parallel I/O in computer cluster networks. The second topic addresses the problems in high-speed
low-latency networks arising from simultaneous parallel transmissions, e.g. those of parallel I/O
requests. The third topic addresses fault-tolerance in fine-grained packetized networks.

These three topics are the main bold sides of the domains covered by parallel
communications. While all these three topics rely on parallel communications, they are pursuing
three orthogonal goals. For achieving the desired results we rely on techniques derived from
different disciplines, such as graph theory or erasure resilient coding.

1.4.1. Problems and the objectives
Parallel I/O relies on distributed storage. The main objectives pursued in parallel I/O are a

good load balance, the scalability as the number of I/O nodes grows and the throughput efficiency
when multiple computing nodes are accessing concurrently a shared parallel file. Parallel I/O is

Message
Source

Message
Sink

Message
Sink

Message
Source

 6

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Worster97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Qiao99.pdf

used in computer clusters, interconnected with high performance coarse-grained network (such as
MYRINET) that can meet strict latency bounds. In such networks, large messages are “copied”
across the network from the source computer directly to the destination computer. During of such
a “copy” process, all intermediate switches and links are simultaneously involved in directing the
content of the message. Low latency however induces an increased tendency to congestions.
When the network paths of several transmissions overlap, an attempt to carry out them in parallel
will unavoidably cause a congestion. The system becomes more prone to congestions as the size
of the messages and the number of parallel transmissions increase. The routing scheme and the
topology of the underlying network have significant impact. Properly orchestrating the parallel
communications is necessary to achieve a true benefit in terms of the overall throughput.

In the context of fine-grained packet-switching, achieving fault tolerance by streaming
information simultaneously across multiple parallel paths is a very attractive idea. Naturally, this
method minimizes losses occurring from individual failures on the parallel paths, but the large
number of parallel paths increases also the overall probability of individual failures influencing
the communication. Streaming across parallel paths can be combined with injection at the source
of a certain amount of redundant packets generated with channel coding techniques. Such a
combination ensures the delivery of the information content during individual link failures on
parallel paths. We propose a novel technique to measure the advantageousness of parallel routing
for this combined method of parallel streaming with redundant packets.

Each of the three topics is addressed by a detailed analysis of the corresponding problems
and by proposing a novel method for their solutions.

1.4.2. Structure of the thesis
The parallelism in I/O access and communication relies on distribution of the storage

resources. A high level of parallelism with a high load balance can be achieved thanks to fine
granularity. The drawbacks of fine granularity are the network communication and storage access
overheads. In Chapter 2, we present a library called Striped File I/O (SFIO) which combines fine
granularity with high performance thanks to several important optimizations. We describe the
interface and the functional architecture of the SFIO system along with the the optimization
techniques and their implementation. Chapter 2 is concluded by benchmarking results.

Optimized parallel I/O results in simultaneous transmissions of large data chunks over the
underlying network. Since parallel I/O is mostly used in supercomputer cluster networks having
strict bounds on the latency and the throughput, the underlying network typically relies on coarse-
grain switching. Such networks are prone to congestions when many parallel transmissions carry
very large messages. Depending on the network topology, the rate of congestions may grow so
rapidly that the overall throughput is reduced despite the increase of the number of the
contributing nodes. The gain achieved from the aggregation of communications in parallel I/O at
the connection layer can be outperformed by losses due to blocked messages occurring at the
network layer. Solving congestions locally by default FIFO method may result in idle times of
other critical resources. Scheduling of transmissions at their sources aiming at an efficient

 7

utilization of communication resources can optimally increase the application throughput. In
chapter 3 we present a collective communication scheduling technique, called liquid scheduling,
which in coarse-grained networks achieves the throughput of a fine-grained network or that of a
liquid flowing through a network of pipes.

Chapter 4 is dedicated to fault-tolerant multi-path streaming in packetized fine-grained
networks. We demonstrate that in packet-switched networks combination of the channel coding at
the packet level with the multi-path parallel routing, significantly improves the fault-tolerance of
communication, especially in real-time streaming. We show that further development of the path
diversity in multi-path parallel routing patterns often brings additional benefit to the streaming
application. We designed capillary routing algorithm generating parallel routing patterns of
increasing path diversity. We also introduced a method for rating multi-path routing patterns of
any complexity with a single scalar value, called ROR, standing from Redundancy Overall
Requirement.

 8

Chapter 2. Parallel I/O solutions for cluster
computers

This chapter presents the design and evaluation of a Striped File I/O (SFIO) library providing high
performance parallel I/O within a Message Passing Interface (MPI) environment. Uniform
parallelization of I/O access requests and a good load balance when accessing and transferring data
to and from distributed global storage rely on small striping units. Small stripe unit size, however,
increases the communication and disk access cost. Thanks to the optimizations of the
communications and disk accesses, SFIO exhibits high performance at very small striping factors.
We present the functional architecture of SFIO system. Using MPI derived datatype capabilities,
we transmit highly fragmented data over the network by single network operations. By analyzing
and merging the I/O requests at the compute nodes a substantial performance gain is obtained in
terms of I/O operations. At the end of the chapter we present the parallel I/O performance
benchmarks on the Swiss-Tx cluster supercomputer consisting of DEC Alpha computers,
interconnected with both, Fast Ethernet and a coarse-grained low latency communication network,
called TNET.

Section 2.1. Introduction
The parallelism in I/O access and communication relies on distribution of the storage

resources. A high level of parallelism with a high load balance can be achieved thanks to fine
granularity. The drawbacks of fine granularity are the network communication and storage access
overheads. The overheads resulting from fine granularity may considerably reduce the gain in
throughput achieved by parallelism.

Combination of extremely fine granularity for the best load balance with a very high
throughput exhibiting nearly linear scalability is the subject of the topic. Scalability and the high
performance at extremely small stripe unit sizes are achievable thanks to three proposed
optimization techniques.

Firstly, multi-block user interface permitting the library to recognize the overall pattern of
multiple user requests is a must. Multi-block interface permits a greater network and disk access
aggregation. Highly fragmented multi-block patterns of the logical file may also turn out to be
relatively contiguous patterns at the level of physical sub-files. Without considering multi-block
interface the optimization potential of the parallel I/O library would be seriously constrained.

Secondly, the compute nodes are equipped with a caching system of I/O requests. It
aggregates all network communication transfers to and from individual I/O nodes. Network
aggregation of the incoming traffic is computed and requested also by the compute nodes. The
data segments are therefore traversing the network combined into very large messages, reducing
thus the communication overhead to the minimum. The drawback of this method is an increase of

 9

the risk of congestions, which is the subject of the second topic addressed in this document (see
Chapter 3).

Thirdly, the caching system preprocessor at the compute nodes the collected I/O requests
addressed to each individual destination. It removes the overlapping segments and sorts the
requests according to their offsets. The caching preprocessor merges multiple remote I/O requests
into single contiguous I/O requests, whenever it is possible. Since network transmissions to
individual destinations are already being aggregated in both directions, by merging multiple
requests into simple ones, no additional gain is achieved in terms of network communication.
However, the performance gain from request merging at the I/O nodes is however considerable.

All three forms of optimizations carried out on the cached I/O requests are realized only at
the level of memory pointers and disk offsets without accessing or copying the actual data. Once
the pointers and offsets stored in the cache are optimized, a zero-copy implementation is
streaming the actual data directly between the network and the fragmented memory pattern. The
zero-copy implementation relies on MPI derived datatypes, built on the fly.

Section 2.2. Challenges
In 1998, the Swiss Federal Institutes of Technology in Lausanne (EPFL) and Zurich

(ETHZ), the Swiss Commission for Technology and Innovation (CTI), Supercomputing Systems
(SCS), and Compaq Computer Corporation, in a cooperation with two laboratories in the United
States: the Sandia National Laboratory (SNL) and the Oak Ridge National Laboratory (ORNL),
started a common project called Swiss-Tx with the aim to develop and build the first Swiss
teraflop supercomputer. The goal was to design supercomputing systems based mainly on
commodity parts. During this project several Swiss-Tx supercomputers were installed, all based
on commodity Compaq Alpha Servers. Only the communication hardware and communication
software are custom-made, because available off-the-shelf products, such as Ethernet with the
socket interface, do not offer the necessary bandwidth, latency, and functionality.

In the course of this project, was developed and installed a new efficient communication
library for commodity supercomputing, called Fast Communication Interface (FCI) and a custom-
made communication hardware for the Swiss-Tx supercomputers, called TNET. TNET is a
proprietary high performance network aiming at low-latency and high-bandwidth. A full
implementation of the standardized MPI for TNET network was also written (on top of FCI).
Early Swiss-Tx supercomputers were using EasyNet, a bus-based low-latency network. The
switch-based TNET network, which is designed specifically for large and complex network
topologies, has replaced EasyNet in all recent Swiss-Tx architectures [Brauss99A],
[SwissTx01].

 10

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Brauss99A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/SwissTx01.pdf

Figure 8. Swiss-Tx supercomputer in June 2001

In many parallel applications I/O is a major bottleneck. In 1998 parallel I/O was a hot topic
(Appendix A). At the Peripheral Systems Laboratory of EPFL we were in charge of the design of
an MPI based parallel I/O system for the Swiss-Tx parallel supercomputer.

Although the I/O subsytems of parallel machines may be designed for high performance, a
large number of applications achieve only about a tenth or less of the peak I/O bandwidth
[Thakur98]. The main reason for poor application-level I/O performance is that parallel-I/O
systems are optimized for large accesses (of the order of megabytes), whereas parallel
applications typically make many small I/O requests (of the order of kilobytes or even less). The
small I/O requests made by parallel programs are due to the fact that in many parallel
applications, each process needs to access a large number of relatively small pieces of data that
are not contiguously located in the file [Baylor96], [Crandall95], [Kotz96],
[Smirni96], [Thakur96A].

We designed the SFIO library which optimizes not only large data size accesses but also
small data size accesses of an order of a fraction of one kilobyte. The extremely small stripe unit
size (e.g. hundred bytes) provides very high level of load balance and parallelism. The support of
a multi block Application Program Interface (API) enables the underlying I/O system to better
optimize accesses to fragmented data both in memory and in the logical file. The multi-block
interface of SFIO allowed us also to implement a portable MPI-I/O interface
[Gabrielyan01]. Finally, thanks to the overlapping of communications and I/O and the
underlying optimizations of I/O requests cached at the compute nodes, SFIO exhibits a highly
competitive performance and a nearly scalable throughput even at very low stripe unit sizes (such
as 75 bytes).

 11

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Crandall95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kotz96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Smirni96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur96A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gabrielyan01.pdf

Section 2.3. File striping
For I/O bound parallel applications, parallel file striping may represent an alternative to

Storage Area Networks (SAN). In particular, parallel file striping offers high throughput I/O
capabilities at a much cheaper price, since it does not require a special network for accessing the
mass storage sub-system [Bancroft00].

Figure 9. File Striping

Parallel I/O systems should offer highly concurrent access capabilities to the common data
files by all parallel application processes. They should exhibit linear increase in performance
when increasing both the number of I/O nodes and the number of application’s processing nodes.
Parallelism for input/output operations can be achieved by striping the data across multiple disks
so that read and write operations occur in parallel (see Figure 9). A number of parallel file
systems were designed ([More97], [Oldfield98], [Messerli99],
[Chandramohan97], [Gorbett96], [Huber95], [Kotz97]), which rely on parallel file
striping.

MPI is a widely used standard framework for creating parallel applications running on
various types of parallel computers [Pacheco97]. A well known implementation of MPI, called
MPICH, has been developed by Argone National Laboratory [Thakur99A]. MPICH is used on
different platforms and incorporates MPI-1.2 operations [Snir96] as well as the MPI-I/O subset of
MPI-II ([Gropp98], [Gropp99], [MPI2-97B]). MPICH is most popular for cluster architecture
supercomputers, based on Fast or Gigabit Ethernet networks. MPICH’s MPI-I/O underlying I/O
implementation is sequential and is based on NFS [Thakur99A], [Thakur98].

Due to the locking mechanisms needed to avoid simultaneous multiple accesses to the
shared NFS file, MPICH MPI-I/O write operations could be carried out only at a very slow
throughput (this version of MPICH was used in 2001).

4

Logical File

11

0
1

2

5
6

12
13

148
9

10

16

17

18

7 15
16 8 0

17 9 1

18 10 2

19 11 3

6 14

5 13

4 12

3

7

15

Disk5

Disk6

Disk7

Disk8

Subfile 5 Disk4

Disk3

Disk2

Disk1
Subfile 1

Stripe Unit

 12

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Bancroft00.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/More97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Oldfield98.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Messerli99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Chandramohan97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gorbett96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Huber95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kotz97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur99A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur99A.pdf

Another factor reducing peak performance is the read-modify-write operation useful for
writing fragmented data to the target file. Read-modify-write requires reading the full contiguous
extension of data covering the data fragments to be written, sending it over the network,
modifying it and transmitting it back. In the case of high data fragmentation, i.e. small chunks of
data spread over a large data space within the file, network access overhead becomes dominant.

SFIO aims at offering scalable I/O throughput. The fine granularity, required for the best
parallelization and load balance, dramatically increases the communication and disk access costs.
Our SFIO parallel file striping implementation integrates efficient optimizations merging sets of
fragmented network messages and disk accesses into single contiguous messages and disk access
requests. The merging operation makes use of the MPI derived datatypes.

The SFIO library interface does not provide non-blocking operations, but internally,
accesses to the network and disks are made asynchronously. Disk and network communications
are overlapping in time resulting in additional gain in overall performance.

Section 2.4 presents the overall architecture of the SFIO implementation as well as the
software layers providing an MPI-I/O interface on top of SFIO. The SFIO interface description
and small examples are provided in Section 2.5. Optimization principles are presented in Section
2.6. The details of the system design, caching techniques and other optimizations are presented in
Section 2.7. Throughput benchmarks are given for various configurations of the Swiss-Tx
supercomputer [Kuonen99A]. The performances of SFIO on top of MPICH and on top of the
native FCI communication system are given in Section 2.8.

Section 2.4. Implementation layers
The SFIO library is implemented using MPI-1.2 message passing calls. It is therefore as

portable as MPI-1.2. The local disk access calls, which depend on the underlying operating
system are non-portable. However, they are separately integrated into the source for the Unix and
Windows implementations.

The SFIO parallel file striping library offers a simple Unix like interface extended for
multi-block operations. We then show how to provide an isolated MPI-I/O interface on top of
SFIO [Gabrielyan01]. In MPICH’s MPI-I/O implementation there is an intermediate level,
called ADIO [Thakur96B], [Thakur98], which stands for Abstract Device interface for parallel
I/O. We successfully modified the ADIO layer of MPICH to route calls to the SFIO interface
(Figure 10).

 13

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kuonen99A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gabrielyan01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur96B.pdf

MPI-I/O Interface

Modified ADIO

SFIO

MPICH MPI

Sockets
FCI

TCP/IP

Ethernet TNET

Figure 10. SFIO integration into MPI-I/O

On the Swiss-T1 machine, SFIO can run on top of MPICH as well as on top of MPI/FCI.
MPI/FCI is an MPI implementation making use of the low latency and high throughput coarse-
grained wormhole-routing TNET network [Horst95], [Brauss99A].

Unlike the majority of file access sub-systems SFIO is not a block-oriented library
[Gennart99], [Chandramohan97], [Lee95], [Lee96], [Lee98]. Independence from
block orientation provides a number of advantages. There is no need to send entire blocks over
the network or to access them on the disk. The stripe units do not form blocks; neither network
transfers nor disk accesses are rounded to the size of the stripe unit size. The amount of data
accessed on the disk and transferred over the network is the size resulting from SFIO calls.

Section 2.5. The SFIO Interface
This section presents the most frequent interface functions of SFIO. The full list of API

functions is given in Appendix B. Two functions, mopen and mclose are provided to open and
close a striped file. These functions are collective operations for all processing nodes. A file
should be opened by all compute nodes irrespectively of whether that node uses the file or not.
This restriction is placed in order to ensure the correct behavior of future collective parallel I/O
functions. Additionally, the operation of opening as well as of closing a file implies a global
synchronization point in the program. The function mopen returns a descriptor of the global
parallel file. This function has a very simple interface. First argument of mopen is a single string
specifying the global file name, which contains the locations and names of all subfiles. The
second argument of mopen is the stripe unit size in bytes. The global file name format is a simple
semi-column separated concatenation of local subfile names (including their hostnames) in the
right order. The format is as follows:

“<host1>,<file1>;<host2>,<file2>;<host3>,<file3>;…”

For example, the following call opens a parallel file with a stripe unit size of 5 bytes
consisting of two local subfiles located on hosts node1 and node2:

 14

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Horst95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Brauss99A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gennart99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Chandramohan97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Lee95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Lee96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Lee98.pdf

f=mopen(“node1,/tmp/a.txt;node2,/tmp/a.txt”,5);

Other file management operations, such as mdelete or mcreate (see B.1 for file
management operations) also rely on this simple format for the global file name. SFIO does not
maintain any global metafile, neither it maintains any hidden metadata in the subfiles. The sum of
sizes of all local subfiles is exactly the size of the logical parallel file.

The generic functions for read and write accesses to a file are respectively mreadc and
mwritec. These functions have four arguments. The first argument is the previously opened
parallel file descriptor, the second argument is the offset in the global logical file, the third
argument is the buffer and the forth argument is its size in bytes. The multiple I/O request
specification interface allows an application program to specify multiple I/O requests within one
call. This permits the library to carry out additional optimizations which otherwise would not be
possible. The multiple I/O request operations are mreadb and mwriteb. See Appendix B for the
full list of SFIO API functions.

The following C source code shows a simple SFIO example. The striped file with a stripe
unit size of 5 bytes consists of two subfiles. It is assumed that the program is launched with one
computing MPI process. A single compute node opens a striped file with two subfiles /tmp/a1.dat
at t0-p1 and /tmp/a2.dat at t0-p2. Then it writes a message “Hello World” and closes the global
file.

#include <mpi.h>
#include "/usr/local/sfio/mio.h"
int _main(int argc, char *argv[])
{
 MFILE *f;
 f=mopen("t0-p1,/tmp/a1.dat;t0-p2,/tmp/a2.dat;",5);
 //writes in the global file 11 characters at location 0
 mwritec(f,0,"Hello World",11);
 mclose(f);
}

Below is an example of multiple compute nodes simultaneously accessing the same striped
file. We assume that the program is launched with three compute nodes and two I/O MPI
processes. The global striped file consisting of two sub-files has a stripe unit size of 5 bytes. It is
accessed by three compute nodes. Each of them writes at different positions simultaneously.

#include <mpi.h>
#include "/usr/local/sfio/mio.h"
int _main(int argc, char *argv[])
{
 MFILE *f;
 char bu[]=”Hello*World!*”;
 int r=rank();
 //Collective open operation
 f=mopen("t0-p1,/tmp/a.dat;t0-p2,/tmp/a.dat;", 5);

 15

 //each process writes 13 characters at its own position
 mwritec(f,13*r,bu,13);
 mclose(f); //Collective close operation
}

In MPI, the function rank returns to each compute process its unique identifier (0, 1 and 2
in this example). Thus each compute processor running the same MPI program can follow its own
computing scenario. In the above example, the compute nodes use their ranks to write at their
respective (different) locations in the global file. After the writing to the parallel file is completed
in the above example, the global file contains the text combined from the fragments written by
the first, second and third compute nodes, i. e:
“Hello*World!*Hello*World!*Hello*World!*”

The text is distributed across the two subfiles such that the first subfile contains:
“Hellod!*Heorld!o*Wor”

And the second subfile contains (see Figure 11):

“*Worlllo*W*Hellld!*”

Figure 11. Distribution of a striped file across subfiles

The SFIO call mclose is a collective operation and is a global synchronization point for all
three computing processes of the example.

Section 2.6. Optimization principles
In our programming model, we assume a set of compute nodes and an I/O subsystem. The

I/O subsystem comprises a set of I/O nodes running I/O listener processes. Both compute
processes and I/O listeners are MPI processes within a single MPI program. This allows the I/O
subsystem to optimize the data transfers between compute nodes and I/O nodes using MPI
derived datatypes. The user is allowed to directly use MPI operations for computation purposes
only across the compute nodes. The I/O nodes are available to the user only through the SFIO
interface.

When a compute node invokes an I/O operation, the SFIO library takes control of that
compute node. The library holds the requests in the cache of the compute nodes queuing the
requests individually for each I/O node. The library then tries to minimize the cost of disk
accesses and network communications by preparing new aggregated requests taking care of

Hello *World!*Hello*World!*Hello*Wor ld!*

Hellod!*Heorld!o*WorFirst subfile

*Worlllo*W ld!**Hell

Global
file

Second subfile

 16

overlapped requests and their order. Transmission of the requests and data chunks is followed by
confirmation replies sent by I/O listeners to the compute node.

Optimizations of network communications and the disk accesses on the remote I/O node
are im

Optimized remote I/O node requests are kept in the cache of the compute nodes. They are
launch

sized when dealing with the low
stripe

plemented on the compute node. Requests queued for each I/O node are sorted according to
their offsets on the remote disk subfile. Then all overlapping or consecutive I/O requests hold in
the cache are combined, and a new optimized set of requests is formed (Figure 12). This also
creates new fragmentation patters in the memory of the computing processes.

Figure 12. Disk access optimization

Disk

Compute Nod

ed either at the end of the SFIO function call or when the compute node estimates that the
buffer size reserved on the remote I/O listener for data reception may not be sufficient. Memory
is not a problem on the compute node, since data always remains in the user memory and is not
buffered. When launching I/O requests, the SFIO library performs a single data transmission to
each of the I/O nodes. It creates on the fly derived datatypes pointing to the fragmented memory
patterns in user space associated to each of the I/O nodes. Thanks to these dynamically created
derived datatypes, the data is transmitted to or from each I/O node in a single stream without
additional copies. The I/O listener also receives or transmits the data as a contiguous chunk. Once
the optimized data exchange pattern is established between the memory of a compute node and
the remote I/O nodes, the corresponding local disk access operations are triggered by read/write
instructions received at the I/O node through the MPI transport.

The efficiency of these optimizations is especially empha
unit sizes. Figure 13 shows a comparison of the generic (un-optimized) write operation

with its optimized counterpart.

e
I/O Node

The 6 original data

User Block 1 User Block 3 Block 2

parts to be written to
disk are grouped into 2
remote subfile write
requests

User

 17

50

10
0

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

0

5

10

15

20

25

30

Write speed
(MB/s)

Stripe unit size (bytes)

Optimized and generic write access for 3 I/O nodes

mwrite
mwritec

Figure 13. Comparison of the optimized write access with a generic write
access on the scale of the file striping granularity (3 I/O nodes,
1 compute node, global file size is 660 Mbytes)

The performance gain achieved with multi-block access operations, thanks to the relevant
network optimizations is presented in Figure 14. Support of the multi-block interface permits to
fully benefit from the optimization subsystem.

Multi-block user interface

0
1
2
3
4
5
6
7
8
9

20
0

8,
20

0
16

,2
00

24
,2

00
32

,2
00

40
,2

00
48

,2
00

56
,2

00
64

,2
00

72
,2

00
80

,2
00

88
,2

00
96

,2
00

10
4,

20
0

User block size (bytes)

I/O
 sp

ee
d

(M
B

yt
es

/se
c)

mwriteb
mwrite

Figure 14. Comparison of the optimized multi-block write access with a
generic write access on the scale of the user memory
fragmentation (Fast Ethernet, stripe unit size is 1005 bytes)

Section 2.7. Functional architecture and implementation
In this section we describe the implementation of the access functions and the functional

architecture of the underlying optimization methods.

 18

An overall diagram of the implementation of the SFIO access function is shown in Figure
15. On the top of the diagram we have the application’s interface to data access operations and at
the bottom, the I/O node operations. The mread and mwrite operations are the non-optimized
single block access functions and the mreadc and mwritec operations are their optimized
counterparts. The mreadb and mwriteb operations are multi-block access functions.

Figure 15. SFIO functional architecture

All the mread, mwrite, mreadc, mwritec, mreadb, mwriteb file access interface functions
are operating at the level of the logical file. For example the SFIO write access operation
mwritec(f,0,buffer,size) writes data to the beginning of the logical file f. Access interface
functions are unaware of the fact that the logical file is striped across subfiles. In the SFIO
library, all the interface access functions are routed to the mrw cyclic distribution module. This
module is responsible for data striping. Contiguous requests (or a set of contiguous requests for
mwriteb and mreadb operations) are split into small fragments according to the striping factor.
The small requests generated by the mrw module contain information on the selected subfile, and

mread mreadc mreadb mwritec mwriteb
mwrite

mrw (cyclic distribution)

SFP_CMD
_WRITE SFP_CMD

_READ

sfp_rflush sfp_wflush

sfp_readc sfp_writec

sfp_rdwrc (request caching)

flushcache

sfp_read
sfp_write sortcache

sfp_readb sfp_writeb

mkbset

bkmerge
sfp_wait

all

SFP_CMD_
BREAD

SFP_CMD_
BWRITE

SF
IO

 li
br

ar
y

on
 c

om
pu

te
 n

od
e

I/O
 N

od
e

MPIMPI MPI MPI

I/O
 L

is
te

ne
r

 19

the node on which the subfile is located. Global pointers are translated to subfile pointers. Subfile
access requests contain enough information to execute and complete the I/O operation.

Thus, for the non-optimized mread and mwrite operations, the library routes the requests to
the sfp_read and sfp_write modules that are responsible to send appropriate single sub-requests to
the I/O nodes using MPI as the transport layer. The rest of the diagram (the right half) is
dedicated to optimized operations.

The network communication and disk access optimization is represented by the hierarchy
below the mreadc, mwritec, mreadb, mwriteb access functions. For these optimized operations
the mrw module routes the requests to the sfp_readc and sfp_writec functions. These functions
access the sfp_rdwrc module which stores the sub-requests into a two-dimensional cache (2D
cache). The 2D cache structure comprises as one dimension the I/O nodes and as a second
dimension the set of subfiles each I/O node is dealing with. Often, on each I/O node there is one
subfile per global file.

Each entry of the cache can be flushed. Flushing happens either because the user operation
terminates, i.e. when a signal is communicated down through the sfp_rflush and sfp_wflush
functions; or it can happen if the sfp_rdwrc module predicts a possible overflow of reception
buffers on the remote I/O nodes. The sfp_rdwrc function makes sure that all generated requests fit
within the buffers of the remote I/O nodes. The entries to be flushed are passed to the flushcache
operation that also frees the corresponding resources within the 2D cache.

When the flushcache operation is invoked, typically a large list of the sub-requests is
already been collected and needs to be processed. At this point the library can carry out an
effective optimizations in order to save network communications and disk accesses. Note that the
data itself is never cached, and always stays in user space avoiding costly copies from the user
memory to the system memory. Three optimization procedures are carried out, before an actual
transmission takes place. The requests are sorted by their offsets in the remote subfiles. This
operation is carried out by the sortcache module. Overlapping and consecutive requests are
merged whenever possible into single requests by the bkmerge module. This merging operation
reduces the number of disk access calls on the remote I/O nodes.

The mkbset module creates on the fly a derived MPI datatype pointing to the fragmented
pieces of user data in the user’s memory. This allows to efficiently transmit the data associated to
many requests over the network in a single contiguous stream. The data can be transmitted or
received without any memory copy at the application or library level. If a zero-copy MPI
implementation, relying on hardware Direct Memory Access (DMA), is used, the entire process
becomes copy-less, such that the actual data (even if fragmented) is transmitted directly from the
user space to the network.

The actual data transmission to the I/O nodes is carried out by the sfp_readb and sfp_writeb
functions together with the I/O instructions.

 20

Section 2.8. SFIO performance
In this section we explore the scalability of our parallel I/O implementation (SFIO) as a

function of the number of contributing I/O nodes. Performance results have been measured on the
Swiss-T1 machine [Kuonen99A]. The Swiss-T1 supercomputer is based on Compaq
AlphaServer DS20 machines and consists of 64 Alpha processors grouped in 32 nodes. Two
types of networks are interconnecting the processors, TNET and Fast Ethernet.

To have an idea about the Fast Ethernet network capabilities, throughput as a function of
number of nodes is measured by a simple MPI program. The nodes are equally divided into
transmitting and receiving nodes and an all-to-all traffic of relatively large blocks is generated.
Figure 16 demonstrates the cluster’s communication throughput scalability over Fast Ethernet.
The Fast Ethernet network of T1 consists of a full crossbar switch and Figure 16 exhibits the
corresponding linear scaling. Each pair of nodes (one receiver and one sender) is contributing to
the overall throughput a capacity of a single link.

T1 Ethernet

0
20
40
60
80

100
120
140
160
180

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of contributing nodes

N
et

w
or

k
th

ro
ug

hp
ut

 (M
B/

s)

maximum
average

Figure 16. Aggregate throughput of Fast Ethernet as a function of the
number of the contributing nodes

Let us now analyze the performances of the SFIO library on the Swiss-T1 machine on top
of MPICH using Fast Ethernet. We assign the first processor of each com¬pute node to a
compute process and the second processor to an I/O listener (Figure 17).

 21

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kuonen99A.pdf

Figure 17. SFIO architecture on Swiss-T1

SFIO performance is measured for concurrent write access from all compute nodes to all
I/O nodes, the striped file being distributed over all I/O nodes. The number of I/O nodes is equal
to the number of compute nodes. The size of the striped file is 2Gbyte and the striped unit size is
200 bytes only. The application’s SFIO performance as a function of the number of compute and
I/O nodes is measured for the Fast Ethernet network. It is presented in Figure 18. The white graph
represents the aver¬age throughput and the gray graph the peak performance. The fall of the
performance may be possi¬bly due to a non-efficient implementation of data intensive collective
operations in the version of MPICH that we used (2001).

SFIO on top of MPICH using Fast Ethernet

0
10
20
30
40
50
60
70
80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Number of compute and I/O nodes

Pe
rf

or
m

an
ce

 (M
B/

s)

maximum
average

Figure 18. SFIO/MPICH all-to-all I/O performance for a 200 bytes stripe
size

Let us analyze the capacities of the TNET network of the Swiss-T1 machine. TNET is a
high throughput and low latency network (less than 20ms MPI latency and more than 50MB/s

Com
pute

I/O
listen

Com
pute

I/O
listen

Com
pute

I/O
listen

Com
pute

I/O
listen

no
de

0

no
de

1

no
de

2

no
de

3

Fast Ethernet Full Crossbar Switch

 22

bandwidth) [Brauss99B]. A high performance MPI implementation called MPI/FCI is
available for communication through TNET [Brauss99B].

The Swiss-T1’s TNET network [Kuonen99B] consists of eight 12-port full crossbar
switches (Figure 20). The gray arrows in the figure indicate the static routing between switches
that do not have direct connectivity [Kuonen99A]. The topology together with the routing
information defines the network’s peak collective throughput over the subset of processors
assigned to a given application.

The TNET throughput as a function of the number of nodes is measured by a simple MPI
program. The contributing nodes are equally divided into transmitting and receiving nodes
(Figure 19). Due to TNET’s specific network topology (Figure 20), communication throughput
does not increase smoothly. A significant increase in throughput occurs when the number of
nodes increases from 8 to 10, 16 to 18 and 24 to 26 nodes.

T1 TNET

0
50

100
150
200
250
300
350
400
450

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of contributing nodes

N
et

w
or

k
th

ro
ug

hp
ut

 (M
B/

s)

maximum
average

Figure 19. Aggregate throughput of TNET as a function of the number of
the contributing nodes

 23

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Brauss99B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Brauss99B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kuonen99B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kuonen99A.pdf

Figure 20. The Swiss-T1 network interconnection topology

The performances of the SFIO library relying on MPI/FCI using the proprietary TNET
network of the Swiss-T1 supercomputer is measured according to an allocation of I/O and
compute nodes identical to that of Figure 17. As before, the first processor of each compute node
is assigned to a compute process and the second processor to an I/O listener process. Therefore,
each node acts both as a compute node and as an I/O node.

As in SFIO/MPICH, the performance of SFIO over MPI/FCI is measured for concurrent
write accesses from all compute nodes to all I/O nodes, the striped file being distributed over all
I/O nodes.

In order to limit operating system caching effects, the total size of the striped file linearly
increases with the number of I/O nodes. With a global file size proportional to the number of
contributing I/O nodes, we keep the size of subfiles per I/O node fixed at 1GB/subfile.

The stripe unit size is 200 bytes. The MPI/FCI application’s I/O performance is measured
as a function of the number of compute and I/O nodes (Figure 21). For each configuration, 53
measurements are carried out. At job launch time, pairs of I/O and compute processes are
assigned randomly to processing nodes.

PR56

PR63

PR48

PR55

PR00

PR08

PR15

PR39

PR32

PR47

PR40

PR31

PR24
PR23

PR16

1 2

0

7

3

4

56

PR07

PR00

PR01

0 Switch

Compute Processor

I/O Processor TNET link

Routing

 24

SFIO on top of MPI/FCI

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Number of compute and I/O nodes

Pe
rf

or
m

an
ce

 (M
B/

s)

write maximum
write average
read maximum
read average

Figure 21. SFIO all-to-all I/O performance on TNET

The I/O throughput on MPI/FCI scales well when increasing the number of nodes. This
configuration a stress test of SFIO system at extreme conditions in terms of the number of I/O
nodes (scalability), the number of compute nodes (resistance to simultaneous concurrent access)
and the extremely low stripe unit size (efficient optimizations of communication and disk access).

The speed-up may vary due to the communication topology of the TNET network (Figure
20) associated with the particular node allocation scheme. The effect of topology on I/O
performance is studied in Chapter 3. It turns out that after the half of the cluster nodes are
allocated the network topology becomes a major bottleneck, if the network transmissions are not
properly coordinated and scheduled.

Section 2.9. MPI-I/O implementation on top of SFIO
Typical scientific applications make a large number of small I/O requests. A typical

example is access to columns or blocks of out of core matrices resulting in a large number of
highly fragmented non contiguous requests. MPI’s derived datatypes provide the functionality for
dealing with fragmented data in memory.

Most parallel file systems (at the time of the design of SFIO) allowed a user to access only
a single, contiguous chunk of data at a time from a file. Noncontiguous data sets must therefore
be accessed by making separate function calls to access each individual contiguous piece.

With such an interface, the file system cannot easily detect the overall access pattern.
Consequently, the file system is constrained in the optimizations it can perform. To overcome the
performance and portability limitations of existing parallel-I/O interfaces, the MPI Forum defined
a new interface for parallel I/O as part of the MPI-2 standard [MPI2-97] referred as MPI-IO

 25

interface. It is a rich interface with many features designed specifically for performance and
portability. Some of the features are the support for noncontiguous accesses, non-blocking I/O,
and a standard data representation.

The MPI-I/O interface design allows the underlying parallel I/O subsystem to optimize
access operations. This is however possible only if the underlying I/O subsystem (on which MPI-
I/O interface is to be implemented) supports and optimizes multi-block access requests.

Thanks to the optimizations of multi-block access in SFIO, an implementation of MPI-I/O
on top of SFIO can be both efficient and will benefit from the advanced features of the MPI-I/O
design.

For specifying fragmentation patterns for different purposes, MPI-I/O interface does not
use arrays or vectors of locations and sizes. The fragmentation both in the memory and in the file
is specified by derived datatype objects.

In MPI-I/O the file view is a global concept, which influences all data access operations.
Each process obtains its own view of the shared data file. In order to specify the file view the user
creates a derived datatype. Since each memory access operation may use another derived datatype
that specifies the fragmentation in memory, there are two orthogonal aspects to data access: the
fragmentation in memory and the fragmentation of the file view (see Figure 22). This figure
presents four fragmentation scenarios from the perspective of one computing MPI process. The
file view pattern can be different from one process to another.

Figure 22. The use of derived datatypes in MPI-I/O interface

MPI-1 provides recursive techniques for creating datatype objects having an arbitrary data
layout in memory (see Figure 23). A derived opaque datatype object can be used in various MPI
operations (e.g. communication between compute nodes). The main obstacle for implementation

Memory

View

File

Memory

View

File

Memory

View

File

Memory

View

File

co
nt

ig
uo

us
 in

 m
em

or
y

fr
ag

m
en

ta
tio

n
of

 th
e

m
em

or
y

contiguous in memory, non-
contiguous in file

contiguous in memory
as well as in file

non-contiguous in memory,
contiguous in file

non-contiguous in memory
as well as in file

no
n-

co
nt

ig
uo

us
 in

 m
em

or
y

fragmentation of the file view
contiguous in file non-contiguous in file

 26

of a portable MPI-I/O interface is that the derived datatypes are opaque objects. Once created by
the user they cannot be decoded.

Figure 23. The recursive construction of derived datatypes in MPI
(“Contiguous” is a derived datatype obtained by joining a
repeated number of times another datatype, which in its turn
can be fragmented)

To implement an MPI-I/O interface we need to access the flattened fragmentation pattern
of a datatype created by a user. The difficulty is that the layout information, once encapsulated in
a derived datatype, can not be extracted with standard MPI-1 functions. While the standard MPI-1
interface provides complete functionality for creating derived datatypes, once they are created the
information cannot be retrieved back from these opaque objects with standard MPI-1 operations
(see Figure 24).

A solution for figuring out the flattened fragmentation patterns (in the memory and in the
file) could be to understand in each particular MPI-1 implementation the internal structure of the
derived datatypes created by the user (see Figure 24). The disadvantage is that (1) only the
operations for constructing the derived datatypes are standardized and the internal
implementation of the opaque datatype objects can significantly vary from one implementation of
MPI-1 to another and (2) the source code of a particular MPI-1 implementation is often not
available or undergo to frequent updates by the vendor. Our objective is to design a portable
implementation-independent solution for MPI-I/O running on top of any MPI-1 implementation.

VectorVector
St

ru
ct

ur
e

C
on

ti g
uo

us

St
ru

ct
ur

e

C
on

ti g
uo

us

C
on

tig
uo

us

Vector Vector

IN
TE

G
ER

B
Y

TE

B
Y

TE

B
Y

TE
B

Y
TE

B
Y

TE

B
Y

TE

B
Y

TE

B
Y

TE

B
Y

TE
B

Y
TE

B
Y

TE

B
Y

TE

IN
TE

G
ER

 27

MPI-I/O Interface Implementation

Im
pl

em
en

ta
tio

n
D

ep
en

de
nt

D

at
at

yp
e

Fl
at

te
ni

ng

N
o

D
ec

od
in

g
In

te
rf

ac
e

Striped File I/O

Standard Interface of
MPI-1

MPI-1 Platform Specific
Implementation

Figure 24. MPI-I/O implementation requires a method for retrieving the
fragmentation patterns of opaque MPI derived datatypes

Our method relies on reverse engineering technique for discovering the flattened pattern of
a user-created derived datatype.

Extension of the derived datatype is the size of the minimal contiguous space fitting the
fragmented pattern of the derived datatype. The size of the derived datatype is the sum of sizes of
all contributing contiguous pieces of the datatype. Standard MPI-1 provides functions for
retrieving both, the extension and the size of a derived datatype.

Derived datatypes can be used in many MPI operations. A typical MPI receive operation,
called MPI_Recv, receives a contiguous network stream and distributes it in memory according to
the data layout of the datatype. If the memory is previously initialized with a “gray color”, and
the network stream has a “black color”, then analysis of the memory after data reception will give
us the necessary information on the data layout. Instead of sending and receiving, it is possible to
use the MPI_Unpack standard MPI-1 operation for carrying this procedure in a single compute
node. The operation MPI_Unpack reads from a contiguous memory block having a size equal to
the size of a single unit of a derived datatype and writes to a contiguous block having a size equal
to the extension of that derived datatype (see Figure 25).

 28

Derived
datatype X

Buffer of the
size of the X’s

extentBuffer of the
size of the
datatype X

Contiguous
datatype

MPI_Send(source,size,MPI_BYTE,…)
 MPI_Recv(destination,1,X,…)

Figure 25. A reverse engineering method for discovery the fragmentation
pattern of an opaque datatype built by the user

Typically the derived datatypes are used as repetition units to describe fragmentation
pattern over large spaces. Decoding of only one unit is sufficient to discover the pattern. Once
derived datatype is decoded its vector map is associated with the MPI opaque object for all
further reuses.

With the technique for derived datatype decoding, it becomes possible to create an isolated
MPI-I/O solution on top of any standard MPI-1. The Argonne National Laboratory’s (ANL)
MPICH implementation of MPI-I/O is used with our datatype reverse engineering technique and
a subset of MPI-I/O operations has been implemented (Figure 26).

 29

MPI-I/O Interface Implementation

R
ev

er
se

E

ng
in

ee
ri

ng

Striped File
I/O

Standard Interface of MPI-1

 MPI-1 Platform Specific
Implementation

Figure 26. Isolated implementation of a portable MPI-I/O interface
functional on any MPI-1 implementation

Isolated MPI-I/O package automatically gives to every MPI-1 owner MPI-I/O facilities,
without any requiring to change or modify the current MPI-1 implementation.

Section 2.10. Conclusions and the recent developments in
Parallel I/O

For cluster computing, SFIO is a cheap alternative to specialized dedicated I/O hardwires.
It is a light-weight portable parallel I/O system for MPI programmers.

Since the design of SFIO, there were additional developments of parallel I/O. The impact
of the underlying network topology and the allocation scheme of the I/O and compute nodes is
studied in [Wu05A]. Further performance optimizations were achieved by scheduling of I/O
access requests, taking into account the global knowledge in the case of off-line access requests
and using pre-fetching relying on the predictions and estimations in the case of on-line access
requests [Abawajy03], [Kallahalla02]. There is an implementation suggesting to
increase the overall performance of collective read access operations not only by striping but also
by simple replication of data across several I/O nodes [Wu05B] and [Liu03]. Replication and
caching at I/O nodes requires a careful sequencing of all I/O operations in order to maintain the
consistency of replicated copies and of a global parallel file from the perspective of all compute
nodes. Relying on the file locking mechanisms may add a significant performance drawback.
Moreover file locking is not always implemented in large scale systems. Several methods were
proposed for allowing replications at I/O nodes and caching at compute nodes by maintaining the
consistency of the global file by relying on orthogonal MPI level communications between
compute nodes without using file locking mechanisms [Wu05B], [Coloma04]. There are
implementations suggesting parallel communications not only between a compute node and
different I/O nodes but also between a compute node and each individual I/O node. By doing this
a greater network throughput performance can be achieved [Liu03] and [Ali05]. The author
of [Ali05] reported an overall throughput of 291 Mbps with 18 compute and I/O processors.
The throughput of SFIO from 150 to 350 Mbps with 31 compute and I/O nodes still remains
competitive. In terms of the developments of parallel I/O interfaces, portable implementations of

 30

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Wu05A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Abawajy03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kallahalla02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Wu05B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Liu03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Wu05B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Coloma04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Liu03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ali05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ali05.pdf

MPI-I/O interface have been released [Thakur99B], [Baer04]. The fine granularity with the
resulting high level of load balance remains the strong point of SFIO, whose underlying
optimizations allows as small as a 75-byte stripe size with only negligible loss in performance.
Usually the parallel I/O systems are optimized for striping unit sizes not smaller than a few
kilobytes [Thakur99B]. For a balanced I/O workload in the servers an alternative suggestion
for dynamically adapting striping factors and dynamic data distribution was suggested [Ma03B].

 31

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur99B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baer04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur99B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ma03B.pdf

Chapter 3. Liquid scheduling of parallel
transmissions in coarse-grained low-
latency networks

 32

Chapter 4. Capillary routing: parallel multi-path
routing for fault-tolerant real-time
communications in fine-grain packet-
switching networks

In off-line streaming, packet level erasure resilient Forward Error Correction (FEC) codes rely on
the unrestricted buffering time at the receiver. In real-time streaming, the extremely short
playback buffering time makes FEC inefficient for protecting a single path communication against
long link failures. It has been shown that one alternative path added to a single path route makes
packet level FEC applicable even when the buffering time is limited. Further path diversity,
however, increases the number of underlying links increasing the total link failure rate, requiring
from the sender possibly more FEC packets. We introduce a scalar coefficient for rating a multi-
path routing topology of any complexity. It is called Redundancy Overall Requirement (ROR) and
is proportional to the total number of adaptive FEC packets required for protection of the
communication. With the capillary routing algorithm, introduced in this chapter we build
thousands of multi-path routing patterns. By computing their ROR coefficients, we show that
contrary to the expectations the overall requirement in FEC codes is reduced when the further
diversity of dual-path routing is achieved by the capillary routing algorithm.

Section 4.1. Introduction
Packetized IP communication behaves like an erasure channel. Information is chopped into

packets, and each packet is either received without error or not received. Packet level erasure
resilient FEC codes can mitigate packet losses by adding redundant packets, usually of the same
size as the source packets.

In off-line streaming erasure resilient codes achieve extremely high reliability in many
challenging network conditions [MacKay05]. For example, it is possible to deliver voluminous
files (e.g. recurrent updates of GPS maps) via satellite broadcast channel without feed-backs to
millions of motor vehicles under conditions of fragmental visibility (see [Honda04] and Raptor
codes [Shokrollahi04]). In the film industry, the day’s film footage can be delivered from
the location it has been shot to the studio that is many thousands of miles away not via FedEx or
DHL, but over the lossy internet even with long propagation delays (see [Hollywood03] and
LT codes [Luby02]). Third Generation Partnership Project (3GPP), recently adopted Raptor
[Shokrollahi04] as a mandatory code in Multimedia Broadcast/Multicast Service
(MBMS). The benefit of off-line streaming from application of FEC relies on time diversity, i.e.
on the receiver’s right to not forward immediately to the user the received information. Long
buffering is not a concern, the receiver can unrestrictedly hold the received packets, and as a
result packets representing the same information can be collected at very distant periods of time.

 33

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/MacKay05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/honda04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Shokrollahi04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/hollywood03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Luby02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Shokrollahi04.pdf

In real-time single-path streaming FEC can only mitigate short failures of fine granularity.
See [Choi06] using RS(24,20) packet level code with 20 source packets and 4 redundant packets
or also [Johansson02], [Huang05], [Padhye00] and [Altman01]. Due to restricted
playback buffering time, packets representing the same information cannot be collected at very
distant periods of time. Instead of relying on time-diversity FEC in real-time streaming can rely
on path-diversity. Recent publications show the applicability of FEC in real-time streaming with
dual-path routes. Author of [Qu04] shows that strong FEC sensibly improves video
communication following two disjoint paths and that in two correlated paths weak FEC codes are
still advantageous. [Tawan04] proposes adaptive multi-path routing for Mobile Ad-Hoc
Networks (MANET) addressing the load balance and capacity issues, but mentioning also the
potential advantages for FEC. Authors of [Ma03A] and [Ma04] suggests replacing in MANET
the link level Automatic Repeat Query (ARQ) by a link level FEC assuming regenerating nodes.
Authors of [Nguyen02] and [Byers99] studied video streaming from multiple servers. The
same author [Nguyen03] later studied real-time streaming over a dual-path route using a static
Reed-Solomon RS(30,23) code (FEC blocks carrying 23 source packets and 7 redundant packets).
[Nguyen03], similarly to [Qu04], compares dual-path scenarios with the single OSPF routing
strategy and has shown clear advantages of the dual-path routing. The path diversity in all these
studies is limited to either two (possibly correlated) paths or in the most general case to a
sequence of parallel and serial links. Various routing topologies have so far not been regarded as
a space to search for a FEC efficient pattern.

In this chapter we try to present a comparative study for various multi-path routing
patterns. Single path routing is excluded from our comparisons, being considered too hostile.
Steadily diversifying routing patters are built layer by layer with the capillary routing algorithm
(Section 4.2).

In order to compare multi-path routing patterns, we introduce Redundancy Overall
Requirement (ROR), a routing coefficient relying on the sender’s transmission rate increases in
response to individual link failures. By default, the sender is streaming the media with static FEC
codes of a constant weak strength in order to tolerate a certain small packet loss rate. The packet
loss rate is measured at the receiver and is constantly reported back to the sender with the
opposite flow. The sender increases the FEC overhead whenever the packet loss rate is about to
exceed the tolerable limit. This end-to-end adaptive FEC mechanism is implemented entirely on
the end nodes, at the application level, and is not aware of the underlying routing scheme
[Kang05], [Xu00], [Johansson02], [Huang05] and [Padhye00]. The overall number
of transmitted adaptive redundant packets for protecting the communication session against link
failures is proportional (1) to the usual packet transmission rate of the sender, (2) to the duration
of the communication, (3) to the single link failure rate, (4) to the single link failure duration and
(5) to the ROR coefficient of the underlying routing pattern followed by the communication flow.
The novelty brought by ROR is that a routing topology of any complexity can be rated by a single
scalar value (Section 4.3).

 34

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Johansson02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Huang05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Padhye00.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Altman01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Qu04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Tawan04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ma03A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ma04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Nguyen02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Byers99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Nguyen03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Nguyen03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Qu04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kang05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Xu00.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Johansson02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Huang05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Padhye00.pdf

In Section 4.4, we present ROR coefficients of different routing layers built by the
capillary routing algorithm. Network samples are obtained from a random walk MANET with
several hundreds of nodes. We show that path diversity achieved by the capillary routing
algorithm reduces substantially the amount of redundant FEC packets required from the sender.

Section 4.2. Capillary routing
In subsection 4.2.1 we present a simple Linear Programming (LP) method for building the

layers of capillary routing. A more reliable algorithm is described in subsection 4.2.2. In
subsection 4.2.3 we present the discovery of bottlenecks at each layer of capillary routing,
required for construction of successive layers.

4.2.1. Basic construction
Capillary routing can be constructed by an iterative LP process transforming a single-path

flow into a capillary route. First minimize the maximal value of the load of all links by
minimizing an upper bound value applied to all links. The full mass of the flow will be split
equally across the possible parallel routes. Find the bottleneck links of the first layer (see
subsection 4.2.3) and fix their load at the found minimum. Minimize similarly the maximal load
of all remaining links without the bottleneck links of the first layer. This second iteration further
refines the path diversity. Find the bottleneck links of the second layer. Minimize the maximal
load of all remaining links, but now without the bottlenecks of the second layer as well. Repeat
this iteration until the entire communication footprint is enclosed in the bottlenecks of the
constructed layers.

Figure 27, Figure 28 and Figure 29 show the first three layers of the capillary routing on a
small network. The top node on the diagrams is the sender, the bottom node is the receiver and all
links are oriented from top to bottom.

Figure 27. In the first
layer the flow is equally
split across two paths, two
links of which, marked by
thick dashes, are the
bottlenecks.

3
13

1

6
1

2
12

1

3
1

3
1

6
1

Figure 28. The second
layer minimizes to 1/3 the
maximal load of the
remaining seven links and
identifies three bottlenecks.

2
1

12
1

6
14

1

3
1

2
1

4
1

3
1

3
1

2
1

2
1

2
1

2
1

2
1

Figure 29. The third layer
minimizes to 1/4 the
maximal load of the
remaining four links and
identifies two bottlenecks.

 35

Figure 30 shows the 10-th layer of capillary routing between a pair of end nodes on a
network with 180 nodes and 1374 links. Links not carrying traffic are not shown. The solid lines
of the diagram represent 55 bottleneck links belonging to one of the 10 layers. The dashed lines
represent a min-cost solution of the remaining flow not enclosed in bottlenecks after the 10-th
layer. There could be several tens of additional routing layers until complete capillarization is
achieved.

 links: 1374
 nodes: 180
 layers: 10
bottlenecks: 55
 remaining: 155

 1: 1.00000
 2: 0.50000
 3: 0.20000
 4: 0.16667
 5: 0.14286
 6: 0.11111
 7: 0.10714
 8: 0.10000
 9: 0.09524
10: 0.08571

Figure 30. Routing pattern of layer 10 built by the capillary routing
algorithm on a network sample with 150 nodes

4.2.2. Numerically stable version
Although the described LP process is completely valid, it is numerically instable. The

precision errors propagating through the layers of capillary routing reach noticeable sizes and,
when dealing with tiny loads, result in infeasible LP problems. We have found a different, stable
LP method which maintains the values of parameters and variables in the same order of
magnitude at all times.

Instead of decreasing the maximal value of loads of the links, the routing path is discovered
by solving max flow problems defined by the flow-out coefficients at each node. Initially only the
peer nodes have non-zero flow-out coefficients: +1 for the source and –1 for the sink (Figure 31
and Figure 32).

 36

Figure 31. Initial problem
with one source and one
sink node

Figure 32. Maximize the
flow, fix the new flow-out
coefficients at the nodes and
find the bottleneck links
(layer 1, 21 =F)

Figure 33. Remove the
bottleneck links from the
network and adjust the
flow-out coefficients at the
adjacent nodes

At each subsequent layer (Figure 33 to Figure 36) we have a bounded multi-source/multi-
sink problem: a uniform flow from a set of sources to a set of sinks, where all rates of
transmissions by sources and all rates of receptions by sinks increase proportionally in respect to
each node’s flow-out coefficient (either positive or negative). The multi-source/multi-sink
problems arise since the LP problem at each successive layer is obtained by complete removal of
the bottlenecks from the previous LP problem. By removing the bottlenecks we adjust
correspondingly the flow-out coefficients of the adjacent nodes (to respect the flow conservation
rule) and thus possibly produce new sources and sinks in the network. Except for the unicast
problem of the first layer, the successive layer problems do not belong in general to the simple
class of “network linear programs” [Fourer03].

Figure 34. Maximize the
flow in the new sub-
problem, fix the new flow-
out coefficients at the nodes
and find the new
bottlenecks (layer 2,

) 5.12 =F

Figure 35. Again remove
the bottleneck links from
the network and adjust
correspondingly the flow-
out coefficients at the
adjacent nodes

Figure 36. Maximize the
flow in the obtained new
problem, fixing the new
resulting flow-out
coefficients at the nodes and
find the new bottlenecks
(layer 3,) 3/43 =F

+2

–4/3

+2/3

–4/3

+1.5

–1

+0.5

–1

+1.5

–3

+1.5

+1

–2

+1
+2

–2

+1

–1

 37

We define the bounded multi-source/multi-sink problem at layer l by the sets of nodes and
links and by the flow-out coefficients for sources and sinks (all indexed with an upper index l) as
follows:

• set of nodes , lN
• set of links , where and , lLji ∈),(lNi∈ lNj ∈

• flow-out coefficients for all l
if

lNi∈

• at layer l the max-flow solution yields the flow increase factor lF and the set of
bottlenecks lB , where ll LB ⊂

Then, the equations for computing the sets , 1+lN 1+lL and the flow-out coefficients of

the next layer are as follows:

1+lf

ll NN =+1
 (1)

lll BLL −=+1
 (2)

 ll
j

l
j Fff ⋅=+1

)1(

),(
∑
∈

++
lBji

∑
∈

−+
lBkj),(

)1(

(3)

add 1 for each

incoming bottleneck
link),(ji

subtract 1 for each
outgoing bottleneck

link),(kj

After a certain number of applications of the max-flow objective with corresponding
modifications of the problem, we will finally obtain a network having no source and sink nodes.
At this point the iteration stops. All links followed by the flow in the capillary routing are
enclosed in bottlenecks of one of the layers.

In order to restore the original proportions of the flow, the flow increases, induced by the
preceding max-flow solutions must all be compensated. The true value of flow traversing the

bottleneck link of layer l is the initial single unit of flow divided by the product of the
flow increase factors

jir ,

lBji ∈),(
iF (where li ≤≤1) of the present and all preceding layers:

 ∏
=

= l

i

i
ji

F
r

1

,
1 where l is the layer for

which lBji ∈),((4)

The max-flow approach proves to be very stable, because it maintains all values of
variables and parameters in the same order of magnitude (even for very deep layers with tiny
loads) and also because it enables us to detect and correct errors in the flow-out coefficients of the
LP problem generated for the next layer of capillary routing.

In the next subsection we show how to identify bottlenecks after the max-flow solution of
the capillary routing layer is found.

 38

4.2.3. Bottleneck hunting loop
In the example of Figure 37 with three transmitting nodes and two receiving nodes, the

flow can be proportionally increased at most by a factor of 4/3 and the bottleneck links are among
four maximally loaded suspected links {a, b, d, e}, marked in Figure 38 by thick dashes.

Figure 37. An example of a bounded multi-
source/multi-sink problem (obtained during
construction of the capillary routing from a
network with one source and one destination
node)

Figure 38. A max-flow solution with the flow
increase factor of 4/3, containing four
maximally loaded candidate links {a, b, d, e}

At each layer, after minimizing the maximal load of links, the bottlenecks of the layer are
discovered in a bottleneck hunting loop. At each iteration of the hunting loop, we minimize the
load of the traffic over all links having maximal load and being suspected as bottlenecks. Links
not maintaining their load at the maximum are removed from the suspect list. The bottleneck
hunting loop stops if there are no more links to remove.

In the example of Figure 38 the sum of loads of all four suspected links can be minimized
(by an LP objective) to 3 (see Figure 39). Now only three links {a, b, e}, marked by thick dashes,
continue to maintain the maximal load. The sum of loads of three remaining suspected links can
be further reduced to 2 (see Figure 40). These two remaining links {b, e}, marked by thick
dashes, maintained the maximal load at all times and are the true bottleneck links since the sum of
their loads cannot be further reduced.

Figure 39. Cost reduction applied to four
fully loaded links of Figure 38 reduces the
load of suspected link d, and the suspect list is
now {a, b, e}.

Figure 40. Cost reduction applied to the
three fully loaded links of Figure 39 reduces
the load of another suspected link a, and the
true bottleneck links are {b, e}.

In this example the two bottlenecks are found in two iterations.

4/3 4/3

–2 –2

4/3
1/3 2/3

a
b

e c
d

4/3 4/3 4/3

–2 –2

2/3 1/3

a
b

e c
d

4/3 4/3

–2 –2

4/3
2/3 2/3

a
b

c
d

e

+1

–1.5

+1 +1

–1.5

 39

For capillary routing layers built simultaneously on 200 independent network samples each
with 300 nodes (in average 2,555.7 links per network), Figure 41 shows the decrease in the
number of suspected links during the bottleneck hunting loop of each capillary routing layer from
1 to 10.

1

10

100

1000

la
ye

r1
la

ye
r2

la
ye

r3

la
ye

r4

la
ye

r5

la
ye

r6

la
ye

r7

la
ye

r8

la
ye

r9

la
ye

r1
0

Iterations of the hunting loop (from 1 to 14 up to 23)
for each of the first 10 layers of capillary routing

A
ve

ra
ge

 n
um

be
r o

f s
us

pe
ct

ed
 li

nk
s

Figure 41. Decrease of the number of suspected links during the
bottleneck hunting loop of each of 10 capillary routing layers

At the end of each hunting loop (from 14 to 23 iterations) the suspect list consists of only
true bottleneck links, in average between 5.9 and 9.9 bottlenecks per network.

Section 4.3. Redundancy Overall Requirement (ROR)
The definition and equations of ROR are given in subsection 4.3.1. Computation of

transmission FEC block size as a function of the packet loss rate p is presented in subsection
4.3.2. Equation of ROR for a particular case of very large FEC blocks is presented in subsection
4.3.3.

4.3.1. Definition of ROR
We assume a combination of a small static tolerance of the media stream to weak failures,

with a dynamically added adaptive FEC for combating serious failures exceeding the tolerable
packet loss rate.

For a given routing pattern, ROR is defined as the sum of all transmission rate overheads
required from the sender for combating each non-simultaneous link failure in the route. For
example, if the communication footprint consists of five links, and in response to each individual
link failure the sender increases the packet transmission rate by 25%, then the ROR coefficient
will be equal to the sum of these five FEC transmission rate increases, i.e. .
If P is the usual packet transmission rate and is the increased rate of the sender, responding to
the failure of a link

25.1%255 =⋅=ROR
lP

Ll∈ , where L is the set of all links, then:

 40

∑
∈

⎟
⎠
⎞

⎜
⎝
⎛ −=

Ll

l

P
PROR 1 (5)

Let us consider a long communication, and let D be the total failure time of a single
network link during the whole duration of the communication. D is the product of the average
duration of a single link failure, the frequency of a single link failure and the total communication
time. According to equation (5):

 RORPD ⋅⋅ ∑
∈

⎟
⎠
⎞

⎜
⎝
⎛ −⋅⋅=

Ll

l

P
PPD 1 (6)

 ()∑
∈

⋅−⋅=
Ll

l PDPD (7)

Assuming one single link failure at a time and a uniform probability and duration of link
failures, according to equation (7), RORPD ⋅⋅ is the number of adaptive redundant packets that
the sender actually needs to transmit in order to compensate for all network failures occurring
during the total communication time. Therefore ROR is a routing coefficient for computing the
overall number of required redundant packets.

Redundant packets are injected into the original media stream for every block of M source
packets. During streaming, M is supposed to stay constant. However, the number of redundant
packets for each block of M media packets is variable, depending on the conditions of the erasure
channel. The M source packets with their related redundant packets form a FEC block. By

we denote the FEC block size chosen by the sender in response to a packet loss rate p. We assume
that by default the media is streamed in FEC blocks of length of such that the flow has a

static tolerance to weak losses

pFEC

tFEC

10 <≤ t . When the loss rate p measured at the receiver is about to
exceed the tolerable limit t, the sender increases its transmission rate by injecting additional
redundant packets.

The random packet loss rate, observed at the receiver during the failure time of a link in the
communication path, is the portion of the traffic still being routed toward the faulty link. Thus, a
complete failure of a link l carrying a relative traffic load of 1)(0 ≤≤ lr according to the routing
pattern, produces at the receiver a packet loss rate equal to the same relative traffic load .)(lr

Equation (5) for ROR can thus be re-written as follows:

 =ROR ∑
<≤∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1)(|

)(1
lrtLl t

lr

FEC
FEC

(8)

a sum over all links

carrying a flow exceeding
the tolerable loss limit

The links carrying the entire traffic are skipped in the sum index of equation (8), since the
FEC required for the compensation of failures of such links is infinite. By construction (Section
4.2), none of the considered multi-path routing schemes pass their entire traffic through a non-
critical single link.

 41

4.3.2. Computing FEC block size
We compute the function assuming a Maximum Distance Separable (MDS) code

[
pFEC

Seroussi86], [Schwarz02]. With an MDS code we can successfully decode the M source
packets if we receive any M packets of the transmission FEC block.

In order to collect a mean of M packets at the receiver under random loss rate p,)1/(pM −

packets must be transmitted at the sender. However the probability of receiving 1−M packets or
2−M packets (which makes the decoding impossible) remains high. In order to maintain a very

low probability δ of receiving less than M packets, we must send many more redundant packets
in the block than is necessary to receive an average of M packets at the receiver side. We must fix
the acceptable Decoding Error Rate (DER), such that DER≤δ , in order to compute the

 function. MFECp ≥

The probability (NnPn) of having exactly n losses (erasures) in a block of N packets with

a random loss probability p is computed according to the binomial distribution:

() nNn
p qp

n
N

NnP −⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= (9)

where
)!(!

!
nNn

N
n
N

−⋅
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
 and pq −=1

The probability of having 1+−MN or more losses, i.e. the decoding failure probability, is
computed as follows:

∑
+−=

−⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

N

MNn

nNn qp
n
N

1
δ (10)

Therefore for computing the carrier block’s minimal length for a satisfactory
communication (i.e. function), it is sufficient to steadily increase the block length N until

the desired decoding error rate (DER) is met.
pFEC

pFEC functions divided by M (i.e. transmission rate increase factors) are
bounded above by when

MFEC p /
)(log DERp 1=M and below by)1/(1 p− when (for packet

loss rates much larger a very small DER). The higher the number of media packets in the block
the closer the transmission rate increase can approach the lowest theoretical limit. For M from 1
to 10 these transmission rate increase factors are plotted in Figure 42 (for).

∞→M

510−=DER

 42

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Seroussi86.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Schwarz02.pdf

0
1
2
3
4
5
6
7
8
9

10
11
12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
packet loss rate (p)

tra
ns

m
is

si
on

 ra
te

 in
cr

ea
se

 fa
ct

or

FEC(p)/M 1/(1-p)

 M = 1, 2, 3, 4, 5 … 10

Figure 42. Transmission rate increase factor as a function from the
packet loss rate () 510−=DER

4.3.3. Streaming with large FEC blocks
The larger the number of media packets M in the FEC block, the smaller the cost of FEC

overhead is, but the longer the buffering time at the receiver must be. For example VOIP with 20
ms sampling rate restricts the number of media packets M in a single FEC block to 20 – 25
packets.

If the playback buffering time can be a couple of minutes long, with thousands of source
packets in a FEC block (for example in packetized TV) we can assume that)1/(pMFEC p −= .

Although for large numbers of source packets MDS codes do not exist, other capacity-
approaching LDPC [MacKay96], [Richardson01] or fountain codes [MacKay05] can
decode a large block of source packets requiring only a very little excess of packets (in this
context this excess can be ignored).

In such case, taking into account the above assumptions and equation (8), the ROR
coefficient of a multi-path routing pattern is computed according to the following equation:

∑
<≤∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−

=
1)(|

1
)(1

1
lrtLl lr

tROR (11)

Path diversity can be required in off-line large file downloads aiming at avoiding the idle
times of the last kilometer bottleneck occurring due to arbitrary failures elsewhere, within the
lossy Internet. Thanks to multi-path routing, the sender with an adaptive transmission rate can
feed the last kilometer bottleneck link constantly at its maximal bandwidth (see [Nguyen02]
and [Byers99] for video streaming from multiple servers). In this case also, the choice of the
multi-path routing pattern can be rated by equation (11). Note that according to equations (8) and
(11) the ROR coefficient of a routing pattern depends also on the static tolerance t of the
streaming media to weak failures.

 43

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/MacKay96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Richardson01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/MacKay05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Nguyen02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Byers99.pdf

Section 4.4. Redundancy Overall Requirement in capillary
routing

For capillary routing layers 1 to 10, we compute the average ROR coefficients
simultaneously over several networks. The network samples are drawn from timeframes of a
random walk MANET. Initially the nodes are randomly distributed on a rectangular area, and
then, at every timeframe, they move according to a random walk algorithm. If two nodes are
close enough (and are within the coverage range) then there is a link between them. At the same
time we consider also streaming media at 15 different strengths of static FEC codes which
tolerate small packet loss rates from 3.6% to 7.8% respectively (with an increment of 0.3%).

Figure 43, represents a MANET with 115 nodes and 300 timeframes (each representing
one network sample) divided into seven sets of network samples. For each set of samples and for
each static FEC strength we plot the average ROR coefficient (over all considered network
samples) as the routing layer increases. Figure 43 shows that the overall requirement in adaptive
FEC packets decreases with capillarization. The ROR coefficients of the routing samples are
computed assuming a short playback buffering time according to equation (8), where the FEC
block size (as function of the packet loss rate p) is computed according to equation (10), the
number of media packets (M) per transmission block is 20 and the desired decoding failure rate
(DER) is . 510−

3.6%
3.9%
4.2%

4.8%
5.4%
6.0%
6.6%
7.2%
7.8%

5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35

1..10 1..10 1..10 1..10 1..10 1..10 1..10
Capillary routing layers from 1 to 10 for each set of samples

A
ve

ra
ge

 R
O

R

layers:

weak static
tolerance:

Figure 43. Average ROR as a function from the capillary routing layer

Figure 44 represents a MANET with 120 nodes and 150 timeframes divided into four sets
of network samples. The upper 15 curves similarly to the curves of Figure 43 are computed
according to equations (8) and (10), where 20=M and . However, the lower 15
curves of Figure 44 are computed according to equation (11) for streaming with large FEC
blocks.

510−=DER

 44

3.6%

3.6%

3.9%

3.9%

4.2%

4.2%

4.5%

4.5%

4.8%

4.8%

5.1%

5.1%

5.4%

5.4%

6.0%

6.0%

6.6%

6.6%

7.2%

7.2%
7.8%

7.8%
3.6%
4.5%
5.4%
6.6%
7.8%4

6
8

10
12
14
16
18
20
22
24
26
28
30
32

1
 2
3
 4
5
 6
7
 8
9

1
0

1
 2
3
 4
5
 6
7
 8
9

1
0

1
 2
3
 4
5
 6
7
 8
9

1
0

1
 2
3
 4
5
 6
7
 8
9

1
0

Capillary routing layers from 1 to 10 for each set of samples

A
ve

ra
ge

 R
O

R

Figure 44. Average ROR computed assuming real-time streaming (the
group of curves above) and off-line streaming (the group
below)

When streaming with large blocks the Redundancy Overall Requirement is twice as low as
in streaming with restricted playback buffering time, but the capillarization of routing is
beneficiary in both cases.

Logically, the ROR curve of the media stream is shifted down as the statically added
tolerance increases, but the increase of the weak static tolerance emphasizes the efficiency gain
achieved by capillarization. The drawback of path diversity in general is that by forming long
paths we increase the number of links in the communication footprint raising the overall failure
rate and thus possibly increasing the overall requirement in FEC codes. However, Figure 43 and
Figure 44 show that despite the communication footprint becomes larger; with the routing patters
built by the capillary routing algorithm the requirement in redundant packets decreases noticeably
most of the time.

Section 4.5. Conclusions
The reliability issues of packetized real-time streaming are of growing importance.

Commercial real-time streaming applications however do not consider channel coding at the
packet level as a serious solution for improving the reliability of communication. That is because
in single path communications, even heavy FEC overheads cannot protect against failures lasting
more than the short duration of the playback buffer. Recent studies demonstrated that path
diversity makes FEC applicable for real-time streaming. By studying a wide range of routing
topologies, we show that combination of channel coding with appropriate multi-path routing
allows reliable real-time streaming with a low overall requirement in FEC codes.

For this purpose we introduced a layer by layer strategy for building multi-path capillary
routing patterns. The first layer provides a simple multi-path solution. As the layer number
increases, the underlying routing pattern relies on the network more securely. Unlike max-flow or

 45

shortest path solutions, for a given source and destination, by construction (Section 4.2) there
exists only one solution of capillary routing.

We introduced ROR coefficient, a method for rating multi-path routing patterns by a single
scalar value. The ROR rating corresponds to the total redundancy overhead that the sending node
must provide in order to combat the losses occurring from non-simultaneous failures of links in
the communication path. Despite the fact that the spreading out of the routing results in the
increase of the overall failure rate of underlying links, with capillarization the overall requirement
in adaptive FEC packets decreases substantially.

Capillary routing can be applicable to multi-hop mobile wireless networks, where wireless
content can be streamed to and from the user via multiple base stations; or to the public internet,
where, if the physical routing cannot be accessed, an overlay network can be used [Guven04].
We hope that our investigation will provide some guidelines for future design of path diversity-
based real-time streaming systems.

 46

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Guven04.pdf

Appendix A. Rate of publications on parallel I/O
Parallel I/O was a hot topic in 1998. For a period from 1986 through 2006, the chart below

shows the rate of IEEE publications related to parallel I/O on a relative scale.

Rate of publications related to Parallel I/O

0
2
4
6
8

10
12
14
16

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

The year of the publications

Po
pu

la
rit

y
of

 th
e

Pa
ra

lle
l I

/O
 -

Figure 45. Yearly fractions of IEEE publications related to Parallel I/O

 47

Appendix B. SFIO function calls
This appendix presents the API functions of the SFIO library. The SFIO interface consists

of file management, data access and error management operations.

B.1. File management operations
File management operations are mopen, mclose, mchsize, mdelete and mcreate.

MFILE* mopen(char *name, int stripeUnitSz);
void mclose(MFILE *f);
void mchsize(MFILE *f, long size);
void mdelete(char *name);
void mcreate(char *name);

All the presented file management operations are collective. Operation mopen returns to
the compute node a pointer to the logical striped file descriptor. The striped file name required for
the mopen, mdelete and mcreate commands is a string containing the specification of the I/O
nodes together with the paths of subfiles representing the global striped file. The format of the
name is a sequence of subfiles, separated by semicolon:

 “<host>,<path>;<host>,<path>...”

For example:

“tonep0,/tmp/a.dat;tonep1,/tmp/a.dat;”

The mchsize operation changes the size of the logical file. If the specified size is smaller
than the current, the operation truncates the logical file to the new size.

B.2. Data access operations
There are single block and multi-block data access requests.

void mread(MFILE *f, long offset,
 char *buffer, unsigned size);
void mwrite(MFILE *f, long offset,
 char *buffer, unsigned size);
void mreadc(MFILE *f, long offset,
 char *buffer, unsigned size);
void mwritec(MFILE *f, long offset,
 char *buffer, unsigned size);
void mreadb(MFILE *f,
 unsigned numberOfBlocks,
 long offsets[],
 char *buffers[],
 unsigned sizes[]);
void mwriteb(MFILE *f,
 unsigned numberOfBlocks,
 long offsets[],
 char *buffers[],

 48

 unsigned sizes[]);

The data access requests are blocking and non-collective. The functions mreadc and
mwritec are the optimized versions of the mread and mwrite functions. The multiple block data
access operations mreadb and mwriteb are optimized. The numberOfBlocks argument in mreadb
and mwriteb operations specifies the number of blocks to be accessed by the single operation in
the logical file. The information about each block has to be provided by three arrays offsets,
buffers and sizes each having a number of elements given by the variable numberOfBlocks. The
offsets array contains the positions of each block in the logical file. The buffers array contains the
addresses of each block in the user memory and the sizes array provides the size of each memory
block in bytes.

B.3. Error management operations
Error management is provided by merror and its collective counterpart merrora functions.

void merrora(unsigned long *ioerr);
void merror(unsigned long *ioerr);
void prioerrora();

Functions merror and merrora return an array of error statistics accumulated on all I/O
nodes. At the same time, they reset the error counters at the I/O nodes. Statistics are accumulated
for operating system I/O calls and listed according to open, close, creat, unlink, ftruncate, lseek,
write and read local OS functions. The function prioerrora is a collective opera¬tion which prints
the error statistics to the standard output of the application.

 49

Bibliography
[Abawajy03] J.H. Abawajy, “Performance analysis of parallel I/O scheduling approaches on

cluster computing systems”, 3rd IEEE/ACM International Symposium on
Cluster Computing and the Grid, CCGrid’03, 12-15 May 2003, pp. 724-729

[Ali05] Nawab Ali, Mario Lauria, “SEMPLAR: high-performance remote parallel I/O
over SRB Cluster Computing and the Grid”, International Symposium on
CCGrid, 9-12 May 2005, pp. 366-373 Vol. 1

[Altman01] Eitan Altman, Chadi Barakat, Victor M. Ramos, “Queueing analysis of simple
FEC schemes for IP telephony”, INFOCOM 2001, Vol. 2, Ap 22-26, pp. 796-
804

[Baer04] Troy Baer, Pete Wyckoff, “A parallel I/O mechanism for distributed systems”,
International Conference on Cluster Computing, 20-23 Sept 2004, pp. 63-69

[Bancroft00] Martha Bancroft, Nick Bear, Jim Finlayson, Robert Hill, Richard Isicoff, Hoot
Thompson, “Functionality and Performance Evaluation of File Systems for
Storage Area Networks (SAN)”, 17-th IEEE Symposium on Mass storage
systems, March 2000, http://esdis-
it.gsfc.nasa.gov/msst/conf2000/PAPERS/A05PA.PDF

[Baran02] Paul Baran, “The beginnings of packet switching: some underlying concepts”,
IEEE Communications Magazine, July 2002, pp 42-48 Vol. 40 Issue 7

[Baran64] Paul Baran, “On Distributed Communications: I. Introduction to Distributed
Communications Networks”, Memorandum of the RAND corporation
prepared for United States Air Force, August 1964

[Baran65] Paul Baran, “On Survivability of Networks”, IEEE Transactions on
Communications, Sep 1965, pp. 379-380 Vol. 13 Issue 3

[Baylor96] S. J. Baylor, C. E. Wu, “Parallel I/O workload characteristics using Vesta”,
IPPS’95 Workshop on Input/Output in Parallel and Distributed Systems, Apr.
1995, pp. 16-29

[Boehm64] Sharla P. Boehm, Paul Baran, “On Distributed Communications: II. Digital
Simulation of Hot-Potato Routing in a Broadband Distributed
Communications Network”, Memorandum of the RAND corporation prepared
for United States Air Force, August 1964

[Bradley00] Daryl Bradley, Cesar Ortega-Sanchez, Andy Tyrrell,
“Embryonics+immunotronics: a bio-inspired approach to fault tolerance”, The
Second NASA/DoD Workshop on Evolvable Hardware, 13-15 July 2000, pp.
215-223

[Brauss99A] Stephan Brauss, Martin Frey, Martin Heimlicher, Andreas Huber, Martin
Lienhard, Patrick Muller, Martin Naf, Josef Nemecek, Roland Paul, Anton
Gunzinger, “An Efficient Communication Architecture for Commodity
Supercomputers”, ACM/IEEE Supercomputing Conference, 13-18 Nov. 1999,
pp. 19-35

 ii

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Abawajy03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ali05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Altman01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baer04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Bancroft00.pdf
http://esdis-it.gsfc.nasa.gov/msst/conf2000/PAPERS/A05PA.PDF
http://esdis-it.gsfc.nasa.gov/msst/conf2000/PAPERS/A05PA.PDF
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baran02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baran64.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Baran65.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Boehm64.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Bradley00.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Brauss99A.pdf

[Brauss99B] Stephan Brauss, Communication Libraries for the Swiss-Tx Machines. EPFL
Supercomputing Review, Nov 99, pp. 12-15.
http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-page12.html

[Byers99] John W. Byers, Michael Luby, Michale Mitzenmacher, “Accessing multiple
mirror sites in parallel: using Tornado codes to speed up downloads”,
INFOCOM 1999, Vol. 1, Mar 21-25, pp. 275-283

[Chandramohan97] Chandramohan A. Thekkath, Timothy Mann, Edward K. Lee,
“Frangipani: A Scalable Distributed File System”, 16th ACM Symposium on
Operating Systems Principles, October 1997, pp. 224-237

[Choi06] Jeong-Yong Choi, Jitae Shin, “A Novel Design and Analysis of Cross-Layer
Error-Control for H.264 Video over Wireless LAN”, Springer-Verlag LNCS
(WWIC’06), May 2006

[Coloma04] Kenin Coloma, Alok Choudhary, Wei-keng Liao, L. Ward, E. Russell, N.
Pundit, “Scalable high-level caching for parallel I/O”, 18th International
Symposium on Parallel and Distributed Processing, 26-30 April 2004, pp. 96-
105

[Crandall95] Phyllis E. Crandall, Ruth A. Aydt, Andrew A. Chien, Daniel A. Reed “Input-
Output Characteristics of Scalable Parallel Applications”, Supercomputing’95.
ACM Press, December 1995

[Davies72] Donald Davies, “The Control of Congestion in Packet-Switching Networks”,
IEEE Transactions on Communications, Jun 1972, pp. 546-550 Vol. 20 Issue
3 Part 2

[Fourer03] Robert Fourer, “A modeling language for mathematical programming”,
Thomson – Brooks/Cole, second edition, 2003, page 343

[Gabrielyan01] Emin Gabrielyan, “Isolated MPI-I/O for any MPI-1”, 5th Workshop on
Distributed Supercomputing: Scalable Cluster Software, Sheraton Hyannis,
Cape Cod, Hyannis Massachusetts, USA, 23-24 May 2001

[Gennart99] Benoit A. Gennart, Emin Gabrielyan, Roger D. Hersch, “Parallel File Striping
on the Swiss-Tx Architecture”, EPFL Supercomputing Review, Nov. 99, pp.
15-22, http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-page15.html

[Gorbett96] Peter F. Gorbett and Dror G. Feitelson, “The Vesta parallel file system”, ACM
Transactions on Computer Systems – TOCS’96, August 1996, Vol. 14 Issue 3
pp. 225-264, http://www.cs.umd.edu/class/fall2002/cmsc818s/Readings/vesta-
tocs96.pdf

[Gregory35] William K. Gregory, “Reduplication in Evolution”, Quarterly Review of
Biology, 1935, pp. 272-290 Vol. 10

[Gropp98] William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk,
Bill Nitzberg, William Saphir, Marc Snir, MPI - The Complete Reference,
Volume 2, The MPI Extensions, MIT Press, pages 185-274, 1998

[Gropp99] William Gropp, Ewing Lusk, Rajeev Thakur, Using MPI-2 Advanced
Features of the Message-Passing Interface, MIT Press, pages 51-118, 1999

 iii

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Brauss99B.pdf
http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-page12.html
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Byers99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Chandramohan97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Coloma04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Crandall95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Davies72.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gabrielyan01.pdf
http://switzernet.com/people/emin-gabrielyan/010520-for23may-5thSuperComp/
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gennart99.pdf
http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-page15.html
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gorbett96.pdf
http://www.cs.umd.edu/class/fall2002/cmsc818s/Readings/vesta-tocs96.pdf
http://www.cs.umd.edu/class/fall2002/cmsc818s/Readings/vesta-tocs96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Gregory35.pdf

[Guven04] Tuna Guven, Chris Kommareddy, Richard J. La, Mark A. Shayman, Bobby
Bhattacharjee “Measurement based optimal multi-path routing”, INFOCOM
2004, Vol. 1, Mar 7-11, pp. 187-196

[Hoang06] Vinh Dien Hoang, Zhenhai Shao, Masayuki Fujise, “Efficient Load balancing
in MANETs to Improve Network Performance”, 6th International Conference
on ITS Telecommunications - ITST'06, 21-23 June 2006, pp. 753-756

[Hollywood03] Mark Fritz, “Digital Dailies Flow Freely from Fountain”, April 1, 2003,
http://www.emedialive.com/Articles/ReadArticle.aspx?CategoryID=45&Artic
leID=5077

[Honda04] Loring Wirbel, “Deal pushes algorithms into digital radio”, April 13, 2004,
http://www.commsdesign.com/showArticle.jhtml?articleID=18901216

[Horst95] Robert W. Horst, “TNet: a reliable system area network”, IEEE Micro, Feb.
1995, pp. 37-45 Vol. 15 Issue 1

[Huang05] Yicheng Huang, Jari Korhonen, Ye Wang, “Optimization of Source and
Channel Coding for Voice Over IP”, ICME’05, Jul 06, pp. 173-176

[Huber95] Jay V. Huber, Christopher L. Elford, Daniel A. Reed, Andrew A. Chien,
David S. Blumenthal, “PPFS: A High Performance Portable Parallel File
System”, 9th ACM International Conference on Supercomputing - ACM
Press, July 1995, pp. 385-394

[Johansson02] Ingemar Johansson, Tomas Frankkila, Per Synnergren, “Bandwidth
efficient AMR operation for VoIP”, Speech Coding 2002, Oct 6-9, pp. 150-
152

[Kallahalla02] Mahesh Kallahalla, Peter J. Varman, “PC-OPT: optimal offline
prefetching and caching for parallel I/O systems”, IEEE Transactions on
Computers, Nov. 2002, pp. 1333-1344 Vol. 51 Issue 11

[Kang05] Seong-ryong Kang, Dmitri Loguinov, “Impact of FEC overhead on scalable
video streaming”, NOSSDAV’05, Jun 12-14, pp. 123-128

[Kim06] Dong-hyun Kim, Rhan Ha, Hojung Cha, “Traffic Load and Lifetime
Deviation Based Power-Aware Routing Protocol for Wireless Ad Hoc
Networks”, 4th International Conference on Wired/Wireless Internet
Communications – WWIC’06, 10-12 May 2006, pp. 325-336

[Kotz96] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter Ellis,
Michael Best, “File-Access Characteristics of Parallel Scientific Workloads”,
IEEE Transactions on Parallel and Distributed Systems, October 1996, Vol. 7
Issue 10 pp. 1075-1089

[Kotz97] David Kotz, “Disk-directed I/O for MIMD Multiprocessors”, ACM
Transactions on Computer Systems – TOCS’97, February 1997, Vol. 15 Issue
1 pp. 41-74

[Kuonen99A] Pierre Kuonen, Ralf Gruber, “Parallel computer architectures for commodity
computing and the Swiss-T1 machine”, EPFL Supercomputing Review, Nov
99, pp. 3-11, http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-
page3.html

 iv

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Guven04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Hoang06.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/hollywood03.pdf
http://www.emedialive.com/Articles/ReadArticle.aspx?CategoryID=45&ArticleID=5077
http://www.emedialive.com/Articles/ReadArticle.aspx?CategoryID=45&ArticleID=5077
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/honda04.pdf
http://www.commsdesign.com/showArticle.jhtml?articleID=18901216
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Horst95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Huang05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Huber95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Johansson02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kallahalla02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kang05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kotz96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kotz97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kuonen99A.pdf
http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-page3.html
http://sawww.epfl.ch/SIC/SA/publications/SCR99/scr11-page3.html

[Kuonen99B] Pierre Kuonen, “The K-Ring: a versatile model for the design of MIMD
computer topology”, Proceedings of the High-Performance Computing
Conference – HPC’99, San Diego, USA, April 1999, pp. 381-385

[Lee95] Edward K. Lee, “Highly-Available, Scalable Network Storage”, 40th IEEE
Computer Society International Conference – COMPCON’95, March 1995,
pp. 397-402

[Lee96] Edward K. Lee and Chandramohan A. Thekkath, “Petal: Distributed Virtual
Disks”, Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS-VII, October
1996, pp. 84-92, ftp://ftp.digital.com/pub/DEC/SRC/publications/eklee/petal-
paper.pdf

[Lee98] Edward K. Lee, Chandramohan A. Thekkath, Chris Whitaker, Jim Hogg, “A
Comparison of Two Distributed Disk Systems”, Research Report, 30 April
1998, http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-
rr-155.html

[Liu03] Pangfeng Liu, Da-Wei Wang, Jan-Jan Wu, “Efficient parallel I/O scheduling
in the presence of data duplication”, International Conference on Parallel
Processing, 2003, pp. 231-238

[Luby02] Michael Luby, “LT codes”, FOCS’02, November 16-19, pp. 271-280

[Luo06] Jun Luo, “Mobility in Wireless Networks: Friend or Foe, Network design and
Control in the Age of mobile Computing”, Thesis 3456 at EPFL, 7 April 2006

[Ma03A] Rui Ma, Jacek Ilow, “Reliable multipath routing with fixed delays in MANET
using regenerating nodes”, LCN’03, Oct 20-24, pp. 719-725

[Ma03B] Xiaosong Ma, Xiangmin Jiao, M. Campbell, M. Winslett, “Flexible and
efficient parallel I/O for large-scale multi-component simulations”, Parallel
and Distributed Processing Symposium, 22-26 April 2003, pp. 10-19

[Ma04] Rui Ma, Jacek Ilow, “Regenerating nodes for real-time transmissions in multi-
hop wireless networks”, LCN’04, Nov 16-18, pp. 378-384

[MacKay05] David J. C. MacKay, “Fountain codes”, IEE Communications, Vol. 152 Issue
6, Dec 2005, pp. 1062-1068

[MacKay96] D.J.C. MacKay and R.M. Neal, “Near Shannon limit performance of low
density parity check codes”, Electronics Letters 1996, Vol. 32, Issue 18, Aug
29, pp. 1645-1646

[Messerli99] V. Messerli, O. Figueiredo, B. Gennart, R.D. Hersch, “Parallelizing I/O
intensive Image Access and Processing Applications”, IEEE Concurrency,
Vol. 7, No. 2, April-June 1999, pp. 28-37

[More97] Sachin More, Alok Choudhary, Ian Foster, Ming Q. Xu, “MTIO a multi-
threaded parallel I/O system”, 11th International Parallel Processing
Symposium – IPPS’97, pp. 368-373,
http://www.ece.northwestern.edu/~choudhar/publications/pdf/MorCho97A.pd
f

[MPI2-97A] Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing
Interface, July 1997, http://www.mpiforum.org/

 v

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Kuonen99B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Lee95.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Lee96.pdf
ftp://ftp.digital.com/pub/DEC/SRC/publications/eklee/petal-paper.pdf
ftp://ftp.digital.com/pub/DEC/SRC/publications/eklee/petal-paper.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Lee98.pdf
http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-155.html
http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-155.html
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Liu03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Luby02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Luo06.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ma03A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ma03B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ma04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/MacKay05.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/MacKay96.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Messerli99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/More97.pdf
http://www.ece.northwestern.edu/~choudhar/publications/pdf/MorCho97A.pdf
http://www.ece.northwestern.edu/~choudhar/publications/pdf/MorCho97A.pdf
http://www.mpiforum.org/

[MPI2-97B] Message Passing Interface Forum, MPI-2 Extensions to the Message-Passing
Interface, University of Tennessee, 1997, pp. 209-300

[Nguyen02] Thinh Nguyen, Avideh Zakhor, “Protocols for distributed video streaming”,
Image Processing 2002, Vol. 3, Jun 24-28, pp. 185-188

[Nguyen03] Thinh Nguyen, P. Mehra, Avideh Zakhor, “Path diversity and bandwidth
allocation for multimedia streaming”, ICME’03 Vol. 1, Jul 6-9, pp. 663-672

[Oldfield98] Ron Oldfield, David Kotz, “The Armada Parallel File System”, Scientific
Report - Dartmouth College - Compute Science Department, 22 November
1998, http://www.cs.dartmouth.edu/~dfk/armada/

[Pacheco97] Peter S. Pacheco, Parallel Programming with MPI, by Morgan Kaufmann
Publishers 1997, pp. 137-178

[Padhye00] Chinmay Padhye, Kenneth J. Christensen, Wilfrido Moreno, “A new adaptive
FEC loss control algorithm for voice over IP applications”, IPCCC’00, Feb
20-22, pp. 307-313

[Ping06] Yuan Ping, Bai Yu, Wang Hao, “A Multipath Energy-Efficient Routing
Protocol for Ad hoc Networks”, International Conference on
Communications, Circuits and Systems - ICCCAS'06, 25-29 June 2006, pp.
14662-1466 Vol. 3

[Qiao99] Chunming Qiao, Myungsik Yoo, “Optical burst switching (OBS) – a new
paradigm for an Optical Internet”, Journal of High Speed Networks, 1999, pp.
69-84 Vol. 8 Num. 1

[Qu04] Qi Qu, Ivan V. Bajic, Xusheng Tian, James W. Modestino, “On the effects of
path correlation in multi-path video communications using FEC over lossy
packet networks”, IEEE GLOBECOM’04 Vol. 2, Nov 29 - Dec 3, pp. 977-
981

[Richardson01] Thomas J. Richardson and Rüdiger L Urbanke, Efficient Encoding of
Low-Density Parity Check Codes, IEEE Transactions on Information Theory,
Vol. 47, No. 2, February 2001, pp. 638-656

[Schwarz02] Thomas S. J. Schwarz, Generalized Reed Solomon codes for erasure
correction in SDDS, In Workshop on Distributed Data and Structures, WDAS
2002, Paris, Mar 2002

[Seroussi86] Gadiel Seroussi, Ron M. Roth, On MDS extensions of generalized Reed-
Solomon codes, IEEE Transactions on Information Theory, Vol. 32, Issue 3,
May 1986, pp. 349-354

[Shokrollahi04] Amin Shokrollahi, “Raptor codes”, ISIT’04, June 27 – July 2, page 36

[Smirni96] Evgenia Smirni, Ruth A. Aydt, Andrew A. Chien, Daniel A. Reed, “I/O
Requirements of Scientific Applications: An Evolutionary View”, Fifth IEEE
International Symposium on High Performance Distributed Computing, 1996,
pp. 49-59

[Snir96] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, Jack Dongarra,
MPI - The Complete Reference, Volume 1, The MPI Core, MIT Press, pages
123-189, 1996

 vi

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Nguyen02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Nguyen03.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Oldfield98.pdf
http://www.cs.dartmouth.edu/~dfk/armada/
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Padhye00.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Ping06.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Qiao99.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Qu04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Richardson01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Schwarz02.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Seroussi86.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Shokrollahi04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Smirni96.pdf

[SwissTx01] Swiss-Tx Project Report, June 2001,
http://hefrweb01.eif.ch/~kuonen/grip/html/ficheSWISS.html

[Tawan04] Tawan Thongpook, “Load balancing of adaptive zone routing in ad hoc
networks”, TENCON 2004, Vol. B, Nov 21-24, pp. 672-675

[Thakur96A] Rajeev Thakur, William Gropp, Ewing Lusk, “An Experimental Evaluation of
the Parallel I/O Systems of the IBM SP and Intel Paragon Using a Production
Application”, 3rd International Conference of the Austrian Center for Parallel
Computation (ACPC) with Special Emphasis on Parallel Databases and
Parallel I/O, Lecture Notes in Computer Science - Springer-Verlag, September
1996, pp. 24-35

[Thakur96B] R. Thakur, W. Gropp, and E. Lusk, “An Abstract-Device Interface for
Implementing Portable Parallel-I/O Interfaces,” in Proc. of the 6th Symposium
on the Frontiers of Massively Parallel Computation, October 1996, pp. 180-
187

[Thakur98] Rajeev Thakur, William Gropp, Ewing Lusk “A Case for Using MPI’s
Derived Datatypes to Improve I/O Performance”, Conference on High
Performance Networking and Computing, 1998, pp. 1-10, http://www-
unix.mcs.anl.gov/~thakur/dtype/

[Thakur99A] Rajeev Thakur, William Gropp, Ewing Lusk, “On implementing MPI-IO
Portably and with High Performance”, 6th Workshop on I/O in Parallel and
Distributed Systems, 5 May 1999, pp. 23-32.

[Thakur99B] Thakur, R.; Gropp, W.; Lusk, E., “Data sieving and collective I/O in
ROMIO”, The Seventh Symposium on the Frontiers of Massively Parallel
Computation, Frontiers’99, 21-25 Feb 1999, pp. 182-189

[Worster97] Tom Worster, Avri Doria, “Levels of aggregation in flow switching
networks”, Electronics Industries Forum of New England, 6-8 May 1997, pp.
51-59

[Wu05A] Jan-Jan Wu, Yih-Fang Lin, Pangfeng Liu, “Efficient distributed algorithms for
parallel I/O scheduling”, 11th International Conference on Parallel and
Distributed Systems, 20-22 July 2005, pp. 460-466 Vol. 1

[Wu05B] Jan-Jan Wu, Pangfeng Liu, “Distributed Scheduling of Parallel I/O in the
Presence of Data Replication”, 19th IEEE International Symposium on
Parallel and Distributed, 04-08 April 2005, pp. 49b - 49b

[Xu00] Youshi Xu, Tingting Zhang, “An adaptive redundancy technique for wireless
indoor multicasting”, ISCC 2000, Jul 3-6, pp. 607-614

 vii

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/SwissTx01.pdf
http://hefrweb01.eif.ch/~kuonen/grip/html/ficheSWISS.html
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Tawan04.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur96A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur96B.pdf
http://www-unix.mcs.anl.gov/~thakur/dtype/
http://www-unix.mcs.anl.gov/~thakur/dtype/
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur99A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Thakur99B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Worster97.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Wu05A.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Wu05B.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Xu00.pdf

Biography

 viii

Personal Bibliography

 ix

Glossary
SRI Stanford Research Institute

UCLA University of California, Los Angeles

IMP Interface Message Processor

ARPANET Advanced Research Projects Agency Network

DoD The U.S. Department of Defense

MPI Message Passing Interface

TCP Transmission Control Protocol

WDM Wavelength Division Multiplexing

DWDM Dense Wavelength Division Multiplexing

MYRINET is a high-speed local area networking system designed by Myricom to be used
as an interconnect between multiple machines to form computer clusters

ATM Asynchronous Transfer Mode, a telecommunication protocol

TDM Time-Division Multiplexing, a technology in circuit-switched digital
telephony

OBS Optical Burst Switching

3G 3rd Generation mobile communication

3GPP 3rd Generation Partnership Project

ADSL Asynchronous Digital Subscriber Line

AMR Adaptive Multi-Rate voice codec 4.75 - 12.2 kbps

ROR Redundancy Overall Requirement

ARQ Automatic Repeat reQuest

BER Bit Error Rate

CPU Central Processing Unit

DER Decoding Error Rate

DoS Deny of Service

EIGRP Enhanced Interior Gateway Routing Protocol

FEC Forward Error Correction

FIFO First In, First Out

g723r53 High complexity voice codec G.723.1 5300 bps

g723r63 High complexity voice codec G.723.1 6300 bps

g729r8 Low complexity voice codec G.729 8000 bps

gsmfr High complexity voice codec GSMFR 13200 bps

HTTP HyperText Transfer Protocol

 x

IOS Internet Operating System

IP Internet Protocol

ISP Internet Service Provider

ITSP Internet Telephony Service Provider

LP Linear Programming

LT Luby Transform Code

MANET Mobile Ad-hoc Network

MBMS Multimedia Broadcast/Multicast Service

MDS Maximum Distance Separable

MPEG Moving Picture Experts Group

NAT Network Address Translation

QoS Quality of Service

RS Reed-Solomon

RTP Real-time Transport Protocol

RTT Round Trip Time

SIP Service Initiating Protocol

UA User Agent

UDP User Datagram Protocol

VOIP Voice Over IP

VPN Virtual Private Network

XOR eXclusive OR

SFIO Striped File I/O

TNET High-performance switch-based communication network aiming at low-
latency and high-bandwidth

I/O Input-Output

EPFL École Polytechnique Fédérale de Lausanne, Swiss Federal Institute of
Technology Lausanne, http://www.epfl.ch/

FIFO First In, First Out

FCI Fast Communication Interface

ETHZ Eldgenössische Technische Hochschule Zürich, Swiss Federal Institute of
Technology Zurich

CTI Swiss Commission for Technology and Innovation

SCS Supercomputing Systems

LSP Laboratoire de Systèmes Périphériques, Peripheral Systems Laboratory of
EPFL, http://diwww.epfl.ch/w3lsp/

API Application Program Interface

 xi

http://www.epfl.ch/
http://diwww.epfl.ch/w3lsp/

SAN Storage Area Networks

OS Operating System

GPS Global Positioning System

SNL Sandia National Laboratories, http://www.sandia.gov/

ORNL Oak Ridge National Laboratory, http://www.ornl.gov/

MPICH “CH” in MPICH stands for “Chameleon”, symbol of adaptability to one’s
environment and thus of portability

ADIO Abstract Device Interface for Portable Parallel I/O

DMA Direct Memory Access

ANL Argonne National Laboratory, http://www.anl.gov/

 xii

http://www.sandia.gov/
http://www.ornl.gov/
http://www.anl.gov/

Table of Figures
Figure 1. Loading the transatlantic cable into the ‘Great Eastern’ in 1865.................... 1
Figure 2. Diagrams from the 51-page report of Paul Baran to the U.S. Air Force, 1964
 2
Figure 3. Kidney blood filtering in the human organism... 3
Figure 4. Pulmonary circuit of the human organism.. 3
Figure 5. One of the first Interface Message Processor (IMP) of ARPANET
connecting UCLA with SRI in August 1969 .. 4
Figure 6. Packet switching network: packets are entirely stored at each intermediate
switch and then only forwarded to the next switch... 5
Figure 7. Wormhole or cut-through routing network: a packet is “copied” through the
communication path from the source directly to the destination without being stored in
any intermediate switch .. 6
Figure 8. The final generation of the Swiss-Tx supercomputer in June 2001.............. 11
Figure 9. File Striping .. 12
Figure 10. SFIO integration into MPI-I/O.. 14
Figure 11. Distribution of a striped file across subfiles ... 16
Figure 12. Disk access optimization... 17
Figure 13. Comparison of the optimized write access with a generic write access on
the scale of the file striping granularity (3 I/O nodes, 1 compute node, global file size is
660 Mbytes) 18
Figure 14. Comparison of the optimized multi-block write access with a generic write
access on the scale of the user memory fragmentation (Fast Ethernet, stripe unit size is
1005 bytes) 18
Figure 15. SFIO functional architecture... 19
Figure 16. Aggregate throughput of Fast Ethernet as a function of the number of the
contributing nodes... 21
Figure 17. SFIO architecture on Swiss-T1... 22
Figure 18. SFIO/MPICH all-to-all I/O performance for a 200 bytes stripe size........ 22
Figure 19. Aggregate throughput of TNET as a function of the number of the
contributing nodes... 23
Figure 20. The Swiss-T1 network interconnection topology..................................... 24
Figure 21. SFIO all-to-all I/O performance on TNET ... 25
Figure 22. The use of derived datatypes in MPI-I/O interface................................... 26
Figure 23. The recursive construction of derived datatypes in MPI (“Contiguous” is a
derived datatype obtained by joining a repeated number of times another datatype, which
in its turn can be fragmented) ... 27
Figure 24. MPI-I/O implementation requires a method for retrieving the
fragmentation patterns of opaque MPI derived datatypes .. 28
Figure 25. A reverse engineering method for discovery the fragmentation pattern of
an opaque datatype built by the user... 29
Figure 26. Isolated implementation of a portable MPI-I/O interface functional on any
MPI-1 implementation .. 30
Figure 27. In the first layer the flow is equally split across two paths, two links of
which, marked by thick dashes, are the bottlenecks. .. 35

 xiii

Figure 28. The second layer minimizes to 1/3 the maximal load of the remaining
seven links and identifies three bottlenecks.. 35
Figure 29. The third layer minimizes to 1/4 the maximal load of the remaining four
links and identifies two bottlenecks.. 35
Figure 30. Routing pattern of layer 10 built by the capillary routing algorithm on a
network sample with 150 nodes.. 36
Figure 31. Initial problem with one source and one sink node 37
Figure 32. Maximize the flow, fix the new flow-out coefficients at the nodes and find
the bottleneck links (layer 1, 21 =F)... 37
Figure 33. Remove the bottleneck links from the network and adjust the flow-out
coefficients at the adjacent nodes ... 37
Figure 34. Maximize the flow in the new sub-problem, fix the new flow-out
coefficients at the nodes and find the new bottlenecks (layer 2, 5.12 =F) 37
Figure 35. Again remove the bottleneck links from the network and adjust
correspondingly the flow-out coefficients at the adjacent nodes...................................... 37
Figure 36. Maximize the flow in the obtained new problem, fixing the new resulting
flow-out coefficients at the nodes and find the new bottlenecks (layer 3, 3/43 =F)........... 37
Figure 37. An example of a bounded multi-source/multi-sink problem (obtained
during construction of the capillary routing from a network with one source and one
destination node)... 39
Figure 38. A max-flow solution with the flow increase factor of 4/3, containing four
maximally loaded candidate links {a, b, d, e} .. 39
Figure 39. Cost reduction applied to four fully loaded links of Figure 38 reduces the
load of suspected link d, and the suspect list is now {a, b, e}. ... 39
Figure 40. Cost reduction applied to the three fully loaded links of Figure 39 reduces
the load of another suspected link a, and the true bottleneck links are {b, e}.................. 39
Figure 41. Decrease of the number of suspected links during the bottleneck hunting
loop of each of 10 capillary routing layers ... 40
Figure 42. Transmission rate increase factor as a function from the packet loss rate
(510−=DER) 43
Figure 43. Average ROR as a function from the capillary routing layer 44
Figure 44. Average ROR computed assuming real-time streaming (the group of
curves above) and off-line streaming (the group below) .. 45
Figure 45. Yearly fractions of IEEE publications related to Parallel I/O................... 47

 xiv

