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Summary 

Main objectives pursued by parallelism in communications are network capacity 
enhancement and fault-tolerance. Enhancing efficiently the capacity of a network by parallel 
communications is a non-trivial task. Parallel paths of arbitrary network topologies can be used. 
The paths can share common resources. Some applications may allow one to split also the 
sources and the destinations into multiple sources and destinations. An example is parallel 
Input/Output (I/O). Parallel I/O requires scalability, high throughput and good load balance. 
Low granularity enables good load balance but tends to reduce throughput. In this thesis we 
combine fine granularity with scalable high throughput. The network overhead can be reduced 
and the network throughput can be increased by aggregation of data into large messages. 
Parallel transmissions from multiple sources to multiple destinations traverse the network 
through many different paths having numerous intersections in the network. In low latency high 
performance networks, serious congestions occur due to large indivisible messages competing 
for shared resources. We propose to optimally schedule the parallel communications taking into 
account the network topology. The developed liquid scheduling method optimally uses the 
potential transmission capacity of the network. Fault-tolerance is typically achieved by 
maintaining backup communication resources, kept idle as long as the primary resource is 
operational. A challenging idea, inspired by nature, is to simultaneously use all parallel 
resources. This idea is applied to fine-grained packetized communications. It also relies on 
erasure resilient codes for combating network failures. 

KEYWORDS. Parallel communications, fault-tolerance, liquid scheduling, capillary 
routing, circuit-switching, circuit-switched networks, VOIP, Internet telephony, SIP, packetized 
telephony, real-time streaming, path diversity, redundancy overall requirement, ROR, coarse-
grained networks, fine-grained networks, wormhole switching, optical lightpath routing, cut-
through switching, graph coloring, congestion graph, traffic partitioning, mutually non-
congesting subsets, conflict graph, low granularity striping, scalable I/O, parallel I/O, Message 
Passing Interface, MPI-I/O, network aggregation, I/O access aggregation, erasure resilient 
codes, channel coding, forward error correction 
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Résumé 

Les communications parallèles ont pour objectif d’augmenter la capacité ainsi que la 
tolérance aux pannes des réseaux de transmission de données. Augmenter efficacement la 
capacité d’un réseau par des communications parallèles est une tâche non triviale, car les liens 
de communication parallèles peuvent être disposés selon une topologie arbitraire et peuvent 
partager certaines ressources. Certaines applications permettent aussi de séparer des sources et 
destinations uniques en multiples sources et destinations. Les entrées/sorties (E/S) parallèles 
constituent un tel exemple. Les E/S parallèles doivent permettre la croissance du système, un 
débit élevé, et un bon équilibrage des charges. Une granularité faible permet un bon équilibrage 
des charges, mais tend à réduire le débit. Dans cette thèse, nous combinons une granularité fine 
avec un débit élevé tout en permettant la croissance du système. L’agrégation des données dans 
des messages de grande taille permet d’augmenter le débit tout en réduisant les surcoûts sur le 
réseau. Des transmissions parallèles de sources multiples vers des destinations multiples 
traversent le réseau par de nombreux chemins s’intersectant en de nombreux points. Dans des 
réseaux haute-performance à faible latence, des congestions importantes sont causées par de 
gros messages indivisibles en compétition pour des ressources partagées. Nous proposons 
d’ordonnancer les communications parallèles de manière optimale en prenant en considération 
la topologie du réseau. La méthode d’ordonnancement liquide (liquid scheduling) développée 
utilise au maximum les capacités de transmission potentielles du réseau. La tolérance aux 
pannes est généralement obtenue en maintenant des ressources de communication 
supplémentaires qui ne sont pas utilisées tant que la ressource principale est opérationnelle. Une 
idée stimulante, inspirée par la nature, est d’utiliser simultanément toutes les ressources 
disponibles. Cette idée est appliquée à des communications par paquets à granularité fine. Elle 
s’appuie aussi sur des codages permettant de compenser les pertes d’informations lors des 
pannes du réseau. 

MOTS CLÉ. Communications parallèles, tolérance aux pannes, ordonnancement liquide, 
routage par capillarité, commutation de circuits, réseau à communication de circuits, voix sur IP, 
téléphonie par Internet, SIP, téléphonie IP, réseaux à granularité grossière, réseaux à granularité 
fine, routage optique, graphes de congestion, partitionnement de trafic, distribution à granularité 
faible, E/S parallèles, Message Passing Interface, agrégation d’accès E/S, redondance, codage de 
canal, correction d’erreurs en boucle ouverte (FEC) 
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Chapter 1. Introduction 

In this chapter we briefly introduce the history of parallel communications and the topics of 
capacity enhancement and fault-tolerance. We present the fine-grained and coarse-grained network 
paradigms and introduce the topics of the present thesis. 

Section 1.1. Parallel communication challenges 

We do not know if parallel communications were first used for bandwidth enhancement 
or for fault-tolerance. Laying the first transatlantic cable took entrepreneur Cyrus Field twelve 
years and four failed expeditions. Cables were constantly snapping and could not be recovered 
from the ocean floor. On 5 August 1858 a cable started to operate, but for a very short time. The 
signal was dead on September 18. 

 

Figure 1. Loading the transatlantic cable into the ‘Great Eastern’ in 
1865 
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Eight years later, on 13 July 1866, the Great Eastern, by far the largest ship, began laying 
another cable, this time made of a single piece, 2730 nautical miles long, insulated with a new 
resin from the gutta-percha tree found in the Malay Archipelago. When two weeks later, on 27th 
of July 1866, the cable began operating, for Cyrus Field the mission was not yet accomplished. 
He immediately sent the Great Eastern back to sea to lay the second parallel cable. By 17 
September 1866, not one, but two parallel circuits were sending messages across the Atlantic. 

The transatlantic cable station, operating those links, was transmitting messages for nearly 
100 years. It was still in operation when in March 1964, in the middle of the cold war, an article 
appeared, entitled “On Distributed Communications Networks”. It was written by Paul Baran, 
who at that time was working on a communication method which could withstand a nuclear 
attack and enable transmissions of vital information across the country [Baran64], [Baran65]. 
Paul Baran concluded that extremely survivable networks can be built if structured with parallel 
redundant paths. He showed that even moderated redundancy permits withstanding extremely 
heavy weapon attacks. In 1965, the Air Force approved testing of Baran’s theory. Four years 
later, on 1st October 1969, the progenitor of the global Internet, the Advanced Research Projects 
Agency Network (ARPANET) of the U.S. Department of Defense, was born. 

 

Figure 2. Diagrams from the 51-page report of Paul Baran to the U.S. 
Air Force, 1964 

While the inspiration for structuring the early Internet with parallel paths came from the 
challenge to achieve a high tolerance to failures, almost a decade later IBM, at a much smaller 
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scale, invented a parallel communication port for achieving faster communications. Since then, 
many other research directions relying on parallel and distributed communications have 
developed. Parallelizing the communications across independent networks aims at offering 
additional security and protection of information, e.g. in voice over IP networks. Redundant 
parallel transmissions can be required for precision purposes, e.g. in GPS, or for power 
efficiency, e.g. in mobile networks [Ping06], [Luo06], [Kim06]. 

Section 1.2. Capacity enhancement and fault-tolerance 

The focus of research in parallel communications aims mainly at maximizing capacity 
and fault-tolerance. Bandwidth is enhanced by using several parallel circuits between a source 
and a destination [Hoang06]. Yet a greater level of parallelism can be achieved by distributing 
the sources and destinations across the network. For example, distributing storage resources in 
parallel I/O systems parallelizes both the I/O access and the communications. 

Regarding fault-tolerance, nature has created many systems relying on parallel structures. 
When developing his distributed network models (the seeds of the Internet), Paul Baran himself 
inspired by discussions with neurophysiologist Warren Sturgis McCulloch [Pitts47], 
[McEneaney02], [McCulloch43] about the capability of the brain to recover lost functions by 
bypassing a dysfunctional region thanks to parallel structures. Living multi-cellular organisms, 
from insects to vertebrates, demonstrate numerous other examples of duplicated organs that 
function in parallel. The evolution of life on earth made replicated organs nearly a universal 
property of living bodies [Gregory35]. 
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Figure 3. Kidney blood filtering in the human organism 

The primary purpose of duplication of organs is the tolerance to failures. Often, the 
capacity enhancement is of a secondary importance. The ideas of achieving extremely high 
levels of fault-tolerance in bio-inspired electronic systems of the future (e.g. by reproducing and 
healing) have always intrigued engineers and stimulated their imaginations [Bradley00]. 
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Figure 4. Pulmonary circuit of the human organism 

Maintaining an idle parallel resource has already been used in many mission-critical man-
made systems. In networking, communications can switch (often automatically) to a backup 
path in case of failures of primary links. An appealing approach is however to use the parallel 
resources simultaneously, similarly to biological organisms (see Figure 3 and Figure 4). This is 
possible thanks to packetized communications where the communication can be routed 
simultaneously over several parallel paths. Individual failures should cause only minimal 
damages to the communication flow. 

Section 1.3. Fine-grained and coarse-grained network 
paradigms 

1.3.1. Packet switching or hot potato routing 

Store and forward routing was simultaneously and independently invented by Donald 
Davies and Paul Baran. The term “packet switching” comes from Donald Davies. Paul Baran 
called this technique “hot potato routing” [Boehm64], [Davies72], [Baran02]. Today’s Internet 
relies on a store-and-forward policy: each switch or router waits for the full packet to arrive 
before sending it to the next switch. The first store and forward routers of ARPANET were 
called Interface Message Processors (see Figure 1). 
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Figure 5. One of the first Interface Message Processor (IMP) of 
ARPANET connecting UCLA with SRI in August 1969 

The router in packet switched networks maintains queues for processing, routing and 
transmitting through one of the outgoing interfaces. No circuit is reserved from a source to a 
destination. There is no bandwidth reservation policy. This may lead to contentions and 
congestions. One way to avoid congestions is to simply discard the new packets arriving at the 
switch, if no room is left in the buffer (e.g., UDP). The adjustable window method for avoiding 
congestion, gives the original sender the right to send N packets before getting permission to 
send more (e.g., TCP). 

 

Figure 6. Packet switching network: packets are entirely stored at each 
intermediate switch and only then forwarded to the next 
switch 

Since the packets are completely stored at each intermediate switch before being 
transmitted to the next hop, a communication delay propagates between the end nodes as the 
number of hops separating the nodes increases. The communication delay is a function of the 
number of intermediate switches multiplied by the size of the packet. 
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1.3.2. Wormhole routing 

Wormhole or cut-through routing is used in High Performance Computing (HPC), 
multiprocessor and cluster computer networks aiming at high performance and low latency. 
Store and forward switching technology cannot meet the strict bounds on the communication 
latencies dictated by the requirements of a computing cluster. Wormhole routing technology 
solves the problem of the propagation of the delay across a multi-hop communication path - a 
serious obstacle in store-and-forward switching. 

The address is very short. It is translated at an intermediate switch before the message 
itself arrives. Thus, as soon as the message starts arriving, the switch very quickly examines the 
header without waiting for the entire message, decides where to send the message, sets up an 
outgoing circuit to the next switch and then immediately starts directing the rest of the message 
that is being received to the outgoing interface. The switch transmits the message out, through 
an outgoing link, at the same time as the message arrives. By quickly setting up the routing at 
each intermediate switch and by directing the message content to the outgoing circuit without 
storing the message, the message traverses the entire network at once, simultaneously through 
all intermediate links of the path. The destination node, even if it is many hops away, starts 
receiving the message almost as soon as the sending node starts its transmission. The message is 
simply “copied” from the source to the destination without ever being entirely stored anywhere 
in between (Figure 7). 

This technique is implemented by breaking the packets into very small pieces called flits 
(flow units). The first flit sets up the routing behavior for all subsequent flits associated with the 
message. The messages rarely (if ever) have any delay as they travel though the network. The 
latency between two nodes, even if separated by many hops, becomes similar to the latency of 
directly connected nodes. 

 

Figure 7. Wormhole or cut-through routing network: a packet is 
“copied” through the communication path from the source 
directly to the destination without being stored in any 
intermediate switch 

Message 
Source 

Message 
Sink 

Message 
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Message 
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MYRINET is an example of a wormhole routing network for cluster supercomputers. 
MPI is the most popular communication library for these networks. 

Wormhole routing and store-and-forward packet switching are examples from two well 
known network paradigms. Packet switching belongs to the fine-grained network paradigm and 
wormhole routing is an example of the coarse-grained circuit switching paradigm. Nearly all 
coarse-grained networks aim at low latencies and use connection oriented transmission methods. 
ATM, frame relay, TDM, WDM or DWDM, all-optical switching, light-path on-demand 
switching, Optical Burst Switching (OBS), MYRINET, wormhole routing, cut-through and 
Virtual Cut-Through (VCT) routing are all broadband or local area network examples of the 
coarse-grained switching paradigm [Worster97], [Qiao99]. 

More information about wormhole and optical lightpath routing is given in Chapter 1 
(Subsections 3.2.1 and 3.2.2 respectively). 

Section 1.4. Three topics in parallel communications 

It is hard to imagine a single study consistently covering all areas of parallel and 
distributed communications. In this dissertation we are focusing on three anchor topics. The first 
topic is parallel I/O in computer cluster networks. The second topic addresses the problems in 
high-speed low-latency networks arising from simultaneous parallel transmissions, e.g. those of 
parallel I/O requests. The third topic addresses fault-tolerance in fine-grained packetized 
networks. 

These three topics are the most important in the domains covered by parallel 
communications. While these three topics rely on parallel communications, they are pursuing 
three orthogonal goals. For achieving the desired results we rely on techniques derived from 
different disciplines, such as graph theory or erasure resilient coding. 

1.4.1. Problems and the objectives 

Parallel I/O relies on distributed storage. The main objectives pursued in parallel I/O are a 
good load balance, the scalability as the number of I/O nodes grows and the throughput 
efficiency when multiple computing nodes are concurrently accessing a shared parallel file. 
Parallel I/O is used in computer clusters interconnected with a high performance coarse-grained 
network (such as MYRINET [Boden95]) that can meet strict latency bounds. In such networks, 
large messages are “copied” across the network from the source computer directly to the 
destination computer. During such a “copy” process, all intermediate switches and links are 
simultaneously involved in directing the content of the message. Low latency, however, is 
attained at a cost of an increased tendency toward congestion. When the network paths of 
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several transmissions overlap, an attempt to carry them out in parallel will unavoidably cause 
congestion. The system becomes more prone to congestions as the size of the messages and the 
number of parallel transmissions increase. The routing scheme and the topology of the 
underlying network have a significant impact. Properly orchestrating the parallel 
communications is necessary to achieve a true benefit in terms of the overall throughput. 

In the context of fine-grained packet-switching, achieving fault tolerance by streaming 
information simultaneously across multiple parallel paths is a very attractive idea. Naturally, this 
method minimizes losses occurring from individual failures on the parallel paths, but the large 
number of parallel also paths increases the overall probability of individual failures influencing 
the communication. Streaming across parallel paths can be combined with injection at the source 
of a certain amount of redundant packets generated with channel coding techniques. Such a 
combination ensures the delivery of the information content during individual link failures on 
parallel paths. We propose a novel technique to measure the advantageousness of parallel 
routing for parallel streaming with redundant packets. 

Each of the three topics is addressed by a detailed analysis of the corresponding problems 
and by proposing a novel method for their solutions. 

1.4.2. Structure of the thesis 

The parallelism in I/O access and communication relies on the distribution of the storage 
resources. A high level of parallelism with a high load balance can be achieved thanks to fine 
granularity. The drawbacks of fine granularity are the network communication and storage 
access overheads. In Chapter 1, we present a library called Striped File I/O (SFIO) which 
combines fine granularity with high performance thanks to several important optimizations. We 
describe the interface and the functional architecture of the SFIO system along with the 
optimization techniques and their implementation. Chapter 1 is concluded by benchmarking 
results. 

Optimized parallel I/O results in simultaneous transmissions of large data chunks over the 
underlying network. Since parallel I/O is mostly used in supercomputer cluster networks having 
strict bounds on the latency and the throughput, the underlying network typically relies on 
coarse-grain switching. Such networks are prone to congestions when many parallel 
transmissions carry very large messages. Depending on the network topology, the rate of 
congestions may grow so rapidly that the overall throughput is reduced despite the increase in 
the number of contributing nodes. The gain achieved from the aggregation of communications in 
parallel I/O at the connection layer can be undermined by losses due to blocked messages 
occurring at the network layer. Solving congestions locally by FIFO techniques may result in 
idle times of other critical resources. Scheduling of transmissions at their sources aiming at an 
efficient utilization of communication resources can optimally increase the application 
throughput. In chapter 3 we present a collective communication scheduling technique, called 
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liquid scheduling, which in coarse grain networks achieves the throughput of a fine grain 
network or equivalently, that of a liquid flowing through a network of pipes. 

Chapter 1 is dedicated to fault-tolerant multi-path streaming in packetized fine grain 
networks. We demonstrate that in packet-switched networks, combination of channel coding at 
the packet level with multi-path parallel routing significantly improves the fault-tolerance of 
communications, especially in real-time streaming. We show that further development of the 
path diversity in multi-path parallel routing patterns often brings an additional benefit to the 
streaming application. We create a capillary routing algorithm generating parallel routing 
patterns of increasing path diversity. We also introduce a method for rating multi-path routing 
patterns of any complexity with a single scalar value, called ROR, standing for Redundancy 
Overall Requirement. 
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Chapter 2. Parallel I/O solutions for cluster 
computers 

This chapter presents the design and evaluation of a striped file I/O (SFIO) library providing high 
performance parallel I/O within a Message Passing Interface (MPI) environment. Thanks to small 
striping units one can achieve high efficiency and a good load balance. Small stripe unit size, 
however, increases the communication and disk access costs. By optimizing communications and 
disk accesses, SFIO exhibits high performance even for very small striping factors. We present the 
functional architecture of the SFIO system. Using MPI derived datatype capabilities, we transmit 
highly fragmented data over the communication network by single network operations. By 
analyzing and merging the I/O requests at the compute nodes, a substantial performance gain is 
obtained in terms of I/O operations. At the end of the chapter we present the parallel I/O 
performance benchmarks carried out on the Swiss-Tx cluster supercomputer consisting of DEC 
Alpha computers, interconnected with both Fast Ethernet and a coarse-grain low latency 
communication network, called TNET. 

Section 2.1. Introduction 

Parallelism in I/O access and communications relies on the distribution of storage 
resources. A high level of parallelism with a high load balance can be achieved thanks to fine 
granularity. The drawbacks of fine granularity are the network communication and storage 
access overheads. The overheads resulting from fine granularity may considerably reduce the 
gain in throughput achieved by parallelism. 

We would like to combine an extremely fine granularity (providing a high load balance) 
with a very high throughput, and at the same time, ensure a linear scalability. Scalability and 
high performance at extremely small stripe unit sizes are achievable thanks to following three 
proposed optimization techniques. 

Firstly, a multi-block user interface enables the library to recognize the overall pattern of 
multiple user requests. This multi-block interface permits the caching system (see below) to 
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aggregate the network and disk accesses which can also be fragmented due to the user memory 
layout (apart the striping of the global file across multiple disks). 

Secondly, the compute nodes perform the caching of I/O requests. The caching system 
aggregates all network transfers to and from individual I/O nodes. Fragmentations due to both 
file striping and multi-block user layout are merged in the same caching system. Network 
aggregation of the incoming traffic is also performed by the compute nodes. The data segments 
traversing the network are therefore combined into very large messages, thus reducing the 
communication overhead to the minimum. The drawback of this method is an increased risk of 
congestion, which is the subject of the second topic addressed in this thesis (see Chapter 1). 

Thirdly, at the compute nodes the caching system preprocesses the collected I/O requests 
addressed to each individual I/O destination. It removes the overlapping segments and sorts the 
requests according to their offsets. Whenever possible, the caching preprocessor merges 
multiple remote I/O requests into a single contiguous I/O request. Since network transmissions 
to individual destinations are already aggregated by both the compute nodes and the I/O nodes, 
merging multiple I/O requests into single ones does not yield an additional gain with respect to 
network communication performance. However, the performance gain from merging I/O access 
requests is considerable with respect to disk access performance. 

All three forms of optimizations carried out on the cached I/O requests are realized only at 
the level of memory pointers and disk offsets, without accessing or copying the actual data. 
Once the pointers and offsets stored in the cache are optimized, a zero-copy implementation 
streams the actual data directly between the network and the fragmented memory pattern. The 
zero-copy implementation relies on MPI derived datatypes [Snir96], which are built on the fly. 

Section 2.2. Project framework 

In 1998, EPFL, ETHZ, Supercomputing Systems (SCS), and Compaq Computer 
Corporation, in a cooperation with the Sandia National Laboratory (SNL) and the Oak Ridge 
National Laboratory (ORNL) started a common project called Swiss-Tx. The project aims at 
developing and building a teraflop supercomputer based mainly on commodity parts, such as 
Compaq Alpha Computers [SwissTx01]. The communication hardware and software were 
designed by SCS. It comprises an efficient communication library, called Fast Communication 
Interface (FCI) and custom-made communication hardware for the Swiss-Tx supercomputer, 
called TNET [Brauss99A]. TNET is a proprietary high performance, low-latency and high-
bandwidth network. A full implementation of MPI for the TNET network is also available (on 
top of FCI). 
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Figure 8. Swiss-Tx supercomputer in June 2001 

In many parallel applications I/O is a major bottleneck. I was in charge of the design of an 
MPI based parallel I/O system for the Swiss-Tx parallel supercomputer. 

Although the I/O subsystems of parallel computers are designed for high performance, a 
large number of applications achieve only about one tenth or less of the peak I/O bandwidth 
[Thakur98]. The main reason for poor application-level I/O performance is that parallel-I/O 
systems are optimized for large data size accesses (on the order of megabytes), whereas parallel 
applications typically make many small I/O requests (of the order of kilobytes or less). The 
small I/O requests made by parallel programs are due to the fact that in many parallel 
applications, each process needs to access a large number of relatively small pieces of data that 
are not contiguously located in the file [Baylor96], [Crandall95], [Kotz96], [Smirni96], 
[Thakur96A]. 

We designed the SFIO library which optimizes not only large data size accesses but also 
data size accesses as small as only one hundred bytes. Such an extremely small stripe unit size 
provides a very high level of load balance and parallelism. The support of a multi block 
Application Program Interface (API) enables the underlying I/O system to better optimize 
accesses to fragmented data both in memory and in the logical file. The multi-block interface of 
SFIO also allowed us to implement a portable MPI-I/O interface [Gabrielyan01]. Finally, thanks 
to the overlapping of communications and I/O, and to optimizations of I/O requests cached at 
the compute nodes, SFIO exhibits high performance and a nearly scalable throughput even at 
very low stripe unit sizes (such as 75 bytes). 
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Section 2.3. File striping 

For I/O bound parallel applications, parallel file striping may represent an alternative to 
Storage Area Networks (SAN). In particular, parallel file striping offers high throughput I/O 
capabilities at a much cheaper price, since it does not require a special network for accessing the 
mass storage sub-system [Bancroft00]. 

 

Figure 9. File Striping 

A parallel I/O system should offer all parallel application processes highly concurrent 
access capabilities to the common data files. It should exhibit a linear increase in performance 
when increasing both the number of I/O nodes and the number of compute nodes. Parallelism 
for input/output operations can be achieved by striping the data across multiple disks so that 
read and write operations occur in parallel (see Figure 9). A number of parallel file systems were 
designed ([More97], [Oldfield98], [Messerli99], [Chandramohan97], [Gorbett96], [Huber95], 
[Kotz97]), which rely on parallel file striping. 

MPI is a widely used standard framework for creating parallel applications running on 
various types of parallel computers [Pacheco97]. A well known implementation of MPI, called 
MPICH, has been developed by Argone National Laboratory [Thakur99A]. MPICH is used on 
different platforms and incorporates MPI-1.2 operations [Snir96] as well as the MPI-I/O subset 
of MPI-II ([Gropp98], [Gropp99], [MPI2-97B]). MPICH is most popular for cluster architecture 
supercomputers, based on Fast or Gigabit Ethernet networks. In 2001, the I/O implementation 
underlying MPICH’s MPI-I/O was sequential, and based on NFS [Thakur99A], [Thakur98]. 

In the 2001 version of MPICH, due to the locking mechanisms needed to avoid 
simultaneous multiple accesses to the shared NFS file, MPICH MPI-I/O write operations could 
out be carried only at a very slow throughput. 
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Another factor reducing peak performance is the read-modify-write operation, useful for 
writing fragmented data to the target file. Read-modify-write requires reading the full 
contiguous extent of data covering the data fragments to be written, sending it over the network, 
modifying it, and transmitting it back. In the case of high data fragmentation, i.e. small chunks 
of data spread within the file over a large data space, network access overhead becomes 
dominant. 

SFIO aims at offering scalable I/O throughput. However, the fine granularity, required for 
the best parallelization and load balance, increases the communication and disk access costs. 
Our SFIO parallel file striping implementation carries out efficient optimizations by merging 
sets of fragmented network messages and disk accesses into single contiguous messages and 
disk access requests respectively. The data merging operation makes use of the MPI derived 
datatypes. 

The SFIO library interface does not provide non-blocking operations, but internally, 
accesses to the network and disks are made asynchronously. Disk and network communications 
are overlapped resulting in additional performance gain. 

Section 2.4 presents the overall architecture of the SFIO implementation. The SFIO 
interface description and small examples are provided in Section 2.5. Optimization principles 
are presented in Section 2.6. The details of the system design, caching techniques and other 
optimizations are presented in Section 2.7. Throughput performances are given for various 
configurations of the Swiss-Tx supercomputer. The performances of SFIO on top of MPICH and 
on top of the native FCI communication system are given in Section 2.8. 

Section 2.4. Implementation layers 

The SFIO library is implemented using MPI-1.2 message passing calls. It is therefore as 
portable as MPI-1.2. The local disk access calls, which depend on the underlying operating 
system, are non-portable. However, they are separately integrated into the source for the Unix 
and Windows implementations. 

The SFIO parallel file striping library offers a simple Unix-like interface extended for 
multi-block operations. We provide an isolated MPI-I/O interface on top of SFIO 
[Gabrielyan01]. In MPICH’s MPI-I/O implementation there is an intermediate level, called 
ADIO [Thakur96B], [Thakur98], which stands for Abstract Device interface for parallel I/O. We 
successfully modified the ADIO layer of MPICH to route calls to the SFIO interface (Figure 
10). 
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Figure 10. SFIO integration into MPI-I/O 

On the Swiss-T1 machine (Swiss-T1 is a 64-processor implementation in scope of the 
Swiss-Tx project), SFIO can run on top of MPICH as well as on top of MPI/FCI. MPI/FCI is an 
MPI implementation making use of the low latency and high throughput coarse-grained 
wormhole-routing TNET network [Horst95], [Brauss99A]. 

Unlike the majority of file access sub-systems SFIO is not a block-oriented library 
[Gennart99], [Chandramohan97], [Lee95], [Lee96], [Lee98]. Independence from block 
orientation provides a number of advantages. There is no need to send entire blocks over the 
network or to access them on the disk. The stripe units do not form blocks; neither network 
transfers nor disk accesses are rounded to the size of the stripe unit size. The amount of data 
accessed on the disk and transferred over the network is the size resulting from SFIO calls. 

Section 2.5. The SFIO Interface 

This section presents the main interface functions of SFIO. The full list of API functions 
is given in Appendix A. Two functions, mopen and mclose are provided to open and close a 
striped file. In order to ensure the correct behavior of collective parallel I/O functions, these 
functions are collective operations performed in all contributing processing nodes. In addition, 
the operation of opening as well as that of closing a file implies a global synchronization point 
in the program. The function mopen returns a descriptor of the global parallel file. This function 
has a very simple interface. The first argument of mopen is a single string specifying the global 
file name, which contains the locations and names of all subfiles, separated by semi-colons. The 
second argument of mopen is the stripe unit size in bytes. 

For example, the following call opens a parallel file with a stripe unit size of 5 bytes 
consisting of two local subfiles located on hosts node1 and node2: 
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f=mopen("node1/tmp/a.txt;node2/tmp/a.txt",5); 

Other file handling operations, such as mdelete or mcreate also rely on this simple global 
file name format. SFIO does not maintain any global metafile, nor any hidden metadata in the 
subfiles. The sum of sizes of all subfiles is exactly the size of the logical parallel file. 

The generic functions for read and write accesses to a file are mreadc and mwritec 
respectively. These functions have four arguments. The first argument is the previously opened 
parallel file descriptor, the second argument is the offset in the global logical file, the third 
argument is the buffer and the forth argument is its size in bytes. The multiple I/O request 
specification interface allows an application program to specify multiple I/O requests within one 
call. This permits the library to carry out additional optimizations which otherwise would not be 
possible. The multiple I/O request operations are mreadb and mwriteb. 

The following C source code shows a simple SFIO example. The striped file with a stripe 
unit size of 5 bytes consists of two subfiles. It is assumed that the program is launched from one 
MPI compute process. A single compute node opens a striped file with two subfiles /tmp/a1.dat 
at p1 and /tmp/a2.dat at p2. Then it writes a message “Hello World” and closes the global file. 

#include <mpi.h> 
#include "/usr/local/sfio/mio.h" 
int _main(int argc, char *argv[]) 
{ 
    MFILE *f; 
    f=mopen("p1/tmp/a1.dat;p2/tmp/a2.dat;",5); 
    //writes in the global file 11 characters at location 0 
    mwritec(f,0,"Hello World",11); 
    mclose(f); 
} 

Below is an example of multiple compute nodes simultaneously accessing the same 
striped file. We assume that the program is launched with three compute nodes and two I/O MPI 
processes. The global striped file consisting of two sub-files has a stripe unit size of 5 bytes. It is 
accessed by three compute nodes. Each of them writes at a different position simultaneously. 

#include <mpi.h> 
#include "/usr/local/sfio/mio.h" 
int _main(int argc, char *argv[]) 
{ 
    MFILE *f; 
    int r=rank(); 
    //Collective open operation 
    f=mopen("p1/tmp/a.dat;p2/tmp/a.dat;", 5); 
    //each process writes 8 to 14 characters at its own position 
    if(rank==0) mwritec(f,0,"Good*morning!",13); 
    if(rank==1) mwritec(f,13,"Bonjour!",8); 
    if(rank==2) mwritec(f,21,"Buona*mattina!",14); 
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    mclose(f);  //Collective close operation 
} 

In MPI, the function rank returns to each compute process its unique identifier (0, 1 and 2 
in this example). Thus each compute processor running the same MPI program can follow its 
own computing scenario. In the above example, the compute nodes use their ranks to write at 
their respective (different) locations in the global file. After writing to the parallel file, the global 
file contains the text combined from the fragments written by the first, second and third compute 
nodes, i. e: 

"Good*morning!Bonjour!Buona*mattina!" 

The text is distributed across the two subfiles such that the first subfile contains: 

"Good*ng!Bo!Buontina!" 

And the second subfile contains (see Figure 11): 

"morninjoura*mat" 

 

Figure 11. Distribution of a striped file across subfiles 

The SFIO call mclose is a collective operation and is a global synchronization point for all 
three computing processes. 

Section 2.6. Optimization principles 

In our programming model, we assume a set of compute nodes and an I/O subsystem. The 
I/O subsystem comprises a set of I/O nodes running I/O listener processes. Both compute 
processes and I/O listeners are MPI processes within a single MPI program. This allows the I/O 
subsystem to optimize the data transfers between compute nodes and I/O nodes using MPI 
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derived datatypes. The user is allowed to directly use MPI operations for computation purposes 
only across the compute nodes. The I/O nodes are available to the user only through the SFIO 
interface. 

When a compute node invokes an I/O operation, the SFIO library takes control of that 
compute node. The library holds the requests in the cache of the compute node queuing the 
requests individually for each I/O node. The library then tries to minimize the cost of disk 
accesses and network communications by preparing new aggregated requests, taking care of 
overlapped requests and their order. Transmission of the requests and of data chunks is followed 
by confirmation reply messages sent by the I/O listeners to the compute node. 

Optimizations of network communications and the remote disk accesses are performed on 
the compute node. Requests queued for each I/O node are sorted according to their offsets in the 
remote disk subfile. Then all overlapping or consecutive I/O requests held in the cache are 
combined, and a new optimized set of requests is formed (Figure 12). This new set of requests 
creates a new fragmented access pattern within the user memory. 

User Block 1 User Block 3 

 

Figure 12. Disk access optimization 

Optimized remote I/O node requests are kept in the cache of the compute nodes. They are 
launched either at the end of the SFIO function call or when the compute node estimates that the 
buffer size reserved on the remote I/O listener for data reception may not be sufficient. Memory 
is not a problem on the compute node, since data always remains in the user memory and is not 
copied. When launching I/O requests, the SFIO library performs a single data transmission to 
each of the I/O nodes. It creates on the fly derived datatypes pointing to the fragmented memory 
patterns in user space associated to each of the I/O nodes. Thanks to these dynamically created 
derived datatypes, the data is transmitted to or from each I/O node in a single stream without 
additional copies. The I/O listener also receives or transmits the data as a contiguous chunk. 
Once the optimized data exchange pattern is carried our between the memory of a compute node 
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and the remote I/O nodes, the corresponding local disk access operations are triggered by 
read/write instructions received at the I/O node from the corresponding compute node. 

These optimizations are especially valuable for low stripe unit sizes. Figure 13 shows a 
comparison of a typical non-optimized write operation and its optimized counterpart. 
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Figure 13.  Comparison of the optimized write access with a non-
optimized write access as a function of the file striping 
granularity (3 I/O nodes, 1 compute node, global file size is 
660 Mbytes) 

The multi-block interface of SFIO enables one to carry out several contiguous blocks of 
I/O access operations by a single multi-block operation. Thanks to the relevant network 
optimizations, the performance gain achieved by multi-block access operations is significant. 
Figure 14 compares the I/O throughput of a multi-block write operation with the throughput 
achieved by a set of corresponding non-optimized single-block operations. 
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Since the single block operations of Figure 14 are not optimized, their total throughput is 
bounded by an upper limit related to the striping factor of the global file (the same for all user 
block sizes). Even at very large user block sizes the total throughput of the single block 
operations is below 3.3 Mbytes/sec due to the striping factor of 1005 bytes (see also Figure 13 
for a reference). The multi-block interface permits one to fully benefit from the optimization 
subsystem [Gabrielyan00]. 

Section 2.7. Functional architecture and implementation 

In this section we describe the functional architecture and the implementation of the 
access functions. An overall diagram of the implementation of the SFIO access function is 
shown in Figure 15. 

 

Figure 15. SFIO functional architecture 
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On top of the diagram we have the application’s interface to data access operations and at 
the bottom, the I/O node operations. The mread and mwrite operations are the non-optimized 
single block access functions and the mreadc and mwritec operations are their optimized 
counterparts. The mreadb and mwriteb operations are multi-block access functions. 

All the mread, mwrite, mreadc, mwritec, mreadb and mwriteb file access interface 
functions are operating at the level of the logical file. For example, the SFIO write access 
operation mwritec(f,0,buffer,size) writes data to the beginning of the logical file f. Access 
interface functions are unaware of the fact that the logical file is striped across subfiles. In the 
SFIO library, all the interface access functions are routed to the mrw cyclic distribution module. 
This module is responsible for data striping. Contiguous requests (or a set of contiguous requests 
for mwriteb and mreadb operations) are split into small fragments according to the striping 
factor. The small requests generated by the mrw module contain information on the selected 
subfile, and the node on which the subfile is located. Global pointers are translated to subfile 
pointers. Subfile access requests contain enough information to execute and complete the I/O 
operation. 

Thus, for the non-optimized mread and mwrite operations, the library routes the requests 
to the sfp_read and sfp_write modules that are responsible for sending appropriate single sub-
requests to the I/O nodes using MPI as the transport layer. The rest of the diagram (the right 
half) is dedicated to optimized operations. 

The network communication and disk access optimization is represented by the hierarchy 
below the mreadc, mwritec, mreadb, mwriteb access functions. For these optimized operations 
the mrw module routes the requests to the sfp_readc and sfp_writec functions. These functions 
access the sfp_rdwrc module which stores the sub-requests into a 2D cache. The 2D cache 
structure comprises the I/O nodes as one dimension, and the set of subfiles each I/O node is 
dealing with, as the second dimension. Each I/O node can have more than one subfile per global 
file. 

Each entry of the cache can be flushed. Flushing happens either because the user 
operation terminates, i.e. when a call is communicated down through the sfp_rflush and 
sfp_wflush functions; or it can happen if the sfp_rdwrc module predicts a possible overflow of 
reception buffers in the remote I/O nodes. The sfp_rdwrc function makes sure that all generated 
requests fit within the buffers of the remote I/O nodes. The entries to be flushed are passed to 
the flushcache operation that also frees the corresponding resources within the 2D cache. 

When the flushcache operation is invoked, a large list of the sub-requests has already been 
collected and needs to be processed. At this point the library can carry out effective 
optimizations in order to save network communications and disk accesses. Note that the data 
itself is never copied, and always remains in user space, thereby saving processor time and 
memory space. Three optimization procedures are carried out, before an actual transmission 
takes place. The requests are sorted by their offsets in the remote subfiles. This operation is 
carried out by the sortcache module. Overlapping and consecutive requests are merged into 
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single requests whenever possible by the bkmerge module. This merging operation reduces the 
number of disk access calls on the remote I/O nodes. 

The mkbset module creates on the fly a derived MPI datatype pointing to the fragmented 
pieces of user data in the user’s memory. This allows one to efficiently transmit over the 
network the data associated with many requests as a single contiguous stream. The data is 
transmitted or received without any memory copy at the application or library level. In a zero-
copy MPI implementation relying on hardware Direct Memory Access (DMA), the entire 
process becomes copy-less and the actual data (even if fragmented) is transmitted directly from 
the user space to the network. 

The transmission of data and instructions to the I/O nodes is performed by the sfp_readb 
and sfp_writeb functions. 

Section 2.8. SFIO performance 

In this section we explore the scalability of our parallel I/O implementation (SFIO) as a 
function of the number of contributing I/O nodes [Fujita03]. Performance results have been 
measured on the Swiss-T1 machine. The Swiss-T1 supercomputer is based on Compaq Alpha 
Server DS20 machines and consists of 64 Alpha processors grouped in 32 nodes. Two types of 
network interconnect the processors, TNET and Fast Ethernet. The aggregate throughput of Fast 
Ethernet and the performance of SFIO on top of Fast Ethernet as a function of the number of 
contributing nodes are presented in Subsection 2.8.1. The aggregate raw throughput of the 
TNET network and the throughput of SFIO running on top of the TNET network are presented 
in Subsection 2.8.2. 

2.8.1. Network and parallel I/O throughput when using Fast 
Ethernet 

To obtain information about the Fast Ethernet network capabilities, throughput as a 
function of the number of nodes is measured by a simple MPI program. The nodes are equally 
divided into transmitting and receiving nodes and an all-to-all traffic of relatively large blocks is 
generated. Figure 16 demonstrates the cluster’s communication throughput scalability over Fast 
Ethernet. The Fast Ethernet network of Swiss-T1 consists of a full crossbar switch and Figure 16 
exhibits the corresponding linear scaling. Each pair of nodes (one receiver and one sender) 
contributes to the overall throughput through a single link capacity. 
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Figure 16. Aggregate throughput of Fast Ethernet as a function of the 
number of contributing nodes 

Let us now analyze the performances of the SFIO library on the Swiss-T1 machine on top 
of MPICH using Fast Ethernet. We assign the first processor of each compute node to a compute 
process and the second processor to an I/O listener (Figure 17). 

 

Figure 17. SFIO architecture on Swiss-T1 
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the number of compute nodes. The size of the striped file is 2Gbyte and the striped unit size is 
only 200 bytes. The application’s SFIO performance as a function of the number of compute and 
I/O nodes is measured for the Fast Ethernet network (see Figure 18). The white graph represents 
the average throughput and the gray graph the peak performance. Once the number of 
contributing nodes exceeds 12, the overall throughput decreases. The reduction in throughput 
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may possibly be due to a non-efficient implementation of data intensive collective operations in 
the 2001 version of MPICH. 

SFIO on top of MPICH using Fast Ethernet
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Figure 18. SFIO/MPICH all-to-all I/O performance for a 200 byte stripe 
size 

2.8.2. Network and parallel I/O throughput when using TNET 

Let us analyze the capacities of the TNET network of the Swiss-T1 machine. TNET is a 
high throughput and low latency network (less than 20ms MPI latency and more than 50MB/s 
bandwidth) [Brauss99B]. A high performance MPI implementation called MPI/FCI is available 
for communication through TNET [Brauss99B]. 
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Figure 19. Aggregate throughput of TNET as a function of the number 
of the contributing nodes 

The Swiss-T1’s TNET network [Kuonen99B] consists of eight 12-port full crossbar 
switches (Figure 20). The gray arrows in the figure indicate the static routing between switches 
that do not have direct connectivity [Kuonen99A]. The topology together with the routing 
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information defines the network’s peak collective throughput over the subset of processors 
assigned to a given application. 

The TNET throughput as a function of the number of nodes is measured by a simple MPI 
program. The contributing nodes are equally divided into transmitting and receiving nodes 
(Figure 19). Due to TNET’s specific network topology (Figure 20), the communication 
throughput does not increase smoothly as the number of contributing nodes increases. A 
significant increase in throughput occurs when the number of nodes increases from 8 to 10, from 
16 to 18, and from 24 to 26. 

The topology of the TNET network (Figure 20) is not equivalent to a full crossbar switch. 
Depending on the physical allocation of processors, contributing nodes may be grouped into 
clusters with limited communication capacities between them. Therefore, the overall throughput 
depends not only on the number of contributing nodes, but also on their particular allocation. 
For a given number of nodes, the overall throughput varies between a lower and an upper bound 
for different allocation patterns. In Subsection 3.8.1 of Chapter 1, for a given fixed number of 
allocated nodes we are analyzing the upper and lower bound of the underlying network’s 
theoretical capacity depending on a particular allocation of nodes (see Figure 40). 

 

Figure 20. The Swiss-T1 network interconnection topology 
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The performance of the SFIO library relying on MPI/FCI using the proprietary TNET 
network of the Swiss-T1 supercomputer is measured according to an allocation of I/O and 
compute nodes identical to that of Figure 17. As before, the first processor of each compute 
node is assigned to a compute process and the second processor to an I/O listener process. 
Therefore, each node acts both as a compute node and as an I/O node.  

As in SFIO/MPICH, the performance of SFIO over MPI/FCI is measured for concurrent 
write accesses from all compute nodes to all I/O nodes, the striped file being distributed over all 
I/O node disks. 

In order to limit operating system caching effects, the total size of the striped file linearly 
increases with the number of I/O nodes. With a global file size proportional to the number of 
contributing I/O nodes, we keep the size of subfiles per I/O node fixed at 1GB/subfile.  

The stripe unit size is 200 bytes. The global file size ranges from 1 GB to 31 GB. The 
MPI/FCI application’s I/O performance is measured as a function of the number of compute and 
I/O nodes (Figure 21). For each configuration, 53 measurements are carried out. At job launch 
time, pairs of I/O and compute processes are assigned randomly to processing nodes. 
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Figure 21. SFIO all-to-all I/O performance on TNET 

The I/O throughput on MPI/FCI scales well when increasing the number of nodes. This 
configuration tests SFIO under extreme conditions in terms of the number of I/O nodes 
(scalability), the number of compute nodes (simultaneous concurrent accesses) and the 
extremely low stripe unit size (efficient optimizations of communications and disk accesses). 

The speed-up may vary due to the communication topology of the TNET network (Figure 
20) associated with the particular node allocation scheme. Once half of the cluster nodes are 
allocated, the network becomes a major bottleneck if the network transmissions are not properly 
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coordinated and scheduled. Network performance for collective parallel transfers is studied in 
Chapter 1. 

Section 2.9. MPI-I/O implementation on top of SFIO 

Typical scientific applications make a large number of small I/O requests. A typical 
example is access to columns or blocks of out-of-core matrices resulting in a large number of 
highly fragmented non-contiguous requests. MPI’s derived datatypes provide the functionality 
for dealing with fragmented data in memory.  

Most parallel file systems (at the time of the design of SFIO) allowed a user to access 
only a single, contiguous chunk of data at a time from a file. Non-contiguous data sets must 
therefore be accessed by making separate function calls to access each individual contiguous 
piece. 

With such an interface, the file system cannot easily detect the overall access pattern. 
Consequently, the file system is constrained in the optimizations it can perform. To overcome 
the performance and portability limitations of existing parallel-I/O interfaces, the MPI Forum 
defined a new interface for parallel I/O as part of the MPI-2 standard [MPI2-97], referred to as 
MPI-IO. It is a rich interface with many features designed specifically for performance and 
portability. It supports non-contiguous accesses, non-blocking I/O and a standard data 
representation via MPI derived datatypes. 

The MPI-I/O interface design allows the underlying parallel I/O subsystem to optimize 
access operations. This is however possible only if the underlying I/O subsystem (on top of 
which the MPI-I/O interface is to be implemented) supports and optimizes multi-block access 
requests. 

Thanks to the optimizations of multi-block access in SFIO, an implementation of MPI-I/O 
on top of SFIO can both be efficient and benefit from the advanced features of the MPI-I/O 
design. 

For specifying fragmentation patterns for different purposes, the MPI-I/O interface does 
not use arrays or vectors of locations and sizes. The fragmentation both in the memory and in 
the file is specified by derived datatype objects. 

In MPI-I/O, the file view is a global concept, which influences all data access operations. 
Each process obtains its own view of the shared data file. In order to specify the file view the 
user creates a derived datatype. Since each memory access operation may use another derived 
datatype that specifies the fragmentation in memory, there are two orthogonal aspects to data 
access: the fragmentation in memory and the fragmentation of the file view (see Figure 22). This 
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figure presents four fragmentation scenarios from the perspective of one computing MPI 
process. The file view pattern can be different from one process to another. 

 

Figure 22. The use of derived datatypes in MPI-I/O interface 

MPI-1 provides recursive techniques for creating datatype objects, which have an 
arbitrary memory data layout (see Figure 23). A derived opaque datatype object can be used in 
various MPI operations (e.g. communication between compute nodes). The main obstacle for 
implementation of a portable MPI-I/O interface is that the derived datatypes are opaque objects; 
once created by the user, they cannot be decoded. 

 

Figure 23. The recursive construction of derived datatypes in MPI 
(“Contiguous” is a derived datatype obtained by repeatedly 
joining another datatype which in turn can be fragmented) 
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To implement an MPI-I/O interface we need to access the flattened fragmentation pattern 
of a datatype created by a user. The difficulty is that the layout information, once encapsulated 
in a derived datatype, can not be extracted from these opaque objects with standard MPI-1 
functions (see Figure 24). 

A solution for deducing the flattened fragmentation patterns (in the memory and in the 
file) may consist in understanding for each particular MPI-1 implementation the internal 
structure of the derived datatypes created by the user (see Figure 24). The disadvantage is that 
(1) only the operations for constructing the derived datatypes are standardized and the internal 
implementation of the opaque datatype objects can vary significantly from one implementation 
of MPI-1 to another and (2) the source code of a particular MPI-1 implementation is often not 
available or is subject to frequent updates. Our objective is to design a portable, implementation-
independent solution for MPI-I/O running on top of any MPI-1 implementation. 
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Figure 24. The MPI-I/O implementation requires a method for 
retrieving the fragmentation patterns of opaque MPI derived 
datatypes 

Our method relies on a reverse engineering technique for discovering the flattened pattern 
of a user-created derived datatype. 

The extension of a derived datatype is the size of the minimal contiguous space fitting the 
fragmented pattern of the derived datatype. The size of the derived datatype is the sum of the 
sizes of all contributing contiguous pieces of the datatype. Standard MPI-1 provides functions 
for retrieving both the extension and the size of a derived datatype. 

Derived datatypes can be used in many MPI operations. A typical MPI receive operation, 
called MPI_Recv, receives a contiguous network stream and distributes it in memory according 
to the data layout of the datatype. If the bytes in the memory are all previously initialized with a 
constant value (e.g. by zeroes) referred to as “gray color”, and the network stream carries bytes 
all initialized by another constant value (e.g. by ones) referred to as “black color”, then 
analyzing the receiver’s memory after data reception will give us the necessary information on 
the derived datatype’s data layout. 
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Figure 25 shows the decoding of a derived datatype constructed in Figure 23. The size of 
this derived datatype is 20 bytes and its extension is 30 bytes. The sender initializes a contiguous 
block 

ved datatypes used 
for ch

Fi for discovery the 
fragmentation pattern o y the 
user 

Instead of sendin d MPI_Unpack 
operation for carrying o  procedure in a single compute node. The operation MPI_Unpack 

of the size of the derived datatype (i.e. a block of 20 bytes) with ones (appearing in black 
in Figure 25). The receiving side initializes with zeroes (gray color) a contiguous block of the 
size of the extension of the derived datatype (i.e. a block of 30 bytes). The sender transmits the 
bytes from its contiguous block and the receiver, using MPI_Recv operation, distributes the 
incoming data into the previously initialized memory block according to the corresponding 
derived datatype. Once the transmission is over, one can construct a vector of blocks 
representing the flattened datatype simply by reading the receiver’s memory. 

Derived datatypes with cross-ordered fragmentation patterns cannot be decoded with this 
technique. We rely on the fact that according to the MPI-2 specifications, deri

aracterizing the file view are restricted to specify only monotonically non-decreasing 
offsets in the file. For example, a derived datatype that specifies offsets in the order {2, 6, 5, 7, 
4} cannot be used as a valid datatype for the MPI-I/O file view (see “Using MPI-2”, Section 
3.3.1, p. 61, [Gropp99]). 
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Since the design of SFIO, there were additional developments in parallel I/O. The impact 
of the underlying network topology and the allocation scheme of the I/O and compute nodes is 
studied in [Wu05A]. Further I/O access performance optimizations were achieved by taking into 
account global knowledge in the case of off-line access requests and by using prefetching 
relying on predictions of future access request patterns [Abawajy03], [Kallahalla02]. One may 
increase the overall performance of collective read access operations not only by striping but 
also by simple replication of data across several I/O nodes [Wu05B] and [Liu03]. Replication 
and caching at I/O nodes requires a careful sequencing of all I/O operations in order to maintain 
the consistency of replicated copies and of a global parallel file from the perspective of all 
compute nodes. The required file locking mechanisms may induce a significant performance 
drawback. Moreover, file locking is not always implemented in large systems. Several methods 
were proposed for allowing replications at I/O nodes and caching at compute nodes while 
maintaining the consistency of the global file by relying on orthogonal MPI level 
communications between compute nodes without using file locking mechanisms [Wu05B], 
[Coloma04]. Parallel communications between a compute node and each individual I/O node 
may produce a greater network throughput performance [Liu03] and [Ali05]. An overall 
throughput of 291 Mbps with 18 compute and I/O processors was reported [Ali05]. The 
throughput of SFIO (between 150 and 350 MB/s for 31 compute and I/O nodes) still remains 
competitive. 

Regarding parallel I/O interfaces, portable implementations of the MPI-I/O interface have 
been released [Thakur99B], [Baer04]. The fine granularity with the resulting high level of load 
balance remains the strong point of SFIO, whose underlying optimizations support down to a 
75-byte stripe size with only a negligible loss in performance. Usually the parallel I/O systems 
are optimized for stripe unit sizes not smaller than a few kilobytes [Thakur99B]. For balancing 
the I/O workload in the servers, a solution for dynamically adapting the striping factors and for 
dynamically distributing the data was suggested in [Ma03B]. 
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Chapter 3. Liquid scheduling of parallel 
transmissions in coarse-grained low-
latency networks 

The upper limit of a network’s capacity is its liquid throughput. The liquid throughput corresponds 
to the flow of a liquid in an equivalent network of pipes. In coarse-grained networks, the aggregate 
throughput of an arbitrarily scheduled collective communication may be several times lower than 
the maximal potential throughput of the network. In wormhole and wavelength division optical 
networks, there is a significant loss of performance due to congestions between simultaneous 
transfers sharing a common communication resource. We propose to schedule the transfers of a 
traffic according to a schedule yielding the liquid throughput. Such a schedule, called liquid 
schedule, relies on the knowledge of the underlying network topology and ensures an optimal 
utilization of all bottleneck links. To build a liquid schedule, we partition the traffic into time 
frames comprising mutually non-congesting transfers keeping all bottleneck links busy during all 
time frames. The search for mutually non-congesting transfers utilizing all bottleneck links is of 
exponential complexity. We present an efficient algorithm which non-redundantly traverses the 
search space. We efficiently reduce the search space without affecting the solution space. The 
liquid schedules for small problems (up to hundred nodes) can be found in a fraction of seconds. 

Section 3.1. Introduction 

3.1.1. Parallel transmissions in circuit-switched networks 

It’s been more than three decades that circuit-switched networks are being successfully 
replaced by their packet-switched counterparts. In the early 1970’s, this trend started by 
replacing data modems with connections to the X.25 network. Today, the entire telephony is 
being packetized. It is commonly admitted that with fine-grained packet-switching technology, 
network resources are utilized more efficiently, flows are more fluid and resilient to congestions, 
network management is easier and the networks can flexibly scale to large sizes. 
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Nevertheless, other networking approaches still based on coarse-grained circuit-switching 
have been emerging. These approaches offer low latencies, which are not attainable with packet 
switching technology. In addition circuit switching is of importance for optical communications. 

Examples of circuit switching networks are wormhole and cut-through routing (e.g. 
MYRINET [Boden95], InfiniBand, [Steen05], [InfiniBand], [Reinemo06], [Bermudez06]) and 
optical Wavelength Division Multiplexing (WDM). In contrast to packet switching, in 
wormhole and optical switching networks, the number of network hops separating the end nodes 
has nearly no impact on the communication latency. In respect to optical networks, due to the 
lack of optical memory, packet switching in optical networks does today not exist at all (at least 
commercially). 

All coarse-grained circuit-switching networks suffer from a common problem: inter-
blocking of transfers and jamming of large indivisible messages occupying intersecting 
resources of the network (e.g. lightpaths of a given wavelength). Several parallel multi-hop 
transmissions cannot share the same link resource simultaneously. In contrast to the fluidity and 
resiliency of packet-switching, in coarse-grained circuit-switching networks, hard and complex 
interlocking contentions arise when the network topology grows and the load increases. 

In WDM optical networks, a single fiber can carry several wavelengths, approximately 80 
in WDM, 160 in DWDM and 1000 in research prototypes [Kartalopoulos00]. However the 
contentions are still present, because wavelengths are typically conserved along the whole 
communication path. There is no switching from one wavelength to another in the middle of the 
network. The new wavelengths are simply increasing the network capacity. In wormhole 
switching, when the head of the message is blocked at an intermediate switch (due to 
contention), the transmission stays strung over the network, potentially blocking other messages. 

WDM wavelength routing is briefly introduced in Subsection 3.2.2 and the wormhole 
routing is introduced in Subsection 3.2.1. 

3.1.2. Hardware solutions 

In optical and wormhole switching the problem of contentions can be partially or fully 
solved at the hardware level. 

For example the optical switches of the network may be equipped with the capability to 
change the incoming wavelengths (not only to switch across the ports, i.e. to control the 
direction of the light, but also to change the wavelength). Wavelength interchange (changing of 
colors) requires expensive optical-electric (O/E) and electro-optical (E/O) conversions. Without 
O/E/O conversions, when the signal is constantly maintained in the optical domain, cost-
effective optical networks can be built by relying only on switching by microscopic mirrors, 
using inexpensive Micro Electro-Mechanical Systems (MEMS). In addition, O/E/O conversions 
necessarily induce additional delays. 
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Regarding wormhole routing, the switches typically need only to buffer the tiny pieces of 
the message (flits) that are sent between the switches. However, the switches may be equipped 
with memories large enough to store the entire message (whichever is the estimation of the 
message size in the network). Thus, when the head of the message is blocked, the switch lets the 
tail continue, accumulating the whole message into a single switch. This hardware extension of 
wormhole routing is called cut-through switching. Storing the messages solves the contention 
problem only partially but requires a substantial increase of the switch’s memory, up to 
multiples of the largest message size (depending on the number of ports). Virtual cut-through 
switching is yet another hardware extension, where the link is divided (similarly to WDM) into a 
certain number of virtual links sharing the capacity of the physical link. 

In coarse-grained circuit switching the hardware solutions of contention-avoidance 
require costly modifications of hardware (e.g. O/E/O conversion in optical switching or 
substantial memory in wormhole switches) and often provide only partial solutions. The 
hardware solutions also reduce the benefits of the low latency, since for example in case of cut-
through routing; the entire messages are stored in the switches. 

3.1.3. Liquid scheduling - an application level solution 

In wormhole routing, for example, by keeping the architecture simple, switches with a 
large number of physical ports can be implemented in single chips at a very low cost. I propose 
liquid scheduling as an application level method for obtaining the network’s highest overall 
throughput. The scheduling is performed at the edge nodes and requires no specific hardware 
solutions. Synchronization and coordination of edge nodes is required. 

Numerous applications relying on coarse-grained circuit-switched networks require an 
efficient use of network resources for collective communications. Such applications comprise 
parallel acquisition and distribution of multiple video streams [Chan01], [Sitaram00], switching 
of simultaneous voice communication sessions [H323], [EWSD04], [SIP], and high energy 
physics, where particle collision events need to be transmitted from a large number of detectors 
and filters to clusters of processing nodes [CERN04]. 

Liquid scheduling can be used in Optical Burst Switching (OBS) by the edge IP routers 
for an efficient utilization of the capacities of an interconnecting optical cloud (all-optical 
network providing interconnection for the edge routers). 

3.1.4. Overview of liquid scheduling 

The aggregate throughput of a collective communication pattern (traffic of transmissions 
between pairs of end nodes) depends on the underlying network topology and the routing. The 
amount of data that has to pass across the most loaded links of the network, called bottleneck 
links, gives their utilization time. The total size of a traffic divided by the utilization time of one 
bottleneck link gives an estimation of the liquid throughput, which corresponds to the flow 

 37

http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/Chan01.pdf
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/H323.mht
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/EWSD04.mht
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/SIP.mht
http://switzernet.com/people/emin-gabrielyan/060708-thesis-ref/papers/CERN04.mht


capacity of a non-compressible fluid in a network of pipes [Melamed00]. Both in wormhole 
switching networks and WDM optical networks, due to possible link or wavelength allocation 
conflicts, not any combination of transfer requests may be carried out simultaneously. The 
objective is to minimize the number of timeslots and/or wavelengths required to carry out a 
given set of transfer requests. Each transfer shall be allocated to one (and only one) time frame, 
such that no pair of transfers allocated to the same time frame uses a common resource (link, 
wavelength). The liquid scheduling problem is introduced and mathematically defined in 
Section 3.3 and Section 3.4. 

The liquid scheduling problem cannot be solved in polynomial time. Solving the problem 
by Mixed Integer Linear Programming (MILP) [CPLEX02], [Fourer03] requires very long 
computation times (see Appendix A). Solving the problem by applying a heuristic graph 
coloring algorithm provides in short time suboptimal solutions. The throughputs corresponding 
to the heuristic solutions of the graph coloring problem are often 10% to 20% lower than the 
liquid throughput [Gabrielyan03] (see Appendix A). In the present contribution we propose an 
exact method for computing liquid schedules, which is fast enough for real time scheduling of 
traffics on small size networks comprising up to hundred nodes. 

Section 3.2 gives a brief overview of the architectures of the optical and wormhole 
switching networks. Section 3.3 and Section 3.4 introduce the liquid scheduling problem. 
Section 3.5, Section 3.6 and Section 3.7 present the liquid schedule construction algorithm. In 
Section 3.8 we present for many network traffic patterns their overall communication 
throughputs when carried out according to liquid schedules and to topology-unaware schedules. 

Section 3.2. Applicable networks 

This section briefly introduces two coarse-grained switching concepts: wormhole 
switching (Subsection 3.2.1) and lightpath routing (Subsection 3.2.2). The advantages of 
applying liquid schedules are discussed for both types of networks. 

3.2.1. Wormhole routing 

Wormhole routing is used in many High Performance Computing (HPC) networks. In 
wormhole routing, the links lying on the path of a message are kept occupied during the 
transmission of that message. Unlike packet switching (or store-and-forward switching) where 
each network packet is present at an intermediate router [Ayad97], wormhole switching [Liu01], 
[Dvorak05] transmits a message as a “worm” propagating itself across intermediate switches. 
The message “worm” is a continuous stream of bits which are making their way through 
successive switches. In a wormhole switching network [Duato99], [Shin96], [Rexford96], 
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[Colajanni99], [Dvorak05] a message entering into the network is being broken up into small 
parts of equal size called flits (standing from flow-control digits). These flits are streamed across 
the network. All the flits of a packet follow the same path. The head flit contains the routing 
header for the entire message. As soon as a switch on the path of a message receives the head 
flit, it can trigger the incoming flow to the corresponding outgoing link. If the message 
encounters a busy outgoing link, the wormhole switch stalls the message in the network along 
the already established path until the link becomes available. Occupied channels are not 
released. A channel is released only when the last tail flit of the message has been transmitted. 
Thus each link laying on the path of the message is kept occupied during the whole transmission 
time of a message. In virtual cut-through (VCT) networks, if the message encounters a busy 
outgoing link, the entire message is buffered in the router and already allocated portions of the 
message path are released. VCT switches have enough memory to store nearly twice as many 
messages as numbers of ports. A simple wormhole switch architecture capable of only 
pipelining the messages requires not more than a very small buffer, irrespectively of the size of 
the largest possible messages in the network. It enables a cost effective implementation of 
wormhole switches with a large number of ports on a single chip [Yocum97]. The ability of 
VCT switches to buffer large messages increases their cost substantially. 

Compared with store and forward switches, wormhole switching considerably decreases 
the latency of message transmission across multiple routers. Wormhole switching makes the 
latency insensitive to the distance between the end nodes. Most contemporary research and high-
performance commercial multi-computers use some form of wormhole or cut-through networks, 
e.g. Myrinet [Boden95], fat tree interconnections for clusters [Petrini01], [Petrini03], [Quadrics], 
InfiniBand [InfiniBand], [Steen05], [Reinemo06], [Bermudez06] and Tnet [Horst95], 
[Brauss99B]. 

Due to blocked message paths, wormhole switching quickly saturates as the load 
increases. The aggregate throughput can be considerably lower than the liquid throughput of the 
network. The rate of network congestions depends in which order a given set of message 
transfers is carried out. Liquid scheduling enables partitioning the transfers so as to avoid 
simultaneous transmissions of congesting messages. 

3.2.2. Optical networks 

In optical networks, data is transferred by lightpaths. Lightpaths are end to end optical 
connections from a source node to a destination node. In Wavelength Division Multiplexing 
(WDM) optical networks, a lightpath is typically established over a single wavelength (color) 
along the whole path. Different lightpaths in a WDM wavelength-routing network can use the 
same wavelength as long as they do not share any common link. Figure 27 shows an example of 
an optical wavelength-routing network. Switches of the optical network are called Optical Cross 
Connects (OXC). An OXC switches wavelengths from one port to another, usually without 
changing the color [Ramaswami97], [Stern99]. The Optical Line Terminal (OLT) multiplexes 
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multiple wavelengths into a single fiber and de-multiplexes a set of wavelengths from a single 
fiber into separate fibers. Often the OLT units are integrated with OXC. 
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Figure 27.  Wavelength routing in optical layer 

End nodes (or edge nodes) of an optical network (also called optical cloud) are IP routers, 
SONET terminals or ATM switches. They are plugged to OXC switches (as shown in Figure 
27). In a simple design the end node can be also inserted into a fiber (statically) via an Optical 
Add/Drop Multiplexer (OADM). The purpose of the optical cloud is to provide lightpaths 
between the terminal edge nodes, for example between IP routers (as shown in Figure 27). The 
lightpaths between the end nodes can be established either permanently, or provided 
dynamically on demand. 

Relatively inexpensive OXC switches can be implemented by an array of microscopic 
mirrors, build with Micro Electro-Mechanical Systems (MEMS). These switches only re-direct 
the incoming wavelengths to appropriate outgoing ports, without converting the color. They are 
called Wavelength-Selective Cross-Connect (WSXC). Changing of the wavelength is possible 
through Optical/Electro/Optical (O/E/O) conversions. Optical switches providing wavelength 
conversion features are called Wavelength-Interchanging Cross-Connects (WIXC). WIXC 
switches do both space switching and wavelength conversion. 

When using WIXC switches, the lightpaths may be converted from one wavelength to 
another along their route. However from the optical network design point of view, it is essential 
to keep transmissions in the optical domain as long as possible, i.e. to be able to provide the 
required services using only inexpensive WSXC switches. 
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Wavelength continuity (the fact that the basic optical transmission channel remains on a 
fixed wavelength from end to end) is the main constraint affecting the scalability of networks 
built with WSCX switches only. 

For example assuming only WSXC switches in Figure 27, two connections from IP router 
A to B and from C to D must either be established on two different wavelengths 1λ  and 2λ , or 

must be scheduled in different timeslots. 

Given that any lightpath must be assigned the same wavelength on all the links it traverses 
and that two lightpaths traversing a common link must be assigned different wavelengths, the 
wavelength assignment problem requires minimizing of the number of wavelengths needed for 
establishment of the required end to end connections. In this domain, the wavelength assignment 
problem is commonly solved by solving the corresponding congestion graph coloring problem 
[Bermond96], [Caragiannis02]. The vertices of the graph represent the lightpaths and two 
vertices are connected if the corresponding lightpaths are sharing a common link. The graph 
coloring problem requires coloring of all vertices using a minimal number of colors such that 
two connected vertices always have different colors. Graph coloring is an NP-complete problem. 
Its solutions are generally based on heuristic methods. 

Liquid scheduling is an efficient method for assigning transmissions a minimal number of 
lightpaths or timeframes. If a liquid schedule exists, the solution of the liquid scheduling 
algorithm corresponds to the optimal solution of the graph coloring algorithm. Our algorithm 
does not associate the set of transfers with a graph. It does not only consider the congestion 
between pairs of transfers (congestion graph) but also considers the set of links occupied by 
each transfer. This permits to build liquid schedules relatively fast for networks comprising up 
to hundred nodes. The corresponding congestion graphs comprise thousands of vertices. The 
heuristic graph coloring algorithms often propose solutions requiring more timeframes than the 
number of timeframes allocated by our liquid scheduling algorithm. The comparison of the 
liquid scheduling algorithm with a heuristic graph coloring method is given in Appendix A. 

Application of liquid schedules in the optical domain assumes a collaboration of the edge 
nodes and therefore an appropriate signaling layer. Optical Burst Switching (OBS) is an 
example where the collaboration of the edge nodes is assumed and the application of a liquid 
schedules may significantly improve the overall throughput of the optical cloud [Qiao99], 
[Turner99], [Turner02]. In case of a continuous incoming IP traffic, the filled buffers of the edge 
nodes are repeatedly emptied by applying liquid scheduling. For the buffered data, the liquid 
schedule finds the minimal number of partitions comprising non-congesting lightpaths. The 
same wavelength is allocated to all transfers of a partition. The number of wavelengths available 
in the network may not suffice for all partitions found by the liquid schedule. In such a case, 
when all transfers cannot be carried out within a single round (timeslot), new rounds (with a new 
set of wavelengths) are allocated until all transfers are carried out. Irrespectively of the number 
of wavelengths available in the network, liquid scheduling minimizes the total number of 
required rounds. 
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Local strategies for avoiding congestions rely on an admission control mechanism 
[Jagannathan02], [Mandjes02] or on feed-back and flow control based mechanisms regulating 
the sending nodes’ data rate [Maach04], [Chiu89], [Loh96]. These mechanisms permit to avoid 
congestions by rejecting the extra traffic. Local decisions based strategies are utilizing only a 
fraction of the network’s overall capacities. The global liquid scheduling strategy ensures that 
the network’s potential capacities are used efficiently. 

Section 3.3. The liquid scheduling problem 

In our model, we neglect network latencies, we consider a constant message (or packet) 
size, an identical link throughput for all links and assume a static routing scheme. 

Consider a simple network example consisting of ten end nodes , , two 
wormhole cut-through switches ,  and twelve unidirectional links , , ,  
all having identical throughputs (see Figure 28). Assume that the nodes  are only 
transmitting and the nodes  are only receiving. The routing is straight-forward, e.g. a 
message from  to  traverse links ,  and , a message from  to  uses only links  
and , etc. 

51 tt L 51 rrL

as bs 51 tt ll L 51 rr ll L abl bal

51 tt L

51 rrL

4t 3r 4tl bal 3rl 1t 2r 1tl

2rl

 

2tl 3tl

1tl

1rl

2rl 3rl 5rl4rl

4tl 5tl

bal

abl

as bs
1t

2t 3t 4t 5t

1r

2r 3r 4r 5r

Figure 28.  A simple network sample 

For demonstration purposes we represent the transfers of the network of Figure 28, 
symbolically via small pictograms highlighting the links used by the transfer. For example the 
transfer from  to  is symbolically represented as , the transfer from  to  as . 

We may also represent a set of two or more simultaneous transfers by a pictogram highlighting 
all occupied links. For example a simultaneous transmission of the two previous transfers (from 

 to  and from t  to ) is represented as . 

4t 3r 1t 2r

4t 3r 1 2r
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We are assuming that all messages have identical sizes [Naghshineh93]. Let each sending 
node have messages to be transmitted to each receiving node. There are therefore 25 transfers to 
carry out. These corresponding pictograms for these 25 transfers are shown in  

 

Figure 29.  The pictograms representing the 25 transfers from all 
sending nodes to all receiving nodes of the network of Figure 
28 

Accordingly, each of the ten links ,  must carry 5 transfers, but the two links 
,  must each carry 6 transfers. Therefore, for the 25 transfers to carry out, the links ,  

are the network bottlenecks and have the longest active time. If the duration of the whole 
communication is as long as the active time of the bottleneck links, we say that the collective 
communication reaches its liquid throughput. In that case the bottleneck links are obviously kept 
busy all the time along the duration of the communication traffic. Assume in this example a 
single link throughput of 1Gbps. The liquid throughput offered by the network is 

. 

51 tt L 51 rrL

abl bal abl bal

GbpsGbps 17.41)6/25( =⋅

The liquid throughput of a traffic X is the ratio )(/)(# XX Λ  multiplied by the single 
link throughput (identical for all links), where  is the total number of transfers and )(# X )(XΛ  

is the number of transfers carried out by one bottleneck link (the messages have identical sizes). 

Now let us see if the order in which the transfers are carried out in this network has an 
impact on the overall communication throughput. A straight forward schedule allowing to carry 
out these 25 transfers is the round-robin schedule. At first, each transmitting node sends the 
message to the receiving node staying in front of it, then to the receiving node staying at the next 
position, etc. Such a round robin schedule consists of 5 phases. 

The transfers of the first , second  and the fifth  phases of the 
round-robin schedule may be carried out simultaneously, but the third phase , , 

, ,  and the forth phase , , , ,  contain 
congesting transfers. For example, the two transfers of the third phase: , cannot 

be carried out at the same time since they are trying to simultaneously use link abl  (see igure 
28). Similarly, two other transfers of the third phase ,  a so i gestion, since 
they are simultaneously competing for the same link bal .  The forth phase of the round-robin 

 and 

 F
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schedule has two pairs of congesting transfers as well. Each of these phases cannot be carried 
out in less than two time frames and therefore the whole schedule lasts 7 time frames and not 5 
(the number of phases in the round-robin schedule). Five timeframes would have been sufficient 
if there were additional capacities (links) between the switches as  and bs . The thro ghput f 

the collective communication carried out according to the round-robin schedule is 57.37/25 =  
messages per , or GbpsGbps 57.31)7/25(

u  o

 time frame =⋅ , throughput 

of 4.17Gbps. 

which is below the liquid 

L

The 25 transfers can be scheduled within a fewer number of timeframes. The following 
schedule , , , , ,  carries out the 25 

transmissions in 6 timeframes. Each timeframe consists of 3 to 5 non-congesting transfers. The 
whole schedule is yielding the liquid throughput of 4.17Gbps. 

In the following sections we present algorithms permitting the construction of liquid 
schedules for arbitrary traffic patterns on arbitrary network topologies. 

Section 3.4. Definitions 

The method we propose allows us to efficiently build liquid schedules for non-trivial 
network topologies. Thanks to liquid schedules we may considerably increase the collective data 
exchange throughputs, compared with traditional topology unaware schedules such as round-
robin or random schedules. 

The present section introduces the definitions that will be further used for describing the 
liquid schedule construction method. 

A single “point-to-point” transfer is represented by the set of communication links 
forming the network path between one transmitting and one receiving node according to the 
given routing. Note that we will be limiting ourselves to data exchanges consisting of identical 
message sizes. 

We therefore define in our mathematical model a transfer as a set of all links laying on 
the path between one sending and one receiving node. A traffic is a set of transfers (i.e. a 
collective data exchange). 

According to the definition of traffic, Figure 30 shows the traffic pattern of Figure 29 
(corresponding to a collective data exchange carried out on the network of Figure 28) in the new 
set-represented notation. The traffic of Figure 30 represents a scenario, where each transmitting 
node (the nodes t at the top of Figure 28) sends one message to each receiving node (the 
nodes  at the bottom of Figure 28). Any other collective exchange comprising transfers 

51 t

51 rrL
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between possibly overlapping sets of sending and receiving nodes (a node obviously can receive 
and transmit) is a valid traffic according to our definition. 
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Figure 30.  Example of a traffic comprising 25 transfers carried out over 
the network shown in Figure 28 

A link l is utilized by a transfer x if xl∈ . A link l is utilized by a traffic X if l is utilized 
by a transfer of X. Two transfers are in congestion if they share a common link, i.e. if their 
intersection is not empty. 

A simultaneity of a traffic X is a subset of X consisting of mutually non-congesting 
transfers. Intersection of any two members of a simultaneity is always empty. A transfer is in 
congestion with a simultaneity if the transfer is in congestion with at least one member of the 
simultaneity. A simultaneity of a traffic is full if all transfers in the complement of the 
simultaneity in the traffic are in congestion with that simultaneity. A simultaneity of a traffic 
obviously can be carried out within one time frame (the time to carry out a single transfer). 

The load  ),( Xlλ  of a link l in a traffic X is the number of transfers in X using link l. 

( )}{#),( xlXxXl ∈∈=λ
 

(1)

The duration  of a traffic X is the maximal value of the load among all links 

involved in the traffic. 
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(2)

The links having maximal load values, i.e. when )(),( XXl Λ=λ , are called bottlenecks. 

In the example of the traffic of Figure 30, all bottleneck links are marked in bold. The liquid 
throughput of a traffic X is the ratio )(/)(# XX Λ  multiplied by the single link throughput, 
where  is the number of transfers in the traffic X. )(# X

linkliquid t
X
Xt ⋅

Λ
=

)(
)(#

 
(3)

We define a simultaneity of X as a team of X if it uses all bottlenecks of X. A liquid 
schedule must comprise only teams since all bottleneck links must be kept busy all the time. A 
team of X is full if it is a full simultaneity of X. Intuitively, there is a greater chance to 
successfully assemble a liquid schedule that covers all transfers of the initial traffic, if one 
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considers during the construction only full teams instead of considering also possible non-full 
teams (see Subsection 3.7.4). 

Let  be the set of all full simultaneities of X. Let )(Xℜ )(Xℑ′  and  be 

respectively the sets of all teams and the set of all full teams of X. By definition, 
, , the intersection of all teams with all full simultaneities is the 

set of all full teams: 

)(Xℑ

)()( XX ℜ⊂ℑ )()( XX ℑ′⊂ℑ

)()()( XXX ℜℑ′=ℑ I  (4)

In order to form liquid schedules, we try to schedule transfers in such a way that all 
bottleneck links are always kept busy. Therefore we search for a liquid schedule by trying to 
assemble non-overlapping teams carrying out all transfers of the given traffic, i.e. we partition 
the traffic into teams. To cover the whole solution space we need to generate all possible teams 
of a given traffic. This is an exponentially complex problem. It is therefore important that the 
team traversing technique be non-redundant and efficient, i.e. each configuration be evaluated 
once and only once, without repetitions. 

Section 3.5. Obtaining full simultaneities 

To obtain all full teams, we first optimize the retrieval of all simultaneities and then use 
that algorithm to retrieve all full teams. 

Recall that in a traffic X, any mutually non-congesting combination of transfers is a 
simultaneity. A full simultaneity is a combination of non-congesting transfers taken from X, 
such that its complement in X contains only transfers congesting with that simultaneity. 

We can categorize full simultaneities according to the presence or absence of a given 
transfer x. A full simultaneity is x-positive if it contains transfer x. If it does not contain transfer 
x, it is x-negative. Thus the entire set of all full simultaneities )(Xℜ  is partitioned into two non-
overlapping halves: an x-positive and x-negative subsets of )(Xℜ . For example, if y is another 

transfer, the set of x-positive full simultaneities may be further partitioned into y-positive and y-
negative subsets. Iterative partitioning and sub-partitioning permits us to recursively traverse the 
whole set of all full simultaneities , one by one, without repetitions. )(Xℜ

The rest of this section describes in details the algorithm for sequentially traversing all 
possible distinct full simultaneities. 

3.5.1. Using categories to cover subsets of full simultaneities 

Let us define a category of full simultaneities of X as an ordered triplet (includer, depot, 
excluder), where the includer is a simultaneity of X (not necessarily full), the excluder contains 
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some transfers of X non-congesting with the includer and the depot contains all the remaining 
transfers non-congesting with the includer. 

We define categories in order to represent collections of full simultaneities from the set of 
all full simultaneities . The includer and excluder of a category are used as constraints for 

determining the corresponding full simultaneities. 

)(Xℜ

We therefore say that a full simultaneity is covered by a category R, if the full 
simultaneity contains all the transfers of the category’s includer and does not contain any 
transfer of the category’s excluder. Consequently, any full simultaneity covered by a category is 
the category’s includer together with some transfers taken from the category’s depot. The 
collection of all full simultaneities of X covered by a category R is defined as the coverage of R. 
We denote the coverage of R as )(RΦ . By definition, )()( XR ℜ⊂Φ . 

Transfers of a category’s includer form a simultaneity (not full). By adding different 
variations of transfers from the depot, we may obtain all possible full simultaneities covered by 
the category. 

The category  is a prim-category. Prim-category covers all full simultaneities 

of X : 

),,( ∅∅ X

)(),,( XX ℜ=∅∅Φ  (5)

Since the includer and excluder of the prim-category are empty, the prim-category 
represents no restrictions on full simultaneities. Therefore any full simultaneity is covered by the 
prim-category (or in other words, all full simultaneities contain the empty includer of the prim-
category and do not contain a transfer of the excluder, because it is empty). 

3.5.2. Fission of categories into sub-categories 

By taking an arbitrary transfer x from the depot of a category R, we can partition the 
coverage of R into x-positive and x-negative subsets. The respective x-positive and x-negative 
subsets of the coverage of R are coverages of two categories derived from R: a positive 
subcategory and a negative subcategory of R. 

The positive subcategory  is formed from the category R by adding transfer x to its 

includer, and by removing from its depot and excluder all transfers congesting with x. Since 
transfers congesting with x are naturally excluded from a full simultaneity covered by , we 

may safely remove them from the excluder (and avoid therefore redundancy in the exclusion 
constraint). The negative subcategory  is formed from the category R by simply moving the 

transfer x from its depot to its excluder. The replacement of a category R by its two sub 
categories  and  is defined as a fission of the category. 

xR+

xR+

xR−

xR+ xR−

By the definition of fission, the two sub-categories resulting from the fission are also valid 
categories, according to the definition of category. 
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Figure 31 and Figure 32 show a fission of a category into positive and negative sub 
categories. 
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Figure 31.  An initial category before fission, where symbol Ξ , 
represents any transfer that is in congestion with x  and 
symbol  represents any transfer which is simultaneous 
with 

Θ
x  

Figure 31 shows an example of an initial category R and Figure 32 shows the resulting 
two sub categories obtained from it by a fission relatively to a transfer x taken from the depot. 
The transfers  are congesting with transfer x, and the transfers  are 

simultaneous with x. 
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Figure 32.  Fission of the category of Figure 31 into its positive and 
negative sub categories. 

The coverage of R is partitioned by the coverages of its sub categories  and , i.e. 

the coverage of a category is the union of coverages of its sub categories (equation (6)), and the 
coverages of the sub categories have no common transfers (equation (7)). 

xR+ xR−

)()()( RRR xx Φ=Φ∪Φ −+  (6)

and 

∅=Φ∩Φ −+ )()( xx RR  (7)

3.5.3. Traversing all full simultaneities by repeated fission of 
categories 

A singular category is a category that covers only one full simultaneity. That full 
simultaneity is equal to the includer of the singular category. The depot and excluder of a 
singular category are empty. 

We apply the binary fission to the prim-category (equation (5)) and split it into two 
categories. Then, we apply the fission to each of these categories. Repeated fission increases the 
number of categories and narrows the coverage of each category. Eventually, the fission will 
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lead to singular categories only, i.e. categories whose coverage consists of a single full 
simultaneity. Since at each stage we have been partitioning the set of full simultaneities, at the 
final stage we know that each full simultaneity is covered by one and only one singular 
category. 

The algorithm recursively carries out the fission of categories and yields all full 
simultaneities without repetitions. 

3.5.4. Optimisation - identifying blank categories 

A further optimization is performed. Take a category. A full simultaneity must contain no 
transfer from that category’s excluder in order to be covered by that category. In addition, since 
the full simultaneity is full, it is in congestion with all transfers that it does not contain. 
Obviously any full simultaneity covered by some category must congest with each member of 
that category’s excluder. Therefore, transfers congesting with the transfers of the excluder must 
be available in the depot of the category (the category’s excluder, according to the fission 
algorithm, keeps no transfer congesting with the includer). If the excluder contains at least one 
transfer, for which the depot has no congesting transfer, then we say that this category is blank. 
The includer of a blank category, cannot be further extended by the transfers of the depot to a 
simultaneity which is full (and congests with every remaining transfer of the excluder). The 
coverage of a blank category is therefore empty and there is no need to pursue its fission. 

3.5.5. Retrieving full teams - identifying idle categories 

Let us now instead of retrieving all full simultaneities retrieve all full teams, i.e. those full 
simultaneities, which ensure the utilization of all bottleneck links. 

A category within X is idle if its includer and its depot together don’t use all bottlenecks 
of X. This means that we can not grow the current simultaneity (i.e. the includer of the category) 
into a full simultaneity, which will use all bottlenecks. The coverage of an idle category does 
therefore not contain a full simultaneity, which is a team. Idle categories allow us to prune the 
search tree at early stages and to pursue only branches leading to full teams. 

Carrying out successive fissions, starting from the prim-category and continuously 
identifying and removing all the blank and idle categories ultimately leads to all full teams. 

Section 3.6. Speeding up the search for full teams 

This section presents an additional method for speeding up the search for all full teams 
 of an arbitrary traffic X. )(Xℑ
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3.6.1. Skeleton of a traffic 

Let us consider from the original traffic X only those transfers that use bottlenecks of X 
and call this set of transfers the skeleton of X. We denote the skeleton of X as )(Xς . Obviously, 

XX ⊂)(ς .  

According to equations (1) and (2), equation (8) specifies the skeleton of X so as to 
comprise only the transfers using links whose load is equal to the duration of the traffic: 

{ })(),(max)( XXlXxX
xl

Λ=∈=
∈

λς
 

(8)

Figure 33 shows the relative sizes of skeletons compared with the sizes of their 
corresponding traffics. We consider 362 different traffic patterns across the K-ring network of 
the Swiss-T1 cluster supercomputer comprising 32 nodes (see Figure 39 and Table 2 in 
Subsection 3.8.1). In average, the skeleton size is 31.5% of its traffic size. 

The skeleton content of traffic
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Figure 33.  Proportion of the number of transfers within a skeleton, 
compared with the number of transfers of the corresponding 
traffic 

3.6.2. Optimization - building full teams based on full teams of 
the skeleton 

When considering the skeleton of a traffic X as another traffic, the bottlenecks of the 
skeleton of a traffic are the same as the bottlenecks of the traffic. Consequently, a team of a 
skeleton is also a team of the original traffic. 

We may first obtain all full teams of the traffic’s skeleton by iteratively applying the 
fission algorithm on the traffic’s skeleton and by eliminating the idle categories. Then, a full 
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team of the original traffic is obtained by adding a combination of non-congesting transfers to a 
team of the traffic’s skeleton. 

We therefore obtain the set of a traffic’s full teams )(Xℑ  by carrying out the steps 

outlined in Table 1. 

Table 1.  Optimized algorithm for retrieving all full teams of a traffic 

1. Obtain the set of the skeleton’s full teams 
))(( Xςℑ  by applying the fission algorithm on 

the traffic’s skeleton. 

2. Create for each skeleton full team a 
category by initializing: 

2.1. The includer with the transfers of the 
skeleton’s full team; 

2.3. The excluder as empty; 

2.2. The depot with all transfers of X  non-
congesting with the includer. 

3. Apply the fission to each category, 
discarding the check for idle categories, 
since the includer is already a team, i.e. 
it uses all bottlenecks. 

By first applying the fission to the skeleton and then expanding the skeleton’s full teams 
to the traffic’s full teams, we considerably reduce the processing time. 

3.6.3. Evaluating the reduction of the search space 

Let us evaluate the reduction of the search space achieved due to the search space 
reduction methods proposed in Section 3.5 and in this section. We consider 23 different all-to-all 
traffic patterns across the network of the Swiss-T1 cluster supercomputer (see Section 3.8). The 
size of the algorithm’s search space is the number of categories that are being iteratively 
traversed by the algorithm until all full teams are discovered. 

Figure 34 shows the search space reduction for the presented four algorithms. The first 
one is the naive algorithm that would build full teams only according to the coverage 
partitioning strategy (Subsection 3.5.3) without considering the other optimizations. We assume 
that the size of the search space of the naïve algorithm is 100% and we use it as a reference for 
the other three algorithms. The naive algorithm is sufficiently “smart” to avoid repetitions while 
exploring the full simultaneities. The second algorithm, that additionally comprises 
identification of blank categories (see Subsection 3.5.4), permits, according to Figure 34, to 
reduce the search space to an average of 28%. The third algorithm identifies idle categories and 
enables at an early stage to skip evaluating all categories not leading to teams (see Subsection 
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3.5.5). This third algorithm encloses all optimizations presented in Section 3.5 and reduces the 
search space to an average of 20%. 
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Figure 34.  Search space reduction obtained by idle+skeleton+blank 
optimization steps 

Finally the skeleton algorithm presented in this section, which according to Table 1 is 
carried out in two phases, reduces the search space to an average of 10.6%. Full teams are 
therefore retrieved on average 9.43 times faster than with the naive algorithm of Subsection 
3.5.3, thanks to the three optimisation techniques presented in Subsections 3.5.4, 3.5.5 and 3.6.2 
respectively. 

Section 3.7. Construction of liquid schedules 

In Section 3.5 and Section 3.6 we introduced efficient algorithms for traversing full teams 
of a traffic. Relying on the full team generation algorithms, this section presents methods for 
constructing liquid schedules for arbitrary traffic patterns on arbitrary network topologies. 

3.7.1. Definition of liquid schedule 

Let us introduce the definition of a schedule. By recalling that a partition of X is a disjoint 
collection of non-empty subsets of X whose union is X [Halmos74], a schedule α  of a traffic X 
is a collection of simultaneities of X partitioning the traffic X. An elements of a schedule α  is 
called time frame. The length )(# α  of a schedule α  is the number of time frames in α . A 

 52 



schedule of a traffic is optimal if the traffic does not have any shorter schedule. If the length of a 
schedule is equal to the duration of the traffic (the duration of a traffic X is the load of its 
bottlenecks), then the schedule is liquid. Thus a schedule α  of a traffic X is liquid if equation 
(9) holds. See also equation (2) defining the duration of a traffic X. 

)()(# XΛ=α  (9)

Figure 35 shows a liquid schedule for the collective traffic shown in Figure 30, which in 
turn represents an all-to-all data exchange (see Figure 29) across the network shown in Figure 
28. 
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Figure 35.  Time frames of a liquid schedule of the collective traffic 
shown in Figure 30 

One can easily control that the timeframes of Figure 35 correspond to the following 
sequence , , , , ,  represented in form of the 

pictograms introduced in Section 3.3. Recall that each pictogram in the sequence represents 
several transmissions that can be carried out simultaneously. For example the sequence’s second 
pictogram , visualizes four simultaneous transfers:  to ,  to ,  to  and t  to 

, wherein t are the source nodes and  are the destination nodes of the network of 

Figure 28. These four simultaneous transfers  correspond to the second time frame of 

Figure 35: 

1t 5r 2t 1r 4t 2r 5

4r 51 tL 51 rrL

{ }},{},,,{},,{},,,{ 45241251 rtrtrtrt llllllll baab ll=  (10)

If a schedule is liquid, then each of its time frames must use all bottlenecks. Inversely, if 
all time frames of a schedule use all bottlenecks, the schedule is liquid. 

The necessary and sufficient condition for the liquidity of a schedule is that all 
bottlenecks be used by each time frame of the schedule. Since a simultaneity of X is defined as a 
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team of X, if it uses all bottlenecks of X, a necessary and sufficient condition for the liquidity of 
a schedule α  on X is that each time frame of α  be a team of X. 

A liquid schedule is optimal, but the inverse is not always true, meaning that a traffic may 
not have a liquid schedule. An example of traffic having no liquid schedule is shown in Figure 
37. This traffic is to be carried across the network shown in Figure 36.  There are three 
bottleneck links in the network . Since there is no combination of non-congesting 
transfers that can simultaneously use all three bottleneck links , this traffic contains 

no team and therefore has no liquid schedule. 
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Figure 36.  There exists a traffic of three transmissions across this 
network that has no team and therefore no liquid schedule 
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Figure 37.  A traffic consisting of thee transmissions to be carried across 
the network shown in Figure 36 

The rest of this section presents the liquid scheduling construction algorithm (Subsection 
3.7.2) and two optimisations (Subsections 3.7.3 and 3.7.4 respectively). 

In Appendix A, we show how to formulate the problem of searching for a liquid schedule 
with Mixed Integer Linear Programming (MILP), [CPLEX02], [Fourer03]. Appendix A presents 
a comparison of performances of the liquid schedule search approach presented here with that of 
MILP. It shows that the computation time of the MILP method is prohibitive compared with the 
speed of our algorithm. 

3.7.2. Liquid schedule basic construction algorithm 

In this subsection we describe the basic algorithm for constructing a liquid schedule. The 
basic algorithm simply consist of recursive attempts to assemble a liquid schedule out of the 
teams of the original traffic, until a valid liquid schedule incorporating all transfers is 
successfully constructed. In the following subsections (Subsections 3.7.3 and 3.7.4), relying on 
the basic algorithm, we show how to apply further optimizations. 
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Our strategy for finding a liquid schedule relies on partitioning the traffic into a set of 
teams forming the sequence of time frames. Associate to the traffic X all its possible teams 

 (found by the algorithm presented in Section 3.6) which could be selected as the 
schedule’s first time frame. The following: 

nAAA L,, 21

L,, 21 AXAX −−  is the variety of possible 
subtraffics remaining after the choice of the first time frame. Each of the possible subtraffics  

remaining after the selection of the first time frame has its own set of possibilities for the second 
time frame , where 

iX

},,,{)( 3,2,1, Liiii AAAX =ℵ )( subXℵ  is a choice function. The choice of the 

second team for the second time frame yields a further reduced subtraffic (see Figure 38). 
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Figure 38.  Liquid schedule construction tree:  denotes a 
reduced subtraffic at the layer 

niiiX L21

1+n  of the tree and 
 denotes a candidate for the time frame ; the 

operator 
121 +nniiiiA L 1+n

ℵ  applied to a subtraffic  yields the set of all 
possible candidates for a time frame 

subX

Dead ends are possible if there is no choice for the next time frame, i.e. no team of the 
original traffic may be formed from the transfers of the reduced traffic. A dead end situation 
may occur, for example, when the remaining subtraffic appears to be like the one shown in 
Figure 36 and Figure 37. Once a dead occurs, backtracking takes place. 

The construction recursively advances and backtracks until a valid liquid schedule is 
formed. A valid liquid schedule is obtained, when the transfers remaining in the reduced traffic 
form one single team for the last time frame of the liquid schedule. 
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We rely on the construction tree of Figure 38 and assume that at any stage the choice 
 for the next time frame is among the set of the original traffic’s teams . Thus 

the choice function is represented by the following equation: 

)( subXℵ )(Xℑ′

})({)( subsub XAXAX ⊂ℑ′∈=ℵ  (11)

In the next subsections we improve equation (11) by considering newly emerging 
bottlenecks at the successive time frames. 

3.7.3. Search space reduction by considering newly emerging 
bottlenecks 

We observe in Figure 35 that when we step from one time frame to the next, additional 
new bottleneck links emerge. For example from time frame 3 on, links  and  appear as 

new bottlenecks. 
t3l r3l

In the construction strategy presented in the previous subsection (3.7.2), according to 
equation (11) we consider as a possible time frame any team of the original traffic X that can be 
built from the transfers of the reduced subtraffic. A schedule is liquid if and only if (IFF) each 
time frame is not only a team of the original traffic but is also a team of the reduced subtraffic 
(see Appendix A for a formal proof). If α  is a liquid schedule on X and A is a time frame of α , 
then }{A−α  is a liquid schedule on AX − . 

Thus a liquid schedule may not contain a time frame which is a team of the original traffic 
but is not a team of a subtraffic obtained by removing some of the previous time frames. 
Therefore, at each iteration, we can limit our choice on the collection of only those teams of the 
original traffic which are also teams of the current reduced subtraffic. Since the reduced 
subtraffic contains additional bottleneck links, there are less teams in the reduced subtraffic than 
teams remaining from the original traffic. 

Therefore, in the liquid schedule construction diagram presented in Figure 38, regarding 
the choice function  we can replace equation (11) by equation (12): )( subXℵ

)()( subsub XX ℑ′=ℵ  (12)

By considering in each time frame all occurring bottlenecks, with the new equation (12) 
we considerably speed up the construction. 

3.7.4. Liquid schedule construction optimization by 
considering only full teams 

In Appendix A we have shown that if a liquid schedule exists and if it can be constructed 
by the choice of teams, then a liquid schedule can be also constructed by limiting the choice 
only to full teams (see also [Gabrielyan03] and [Gabrielyan04A]). 
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Therefore in the construction algorithm represented by the diagram of Figure 38, the 
function  for the choice of the teams, may be further narrowed from the set of all 

teams, equation (12) to the set of full teams only: 

)( subXℵ

)()( subsub XX ℑ=ℵ  (13)

When replacing the choice function )( subXℵ  equation from (11) to (12) and then from 

(12) to (13) we make sure that the new equations have no impact on the solvability of the 
problem. The liquid schedule construction is speeded up, thanks to the reduction in choice 
summarized by expressions (14) and (15) below: 

)()(})({ subsubsub XXXAXA ℑ⊂ℑ′⊂⊂ℑ′∈  (14)

and therefore also: 

))((#))((#}))(({# subsubsub XXXAXA ℑ≤ℑ′≤⊂ℑ′∈  (15)

Section 3.8. Experimental verification 

In this section we present the results of application of liquid schedules to data 
communications carried out across a real network. In Subsection 3.8.1 we present the network 
on which the experiments were carried out. We select several hundred of traffic patterns across 
the considered network. Measurements of aggregate communication throughputs, presented in 
Subsection 3.8.2, enable us to validate the efficiency of applying liquid schedules in real 
networks. 

3.8.1. Swiss-Tx cluster supercomputer and 362 test traffic 
patterns 

The experiments are carried out across the interconnection network of the Swiss-T1 
cluster supercomputer (see Figure 39). The network of Swiss-T1 forms a K-ring [Kuonen99B] 
and is built on TNET switches. The routing between pairs of switches is static. The throughputs 
of all links are identical and equal to 86MB/s. The cluster consists of 32 nodes, each one 
comprising 2 processors [Kuonen99A], [Gruber01], [Gruber02], [Gruber05]. The cluster thus 
comprises a total of 64 computing processors. Each processor has its own individual connection 
to the network. The network enables transmissions of large messages at low latencies. 
Wormhole switching is employed for this purpose. 
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Figure 39.  Architecture of the Swiss-T1 cluster supercomputer 
interconnected by a high performance wormhole switch 
fabric 

Communication between a pair of any two switches requires at most one intermediate 
switch. The routing is summarized in Table 2. Transmissions from switch i to switch j are routed 
through the switch with the number located at the position  of the table. Symbol “↔” 

indicates that the two switches are connected by a direct link. 

),( ji

Table 2. The routing table of the Swiss-Tx supercomputer shown in 
Figure 39 

R
 

1 
2 
3 
4 
5 
6 
7 
8  

We perform our experiment
across the network of the Swiss-T1
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outing table 
1 2 3 4 5 6 7 8 
 ↔ 2 ↔ 4 ↔ 8 ↔
↔  ↔ 7 ↔ 3 ↔ 5 
2 ↔  ↔ 4 ↔ 8 ↔
↔ 7 ↔  ↔ 7 ↔ 3 
4 ↔ 4 ↔  ↔ 6 ↔
↔ 3 ↔ 7 ↔  ↔ 1 
8 ↔ 8 ↔ 6 ↔  ↔
↔ 5 ↔ 3 ↔ 1 ↔  
s on a number of different data intensive traffic patterns 
 cluster. We limit ourselves by only those traffic patterns, 



where within each node one of the processors is only transmitting and the other one is only 
receiving. For any given allocation of nodes we have an equal number of sending and receiving 
processors and we assume a traffic pattern where each sending processor transmits a distinct 
message (of the same size) to each receiving processor. Thus, according to our assumptions, if 
there are n allocated nodes (i.e. pairs of processors), then there are  transmissions to be 
carried out. 

2n

The Swiss-T1 cluster supercomputer comprises 32 nodes, 8 switches and 4 nodes per 
switch.  We have therefore 5 possibilities of allocating nodes to each switch (from 0 to 4 nodes). 
This yields  different node allocation patterns. To limit our choice to really different 
patterns of underlying topologies, we have computed the liquid throughputs for each of the 
390625 topologies (taking into account the static routing). Because of various symmetries within 
the network, many of these topologies yield an identical liquid throughput and only 362 
topologies yielding different liquid throughput values were obtained. 

39062558 =

Figure 40 shows these 362 traffic patterns (topologies), each one being characterized by 
the number of contributing nodes and by its liquid throughput. Depending on how a given 
number of nodes are allocated in the cluster, the corresponding underlying network changes its 
topology considerably. Therefore for any given number of nodes, Figure 40 shows that the 
liquid throughput varies considerably. 
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Figure 40.  For a given number of contributing nodes all possible 
allocation of nodes yielding different liquid throughputs 

The management system for Computing in Distributed Networked Environment 
(CODINE) and the Load Sharing Facility (LSF) are the job allocation and the scheduling 
consoles used in Swiss-T1 [Byun00], [Hassaine02]. Taking into account the data of Figure 40 
the CODINE and LSF job allocation systems of Swiss-T1 are experimentally tuned for 
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communication intensive programs (of high priority). In these experiments the allocation 
strategy is simple and the fairness among several communication intensive jobs is not 
considered. 

These 362 topologies may be also placed along one axis, sorted first by the number of 
nodes and then according to their liquid throughput, as shown in Figure 41. 
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Figure 41.  The 362 topologies of Figure 40 yielding different liquid 
throughput values placed along one axis, sorted first by the 
number of contributing nodes and then by their liquid 
throughputs 

3.8.2. Real traffic throughout measurements 

The 362 traffic patterns of Figure 40 and Figure 41 were scheduled both by our liquid 
scheduling algorithms and according to a topology-unaware round-robin schedule (or 
randomly). Overall throughput results for each method are measured and presented for 
comparison. In each chart, the theoretical liquid throughput values of Figure 41 are given for 
comparison with the measured values. 

Figure 42 shows the overall communication throughput of 362 traffic patterns carried out 
by a topology-unaware round-robin schedule. The size of messages, i.e. the amount of data 
transferred from each transmitting processor to each receiving processor, is equal to 2MB. For 
each traffic pattern, 20 measurements were made and the chart shows the median of their 
throughputs (the black dots). According to the chart, the round-robin schedule yields a 
throughput which is far below the liquid throughput of the network. Tests with various other 
topology-unaware methods (such as transmission in random order or in FIFO order) yield to 
throughputs not which are not better than the one of the round-robin schedule. 
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Figure 42.  Theoretical liquid throughput and measured round-robin 
schedule throughput for 362 network sub topologies. 

Then, we carried out the same 362 traffic patterns but scheduled according to the liquid 
schedules found by our algorithms. The overall throughput results are shown in Figure 43. The 
size of the messages (processor to processor transfers) is of 5MB (even larger than for the 
measurements of Figure 42). Each black dot represents the median of 7 measurements. The chart 
shows, that the measured aggregate throughputs (black dots) are very close to the theoretically 
expected values of the liquid throughput (gray curve). 
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Figure 43.  Predicted liquid throughput and measured throughput 
according to the computed liquid schedule 
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Comparison of the chart of Figure 42 with that of Figure 43 demonstrates that for many 
traffic patterns, liquid scheduling allows to increase the aggregate throughput by a factor of two 
compared with topology-unaware round-robin scheduling. The gain is especially significant for 
large topologies and heavy traffics. 

Thanks to the full team space reduction algorithms (Section 3.5 and Section 3.6) and 
liquid schedule construction optimizations (Section 3.7), the computation time of a liquid 
schedule for more than 97% of the considered topologies takes no more than 1/10 of a second on 
a single PC. 

Section 3.9. Conclusions 

In circuit-switching coarse-grained networks (e.g. optical lightpath routing and wormhole 
switching), significant throughput losses occur due to attempts to simultaneously carry out 
transfers sharing common communication resources. The communications must be scheduled 
such that congesting transmissions are not carried our simultaneously. We propose a liquid 
scheduling algorithm, which properly schedules the transmissions within a time as short as the 
utilization time of a bottleneck link. A liquid schedule yields therefore an aggregate throughput 
equal to the network’s theoretical upper limit, i.e. its liquid throughput. To construct a liquid 
schedule, we must choose time frames utilizing all bottleneck links and perform as many 
transfers as possible within each timeframe. 

These saturated subsets of non-congesting transfers using all bottleneck links are called 
full teams and are needed for the construction of a liquid schedule. An efficient construction of 
liquid schedules relies on the fast retrieval of full teams. We obtained a significant speed up in 
the construction algorithm by carrying out optimizations in the retrieval of full teams and in 
their assembly into a schedule. The liquid schedule construction algorithm and its optimizations 
are briefly outlined in Appendix A. 

Measurements on the traffic carried out on various sub-topologies of the Swiss-T1 cluster 
supercomputer have shown that for most of sub-topologies, we are able to increase the overall 
communication throughput by a factor between 1.5 and 2 (see Figure 66 of Appendix A). 

In congestion prone coarse-grain transmission networks, liquid scheduling considerably 
improves the overall throughput by ensuring an optimal utilization of the transmission resources 
(e.g. the bottleneck communication links, optical wavelengths and time frames). By preventing 
contentions, liquid scheduling minimizes the overall transmission time of large communication 
patterns containing many congesting transfers. 

 

 

 62 



Chapter 4. Capillary routing for fault-tolerant real-
time communications in fine-grain 
packet-switching networks 

In off-line streaming, packet level erasure resilient codes rely on the unrestricted buffering time at 
the receiver. In real-time streaming, the extremely short playback buffering time makes FEC 
inefficient for protecting a single path communication against long link failures. It has been shown 
that one alternative path added to a single path route makes packet level FEC applicable even when 
the buffering time is limited. However path diversity increases the number of underlying links, 
thereby increasing the total link failure rate, which may possibly require from the sender more FEC 
packets. We introduce a scalar coefficient for rating a multi-path routing topology of any 
complexity. It is called Redundancy Overall Requirement (ROR) and is proportional to the total 
number of adaptive FEC packets required for protecting the communication. With the capillary 
routing algorithm introduced in this chapter we build thousands of multi-path routing patterns. By 
computing their ROR coefficients, we show that contrary to the expectations, the overall 
requirement in FEC codes is reduced when increasing the path diversity according to a new 
capillary routing algorithm. 

Section 4.1. Introduction 

Packetized IP communication behaves like an erasure channel. Information is chopped 
into packets, and each packet is either received without error or not received. Packet level 
erasure resilient Forward Error Correction (FEC) codes can mitigate packet losses by adding 
redundant packets, usually of the same size as the source packets. 

In off-line streaming, erasure resilient codes achieve extremely high reliability in many 
challenging network conditions [MacKay05]. For example, it is possible to deliver voluminous 
files (e.g. recurrent updates of GPS maps) via satellite broadcast channel (without feedback) to 
millions of motor vehicles under conditions of fragmental visibility [Honda04]. In the film 
industry instead of relying on 48-hour delivery time of FedEx, the day’s film footage can be 
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delivered from the location it has been shot to the studio that is many thousands of miles away 
over the lossy Internet even with long propagation delays (see [Hollywood03] and LT codes 
[Luby02]). The third Generation Partnership Project (3GPP), recently adopted Raptor 
[Shokrollahi04] as a mandatory code in Multimedia Broadcast/Multicast Service (MBMS). Off-
line streaming benefits from application of FEC thanks to time diversity, i.e. the receiver’s right 
to not forward immediately to the user the received information. When long buffering time is 
not a concern, the receiver can unrestrictedly hold the received packets, and as a result, packets 
representing the same information can be collected at distant periods of time. 

In real-time single-path streaming, FEC can only mitigate short failures of fine granularity 
[Choi06], [Johansson02], [Huang05], [Padhye00] and [Altman01]. Due to the restricted 
playback buffering time, packets representing the same information cannot be collected at very 
distant periods of time. For application of FEC in real-time streaming, instead of relying on 
time-diversity, one can rely on path-diversity. Recent publications show the applicability of FEC 
in real-time streaming when using dual-path routes. It has been shown that strong FEC sensibly 
improves video communication established along two disjoint paths and that in two correlated 
paths, weak FEC codes are still advantageous [Qu04]. Tawan proposes adaptive multi-path 
routing for Mobile Ad-Hoc Networks (MANET) mainly for load balancing and capacity issues, 
but mentions also the potential advantages in respect to FEC [Tawan04]. Ma suggests simple 
multi-path patterns in MANET and injecting of FEC codes not only at the end nodes but also at 
each intermediate node [Ma03A], [Ma04]. Nguyen and Byers study video streaming from 
multiple servers [Nguyen02], [Byers99]. Nguyen later studied real-time streaming over a dual-
path route [Nguyen03]. He used a static amount of redundancy, streaming the media with FEC 
blocks carrying 23 source packets and 7 redundant packets (using Reed-Solomon RS(30,23)). 
Then, similarly to [Qu04], he compares dual-path scenarios with the single Open Shortest Path 
First (OSPF) routing strategy and has shown clear advantages of the dual-path routing. The path 
diversity in all these studies is limited to either two (possibly correlated) paths or in the most 
general case to a sequence of parallel and serial links. Various routing topologies have so far not 
been regarded as a space in order to search for a FEC efficient routing pattern. 

In this chapter we try to present a comparative study for various multi-path routing 
patterns. Since it is too hostile, single path routing is excluded from our comparisons. We build 
steadily diversifying routing patterns layer by layer thanks to the capillary routing algorithm 
(Section 4.2). 

In order to rate the effectiveness of multi-path routing patterns, we introduce the 
Redundancy Overall Requirement (ROR), a routing coefficient relying on the sender’s 
transmission rate increases in response to individual link failures. By default, the sender is 
streaming the media with static FEC codes allowing to tolerate a certain small packet loss rate. 
The packet loss rate is measured at the receiver and is constantly reported back to the sender 
with the opposite flow. The sender increases the FEC overhead whenever the packet loss rate is 
about to exceed the tolerable limit. This end-to-end adaptive FEC mechanism is implemented 
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entirely on the end nodes, at the application level, and is not aware of the underlying routing 
scheme [Kang05], [Xu00], [Johansson02], [Huang05] and [Padhye00]. The overall number of 
transmitted adaptive redundant packets for protecting the communication session against link 
failures is proportional (1) to the usual packet transmission rate of the sender, (2) to the duration 
of the communication, (3) to the single link failure rate, (4) to the single link failure duration and 
(5) to the ROR coefficient of the underlying routing pattern followed by the communication 
flow. The novelty brought by ROR is that a routing topology of any complexity can be rated by 
a single scalar value (Section 4.3). 

In Section 4.4, we present ROR coefficients of different routing layers built thanks to the 
capillary routing algorithm. Network samples are obtained from a random walk MANET with 
several hundreds of nodes. We show that path diversity achieved by the capillary routing 
algorithm reduces substantially the amount of redundant FEC packets required from the sender. 

Section 4.2. Capillary routing 

In Subsection 4.2.1 we present a simple linear programming (LP) method for building the 
layers of capillary routing. A more reliable algorithm is described in Subsection 4.2.2. In 
Subsection 4.2.3 we show how to detect the bottlenecks at each layer of the capillary routing 
algorithm so as to construct the successive layers. 

4.2.1. Basic construction 

Capillary routing can be constructed by an iterative LP process transforming a single-path 
flow into a capillary route. First minimize the maximal value of the load of all links by 
minimizing an upper bound value applied to all links. The full mass of the flow will be split 
equally across the possible parallel routes. Find the bottleneck links of the first layer (see 
Subsection 4.2.3) and fix their load at the found minimum. Minimize similarly the maximal load 
of all remaining links without the bottleneck links of the first layer. This second iteration further 
refines the path diversity. Find the bottleneck links of the second layer. Minimize the maximal 
load of all remaining links, but now without the bottlenecks of the second layer as well. Repeat 
this iteration until the entire communication footprint is enclosed in the bottlenecks of the 
constructed layers. 

Figure 44, Figure 45 and Figure 46 show the first three layers of the capillary routing on a 
small network. The top node on the diagrams is the sender, the bottom node is the receiver and 
all links are oriented from top to bottom. 
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Figure 44. In the first 
layer the flow is equally 
split across two paths. Two 
of their links, marked by 
thick dashes, are the 
bottlenecks. 
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Figure 45. The second 
layer minimizes to 1/3 the 
maximal load of the 
remaining seven links and 
identifies three bottlenecks. 
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Figure 46. The third layer 
minimizes to 1/4 the 
maximal load of the 
remaining four links and 
identifies two bottlenecks. 

Figure 47 shows the 10-th layer of capillary routing between a pair of end nodes on a 
network with 180 nodes and 1374 links. Links not carrying traffic are not shown. The solid lines 
of the diagram represent 55 bottleneck links belonging to one of the 10 layers. The dashed lines 
represent a min-cost solution of the remaining flow not enclosed in bottlenecks after the 10-th 
layer. There could be several tens additional routing layers before the complete capillarization is 
achieved. 

      links: 1374
      nodes: 180
     layers: 10
bottlenecks: 55
  remaining: 155

 1: 1.00000
 2: 0.50000
 3: 0.20000
 4: 0.16667
 5: 0.14286
 6: 0.11111
 7: 0.10714
 8: 0.10000
 9: 0.09524
10: 0.08571

 

Figure 47. Routing pattern of layer 10 built by the capillary routing 
algorithm on a network sample with 180 nodes 

By increasing the number of the underlying links, the overall rate of network failures 
increases. High overall failure rate increases the probability of overlapping failures, except when 
the link’s ratio of failure time over operational time is sufficiently small. Since for computing 
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the ROR metric in Section 4.1 we assume a single link failure (more in Subsection 4.3.1), we 
consider that the single link’s ratio of failure time over operational time is sufficiently small to 
ensure that our assumption holds. In Appendix A we present the limits for which our single link 
failure assumption holds. We also show how our theory can be further expanded to consider also 
simultaneous link failures. 

4.2.2. Numerically stable version 

Although the described LP process is perfectly valid, it is numerically instable. The 
precision errors propagating through the layers of capillary routing reach noticeable sizes and, 
when dealing with tiny loads, result in infeasible LP problems. We have found a different, stable 
LP method which maintains the values of parameters and variables in the same order of 
magnitude at all times. 

Instead of decreasing the maximal value of loads of the links, the routing path is 
discovered by solving max flow problems defined by the flow-out coefficients at each node. 
Initially only the peer nodes have non-zero flow-out coefficients: +1 for the source and –1 for 
the sink (Figure 48 and Figure 49). 

 

Figure 48. Initial problem 
with one source and one 
sink node 

 

Figure 49. Maximize the 
flow, fix the new flow-out 
coefficients at the nodes 
and find the bottleneck 
links (layer 1, 21 =F ) 

 

Figure 50. Remove the 
bottleneck links from the 
network and adjust the 
flow-out coefficients at the 
adjacent nodes 

At each subsequent layer (Figure 50 to Figure 53) we have a bounded multi-source/multi-
sink problem: a uniform flow from a set of sources to a set of sinks, where all rates of 
transmissions by sources and all rates of receptions by sinks increase proportionally in respect to 
each node’s flow-out coefficient (either positive or negative). The multi-source/multi-sink 
problems arise since the LP problem at each successive layer is obtained by complete removal 
of the bottlenecks from the previous LP problem. By removing the bottlenecks we adjust 
correspondingly the flow-out coefficients of the adjacent nodes (to respect the flow conservation 
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rule) and thus possibly produce new sources and sinks in the network. Except for the unicast 
problem of the first layer, the successive layer problems do not belong in general to the simple 
class of “network linear programs” (see [Fourer03], page 343). 

 

Figure 51. Maximize the 
flow in the new sub-
problem, fix the new flow-
out coefficients at the nodes 
and find the new 
bottlenecks (layer 2, 

) 5.12 =F

  

Figure 52. Again remove 
the bottleneck links from 
the network and adjust 
correspondingly the flow-
out coefficients at the 
adjacent nodes 

 

Figure 53. Maximize the 
flow in the obtained new 
problem, fixing the new 
resulting flow-out 
coefficients at the nodes 
and find the new 
bottlenecks (layer 3, 

) 3/43 =F

We define the bounded multi-source/multi-sink problem at layer l by the sets of nodes and 
links and by the flow-out coefficients for sources and sinks (all indexed with an upper index l) 
as follows: 

• set of nodes , lN

• set of links , where  and , lLji ∈),( lNi∈ lNj ∈

• flow-out coefficients  for all  l
if

lNi∈

• at layer l the max-flow solution yields the flow increase factor lF  and the set of 
bottlenecks lB , where ll LB ⊂  

Then, the equations for computing the sets , 1+lN 1+lL  and the flow-out coefficients  

of the next layer  are as follows: 

1+lf

ll NN =+1
 (16)

the bottlenecks are removed from the network: 
lll BLL −=+1
 (17)

and the flow out coefficients are correspondingly adjusted: 
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After a certain number of applications of the max-flow objective with corresponding 
modifications of the problem, we will finally obtain a network having no source and sink nodes. 
At this point the iteration stops. All links followed by the flow in the capillary routing are 
enclosed in bottlenecks of one of the layers. 

In order to restore the original proportions of the flow, the flow increases, induced by the 
preceding max-flow solutions must all be compensated. The true value of flow traversing the 

bottleneck link  of layer l is the initial single unit of flow divided by the product of the 
flow increase factors 

jir ,

lBji ∈),(
iF  (where li ≤≤1 ) of the present and all preceding layers: 
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= l
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1
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where  is the layer for 
which  

l
lBji ∈),( (19)

The max-flow approach proves to be very stable, because it maintains all values of 
variables and parameters in the same order of magnitude (even for very deep layers with tiny 
loads) and also because it enables us to detect and correct precision errors in the flow-out 
coefficients of the LP problem according to the flow conservation rules. The LP problems 
generated for each successive layer of capillary routing are freed from precision errors and 
therefore the errors cannot propagate leading to numerical instabilities. 

In the next subsection we show how to identify bottlenecks after the max-flow solution of 
the capillary routing layer is found. 

4.2.3. Bottleneck hunting loop 

In the example of Figure 54 with three transmitting nodes and two receiving nodes, the 
flow can be proportionally increased at most by a factor of 4/3 and the bottleneck links are 
among the four maximally loaded suspected links {a, b, d, e}, marked in Figure 55 by thick 
dashes. 

 

Figure 54. An example of a bounded multi-
source/multi-sink problem (obtained during 
construction of the capillary routing from a 
network with one source and one destination 
node) 

 

Figure 55. A max-flow solution with the flow 
increase factor of 4/3, containing four 
maximally loaded candidate links {a, b, d, e} 

At each layer, after minimizing the maximal load of links, the bottlenecks of the layer are 
discovered in a bottleneck hunting loop. At each iteration of the hunting loop, we minimize the 

4/3 4/3

–2 –2 

4/3 
2/3 2/3

a 
b

c 
d 

e 

+1 

–1.5 

+1 +1 

–1.5 

 69



load of the traffic over all links having maximal load and being suspected as bottlenecks. Links 
not maintaining their load at the maximum are removed from the suspect list. The bottleneck 
hunting loop stops if there are no more links to remove. 

In the example of Figure 55 the sum of loads of all four bottleneck candidate links can be 
minimized (by an LP objective) to 3 (see Figure 56). Now only three links {a, b, e}, marked by 
thick dashes, continue to maintain the maximal load. The sum of the loads of the three 
remaining bottleneck candidate links can be further reduced to 2 (see Figure 57). These two 
remaining links {b, e}, marked by thick dashes, maintained the maximal load at all times and are 
the true bottleneck links since the sum of their loads cannot be further reduced. 

 

Figure 56. The cost reduction applied to the 
four fully loaded links of Figure 55 reduces 
the load of suspected link d, and the 
bottleneck candidate list is now {a, b, e}. 

 

Figure 57. The cost reduction applied to the 
three fully loaded links of Figure 56 reduces 
the load of another suspected link a. The true 
bottleneck links are {b, e}. 

In this example the two bottlenecks are found in two iterations. 
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Figure 58. Decrease of the number of suspected links during the 
bottleneck hunting loop at each of the 10 capillary routing 
layers 
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For capillary routing layers built simultaneously on 200 independent network samples 
each with 300 nodes (on average 2,555.7 links per network), Figure 58 shows the decrease in the 
number of bottleneck candidate links during the bottleneck hunting loop of each capillary 
routing layer from 1 to 10. 

At the end of each hunting loop (from 14 to 23 iterations) the suspect list consists of only 
true bottleneck links, in average between 5.9 and 9.9 bottlenecks per network. 

Section 4.3. Redundancy Overall Requirement (ROR) 

The definition and equations of the ROR metric are given in Subsection 4.3.1. The 
computation of the transmitted FEC block size as a function of the packet loss rate p is presented 
in Subsection 4.3.2. The equation of the ROR metric for the particular case of very large FEC 
blocks is presented in Subsection 4.3.3. 

4.3.1. Definition of ROR 

We combine a small static tolerance of the media stream to weak failures, with a 
dynamically added adaptive FEC for combating failures exceeding the tolerable packet loss rate. 

For a given routing pattern, the ROR metric is defined as the sum of all transmission rate 
overheads required from the sender for combating each non-simultaneous link failure in the 
route. For example, if the communication footprint consists of five links, and in response to each 
individual link failure the sender increases the packet transmission rate by 25%, then the ROR 
coefficient will be equal to the sum of these five FEC transmission rate increases, i.e. 

. If P is the usual packet transmission rate and  is the increased rate of 

the sender, responding to the failure of a link 

25.1%255 =⋅=ROR lP

Ll∈ , where L is the set of all links, then: 

∑
∈

⎟
⎠
⎞

⎜
⎝
⎛ −=

Ll

l

P
PROR 1
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Let us consider a long communication, and let D be the total failure time of a single 
network link during the whole duration of the communication. D is the product of the average 
duration of a single link failure, the frequency of a single link failure and the total 
communication time. According to equation (20): 
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Assuming one single link failure at a time (see Appendix A) and a uniform probability 
and duration of link failures, according to equation (22), RORPD ⋅⋅  is the number of adaptive 
redundant packets that the sender actually needs to transmit in order to compensate for all 
network failures occurring during the total communication time. Therefore ROR is a routing’s 
metric for computing the overall number of required redundant packets. 

Redundant packets are injected into the original media stream for every block of M source 
packets. During streaming, M is supposed to stay constant. However, the number of redundant 
packets for each block of M media packets is variable, depending on the conditions of the 
erasure channel. The M source packets with their related redundant packets form a FEC block. 
By  we denote the FEC block size chosen by the sender in response to a packet loss rate p. 
We assume that by default the media is streamed in FEC blocks of length of  such that the 
flow has a static tolerance t to weak losses, with 

pFEC

tFEC

10 <≤ t . When the loss rate p measured at the 
receiver is about to exceed the tolerable limit t, the sender increases its transmission rate by 
injecting additional redundant packets. 

The random packet loss rate, observed at the receiver during the failure time of a link in 
the communication path, is the portion of the traffic still being routed toward the faulty link. 
Thus, a complete failure of a link l carrying a relative traffic load of 1)(0 ≤≤ lr  according to the 
routing pattern, produces at the receiver a packet loss rate equal to the same relative traffic load 

. )(lr

Equation (20) for ROR can thus be re-written as follows: 

 =ROR  ∑
<≤∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1)(|

)( 1
lrtLl t

lr

FEC
FEC

(23)

  
a sum over all links 

carrying a flow exceeding 
the tolerable loss limit 

The links carrying the entire traffic are skipped in the sum index of equation (23), since 
the FEC required for the compensation of failures of such links is infinite. By construction 
(Section 4.2), none of the considered multi-path routing schemes pass their entire traffic through 
a non-critical single link. 

4.3.2. Computing FEC block size 

Let us compute the  function (the number of packets in the FEC block as a function 

of the packet loss rate p) assuming a Maximum Distance Separable (MDS) code [
pFEC

Seroussi86], 
[Schwarz02]. With an MDS code we can successfully decode the M source packets if we receive 
any M packets of the transmission FEC block. 

In order to collect a mean of M packets at the receiver at a random loss rate p,  

packets must be transmitted at the sender. However the probability of receiving 

)1/( pM −

1−M  packets 
or 2−M  packets (which makes the decoding impossible) remains high. In order to maintain a 
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very low probability δ  of receiving less than M packets, we must send many more redundant 
packets in the block than is necessary to receive an average of M packets at the receiver side. 
We must fix the acceptable Decoding Error Rate (DER), such that DER≤δ , in order to 
compute the  function. MFECp ≥

The probability ( NnPn )  of having exactly n losses (erasures) in a block of N packets with 

a random loss probability p is computed according to the binomial distribution: 

( ) nNn
p qp
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The probability of having 1+−MN  or more losses, i.e. the decoding failure probability, 
is computed as follows: 
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Therefore for computing the carrier block’s minimal length for a satisfactory 
communication (i.e.  function), it is sufficient to steadily increase the block length N until 

the desired decoding error rate (DER) is met. 
pFEC

pFEC  functions divided by M (i.e. transmission rate increase factors ) are 
bounded above by  when 

MFEC p /
)(log DERp 1=M  and below by )1/(1 p−  when  (for packet 

loss rates much larger than a very small DER). 

∞→M

Regarding the upper bound, when M is equal to 1, the FEC block comprises copies of the 
single source packet (repeated  times). The probability that all of them will be lost is 

, which is the probability that the source packets of the FEC block (in this case only one 

packet) cannot be recovered, i.e.  is the DER (equations (29) and (27)). 

pFEC
pFECp

pFECp

DERp pFEC =  when 1=M  (26)

Therefore: 

)(log DER
M

FEC
p

p =  when 1=M  (27)

Regarding the lower bound of , larger the M (and thereby the number of the 

packets in the transmitted FEC block), smaller the probability that the actual ratio of the 
received packets is significantly different from the expected mean ratio of received packets 

. Therefore in such an ideal case, the sender needs to transmit only  times more 

packets to ensure the delivery of M packets (equation (31)). 

MFEC p /

p−1 )1/( pM −
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For M from 1 to 10 these transmission rate increase factors are plotted in Figure 59 (for 
). Figure 59 shows that the higher the number of media packets in the block the 

closer the transmission rate increase  approaches the lowest theoretical limit. 
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Figure 59. Transmission rate increase factor as a function of the packet 
loss rate ( ) 510−=DER

4.3.3. Streaming with large FEC blocks 

The larger the number of media packets M in the FEC block, the smaller the cost of FEC 
overhead is, but the longer the buffering time at the receiver. For example, VOIP with 20 ms 
sampling rate restricts the number of media packets M in a single FEC block to 20 – 25 packets. 

If the playback buffering time can be a couple of minutes long, with thousands of source 
packets in a FEC block (for example in packetized TV) we can assume that . 

Although for large numbers of source packets MDS codes do not exist, other capacity-
approaching low-density parity-check codes (LDPC) [

)1/( pMFEC p −=

MacKay96], [Richardson01] or fountain 
codes [MacKay05] can decode a large block of source packets requiring only a very little excess 
of packets. 

In such a case, by replacing in equation (23),  with tFEC )1/(1 t−  and  with 

, the ROR metric of a multi-path routing pattern is computed according to the 

following equation: 
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Path diversity also offers advantages for off-line large file downloads. For a typical 
Internet user, usually the connection bottleneck is the last mile (or last kilometer) link (for 
example its DSL connection). Therefore the best estimation of the download time is the related 
to the bottleneck’s capacity. Losses or temporary failures occurring on a single communication 
path cause idle times. If the losses occur not in the bottleneck, the result is that the capacity of 
the last kilometer bottleneck is not used efficiently. Thanks to the path diversity the idle times of 
the last kilometer bottleneck occurring due to failures in the lossy Internet can be avoided. 
Relying on the multi-path routing, the sender with an adaptive transmission rate can feed the last 
kilometer bottleneck link constantly at its maximal bandwidth so as to attain the minimal 
download time (see [Nguyen02] and [Byers99] for video streaming from multiple servers). In 
this case also, the choice of the multi-path routing pattern can be rated by equation (29). Note 
that according to equations (23) and (29) the ROR coefficient of a routing pattern depends also 
on the static tolerance t of the streaming media to weak failures. 

Section 4.4. Redundancy Overall Requirement in 
capillary routing 

For capillary routing layers 1 to 10, we compute the average ROR coefficients 
simultaneously over several networks. The network samples are drawn from timeframes of a 
random walk MANET. Initially the nodes are randomly distributed on a rectangular area, and 
then, at every timeframe, they move according to a random walk algorithm. If two nodes are 
close enough (and are within the coverage range) then there is a link between them. At the same 
time we consider also streaming media at 15 different tolerance values of static FEC codes 
which tolerate small packet loss rates from 3.6% to 7.8% respectively (with an increment of 
0.3%). 

In Figure 60 we plot the average ROR coefficients for 300 different network instances of 
MANET having 115 nodes. The 300 timeframes are divided into seven nearly equal sets as the 
time progresses. Each set contains about 43 successive network instances (i.e. network samples). 
For each set of samples and for each static FEC tolerance value we plot the average ROR 
coefficient (over all considered network samples) as the routing layer increases. Figure 60 shows 
that the ROR metric, i.e. the overall requirement in adaptive FEC packets decreases with 
capillarization. The ROR coefficients of the routing samples are computed according to equation 
(23) assuming a short playback buffering time. The FEC block size is computed as a function of 
the packet loss rate p according to equation (25). The number of media packets (M) per 
transmission block is 20 and the desired decoding failure rate (DER) is . 510−
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Figure 60. Average ROR metric as a function of the capillary routing 
layer 

In Figure 61 we plot the average ROR coefficients for 150 different instances of MANET 
with 120 nodes. The 150 instances are divided into four sets of network samples. Each set of 
network samples comprises about 38 consecutive timeframes. The upper 15 curves are 
computed similarly to the curves of Figure 60 according to equations (23) and (25), where 

 and . However, the lower 15 curves of Figure 61 are computed according 
to equation (29) for streaming with large FEC blocks. 
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Figure 61. Average ROR metric computed assuming real-time 
streaming (the group of curves above) and off-line streaming 
(the group below) 
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When streaming with large blocks, the ROR metric, representing the total redundancy 
effort, is twice as low as when streaming with restricted playback buffering time, but the 
capillarization of routing is beneficial in both cases. 

Logically, the ROR curve of the media stream is shifted down as the statically added 
tolerance increases. The ROR represents the total amount (during the whole communication 
time) of dynamically added redundant packets as responses to temporary failures occurring in 
the network. Therefore if the static portion of the constantly maintained redundancy is increased 
a shifting of the ROR value must be expected. 

Our simulations show however that the increase of the weak static tolerance emphasizes 
also the efficiency gain achieved by capillarization. A small increment of the static tolerance 
results in a little decrease of the ROR value if the diversity of the routing pattern is not strong. 
As the capillary routing layer increases and the path diversity develops every small increment of 
the static tolerance results in a much significant decrease of the ROR values. 

The drawback of path diversity in general is that by forming long paths we increase the 
number of links in the communication footprint raising the overall failure rate and thus possibly 
increasing the overall requirement in FEC codes. However, Figure 60 and Figure 61 show that 
despite the larger communication footprint, with the routing patterns built by the capillary 
routing algorithm, the requirement in redundant packets decreases noticeably most of the time. 

Section 4.5. Conclusions and perspectives 

The reliability issues of packetized real-time streaming are of growing importance. 
Commercial real-time streaming applications however do not consider channel coding at the 
packet level as a serious solution for improving the reliability of communication. That is 
because in single path communications, even heavy FEC overheads cannot protect against 
failures lasting more than the short duration of the playback buffer. Recent studies demonstrated 
that path diversity makes FEC applicable for real-time streaming. By studying a wide range of 
routing topologies, we show that combination of channel coding with appropriate multi-path 
routing allows reliable real-time streaming with a low overall requirement in FEC codes. 

For this purpose we introduced a layer by layer strategy for building multi-path capillary 
routing patterns. The first layer provides a simple multi-path solution. As the layer number 
increases, thanks to the developed underlying routing patterns the streaming communication 
traverses the network more securely, using all parallel capacities available the network. Unlike 
max-flow or shortest path solutions, for a given source and destination, by construction there 
exists only one solution of capillary routing. 
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We introduced the ROR coefficient, a metric for rating multi-path routing patterns in 
respect to the overall FEC effort by a single scalar value. The ROR rating corresponds to the 
total redundancy overhead that the sending node must provide in order to combat the losses 
occurring from non-simultaneous failures of links in the communication path. Despite the fact 
that the increased path diversity results in an increase of the overall failure rate of underlying 
links, with capillarization, however, the overall requirement in adaptive FEC packets decreases 
substantially. 

Capillary routing can be applicable to multi-hop mobile wireless networks, where 
wireless content is streamed to and from the user via multiple base stations; or to the public 
Internet, where, if the physical routing cannot be accessed, an overlay network can be used 
[Guven04]. 

In case of a typical Internet user connected to the network with a single link (usually also 
the bottleneck of the communication), path diversity cannot be achieved at that portion of the 
route (the last kilometer). Capillarization of the entire routing therefore can protect the streaming 
media only against the failures occurring in Internet and cannot prevent the failures occurring in 
the last kilometer link. However, in almost all cases, the failures and losses in the streaming 
communication (e.g. in VOIP) occurring in the last kilometer link, are all due to congestions 
with bursty TCP traffic (e.g. HTTP). Unless there are physical failures, all congestions of the 
streaming media with the bursty traffic competing for the single last kilometer link are solved by 
proper QoS settings at the router. The router in this particular case is under control of the user 
(or at least of the immediate service supplier of the user). It is the rest of the network which has 
unpredictable and uncontrollable QoS policies, that needs the capillary routing. We hope that 
our investigation will provide some guidelines for future design of path diversity-based real-time 
streaming systems. 
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Conclusions 

Parallel I/O 

In Chapter 2 we presented the design and evaluation of a striped file I/O (SFIO) library 
which provides high performance parallel I/O within a Message Passing Interface (MPI) 
environment. We achieved a good load balance and equilibrated parallelism thanks to the fine 
granularity of a stripe unit size as low as hundred bytes. We reduced communication and disk 
access overhead due to fine granularity by aggregating small data chunks into large messages. 
The optimizations are performed in the caches of compute nodes. We sort the remote I/O disk 
requests according to their offsets on the remote disks. Whenever possible we remove the 
overlapping segments and merge the small requests into continuous large requests. Network 
communication between any pair of nodes is also aggregated, even if the corresponding I/O 
requests cannot be further aggregated. In addition to a simple Unix-like interface SFIO, supports 
also a multi-block API. It allows the underlying I/O system to aggregate not only fragmentations 
arising from the striping of the global file but also the fragmentations present in the user 
memory layout. The gain from the multi-block interface is especially emphasized in scientific 
applications, e.g. multidimensional matrices. 

The optimization subsystem is CPU efficient and requires very little memory. The I/O 
requests stored in the caches of compute nodes contain only pointers to the local memory and 
offsets in the global file. Aggregation operations in compute nodes are carried out at the level of 
pointers and offsets and no user data is actually copied. 

The optimization subsystem converts the initial set of user requests into an optimized set 
of requests. Based on the optimized set of requests we create on the fly MPI derived datatype 
pointing on the fragmented layouts to be communicated to the remote I/O nodes. The 
communication between the fragmented memory layout and the network is carried out by a 
single MPI operation without memory copy. 

SFIO exhibits high performance even for very small striping factors. It scales linearly as 
the number of the I/O nodes increases. With the increase of compute nodes, the overall 
performance of the underlying I/O layer is not affected by concurrent accesses. For cluster 
computing, SFIO is a lightweight portable parallel I/O solution for out-of-core MPI programs. 

We also designed an isolated MPI-I/O layer (part of MPI-2 specifications) permitting a 
user to interface with SFIO subsystem through standard MPI-I/O operations. According to the 
specifications of MPI-2, in MPI-I/O all communications and disk accesses between the user 
processes and the I/O layer are carried out through derived datatypes. The user specifies desired 
fragmentations both in the memory and in the global file by creating corresponding derived 
datatypes. The derived datatypes are created recursively using dedicated MPI-1 operations. 
Once the opaque datatype is created it cannot be decoded by a third party library (e.g. SFIO), 
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using standard MPI-1 operations. Therefore for implementation of MPI-I/O it is assumed that 
one has access to the source codes and to the internal structure of the particular MPI-1 
implementation, on which the MPI-I/O interface design is intended. 

We developed a method permitting the library to decode opaque datatypes and recover 
their flattened layout relying only on the standard MPI-1 interface. This reverse engineering 
technique relies on analyzing the memory patterns after a virtual communication is carried out 
locally. The technique for flattening arbitrary datatype patterns permits us to provide a portable 
MPI-I/O interface, independent of a particular MPI-1 implementation. 

Liquid schedules 

High performance computing relies on networks with very low latencies. In such 
networks large messages are copied from one processor to another across the network. The 
intermediate switches are directing the content of the message without storing and forwarding 
the messages at each intermediate hop. 

Simultaneous transmissions of large indivisible messages across the network may result in 
congestion when the transmission paths intersect. When the number of parallel transmissions 
increases (e.g. in I/O) the rate of congestions increases rapidly. The throughput gain achieved by 
the data aggregation can be canceled by the high rate of congestions. 

Optical networks are another example of coarse-grained circuit switching networks. 
Lightpaths sharing a common wavelength on a common link cannot be established in 
overlapping periods of time. Increasing the number of parallel transmissions may yield many 
blocked lightpaths and affect the throughput. 

The theoretical upper limit of a network’s capacity is its liquid throughput. The liquid 
throughput corresponds to the flow of a liquid in an equivalent network of pipes. The aggregate 
throughput of an arbitrarily scheduled collective communication may be several times lower 
than the maximal potential throughput of the network due to congestions between simultaneous 
transfers sharing a common communication resource. 

We present a method for scheduling the transfers of a traffic so as to attain the liquid 
throughput of the network. This method, called liquid scheduling, relies on the knowledge of the 
underlying network topology and ensures an optimal utilization of all bottleneck links of the 
network. The liquid scheduling algorithm, properly schedules the transmissions within a time as 
short as the utilization time of a bottleneck link. This guarantees that the liquid throughput is 
attained. 

To construct a liquid schedule, we must choose time frames utilizing all bottleneck links 
and perform as many transfers as possible within each timeframe. We therefore partition the 
traffic into time frames comprising mutually non-congesting transfers keeping all bottleneck 
links busy during all time frames. The saturated subsets of non-congesting transfers using all 
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bottleneck links are called full teams. An efficient construction of liquid schedules relies on the 
fast retrieval of full teams. We obtained a significant speed up in the construction algorithm by 
carrying out optimizations both in the retrieval of full teams and in their assembly into a 
schedule. 

Measurements on the traffic carried out on various sub-topologies of the Swiss-T1 cluster 
supercomputer have shown that for most of sub-topologies, we are able to increase the overall 
communication throughput by a factor between 1.5 and 2. 

The liquid schedules can be found in a fraction of seconds for traffic patterns consisting of 
several thousand transfers across networks of up to hundred nodes. 

Liquid scheduling can be applied in High Performance Computing (HPC) networks. It can 
be also applied in optical networks, for example in Optical Burst Switching (OBS) where the 
edge IP routers perform liquid scheduling in order to ensure an efficient utilization of the 
capacities of the interconnecting optical cloud. 

Capillary routing 

We present a method for achieving fault-tolerance for real-time packetized 
communications. This method relies on using parallel paths and erasure resilient codes. 

In real-time streaming, the extremely short playback buffering time makes erasure 
resilient codes inefficient for protecting a single path communication against long link failures. 
Combination of erasure resilient codes with path diversity makes Forward Error Correction 
(FEC) codes a very efficient method for protection of real-time communications. 

Applicability of FEC when streaming only through dual path routes was already studied. 
We show that additional path diversity can significantly reduce the overall effort of the sender 
even if the number of used links and the overall failure rate increases. 

We introduced a layer by layer strategy for building multi-path capillary routing patterns. 
The first layer provides a simple multi-path solution. As the layer number increases, thanks to 
the developed underlying routing patterns, the streaming communication traverses the network 
more securely. By using all parallel capacities available in the network, the damage caused to 
the media stream by single link failures is minimized. Unlike max-flow or shortest path 
solutions, for a given source and destination, according to our criteria by construction there 
exists only one solution of capillary routing. 

We introduced a scalar coefficient for rating a multi-path routing topology of any 
complexity in respect to the overall FEC effort of the sending node. It is called Redundancy 
Overall Requirement (ROR) and is proportional to the total number of adaptive FEC packets 
required for protecting communications from link failures arbitrarily occurring in the network. 
With the capillary routing algorithm, we build thousands of multi-path routing patterns. By 
computing their ROR coefficients, we showed that the overall requirement in FEC codes is 
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reduced when increasing the path diversity according to a new capillary routing algorithm. 
Overall requirement in FEC codes is reduced despite the fact that the increased path diversity 
results in an increase of the overall failure rate of underlying links. 

Capillary routing can be applicable to multi-hop mobile wireless networks, to a corporate 
IP network or to a network of an ISP. It can be also applicable to the public Internet assuming an 
overlay network. The demand in streaming application is growing rapidly. A typical residential 
Internet user is connected to the network with a last kilometer link. Although the last kilometer 
link offers no possibilities of path diversity, it is connected to the router, which is under control 
of the user (or at least the immediate ISP of the user) and the streaming media can be protected 
at the QoS level. Therefore no congestion provoked failures can occur on the last kilometer link. 
The congestions and failures arbitrarily occurring in the lossy Internet can be solved thanks to 
end to end erasure resilient coding and path diversity relying on an overlay network. 

Further work 

In respect to liquid scheduling, we may in the future study dynamic models where the 
edge nodes of an optical cloud are continuously receiving communication flows evolving over 
time. There is a need for investigating queuing strategies of the edge nodes for optimal 
application of liquid scheduling. 

In respect to capillary routing, we may extend the equations of ROR to also consider 
simultaneous link failures. For simple network samples, we should compare the theoretically 
optimal multi-path routing patterns according to the ROR metric with the patterns obtained by 
our capillary routing algorithm in order to further evaluate its efficiency. Furthermore, the 
current study does not take into account the overall network utilization. Strategies permitting to 
simultaneously optimize the overall network utilization and minimize the ROR coefficient 
should also be considered. 

We may also extend the method to consider coding also inside the network and not only 
at the edge nodes. We should investigate applying the extended method in wireless Mobile Ad-
hoc Networks, aiming not only at fault-tolerance but also at saving energy. 
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Appendix A. SFIO function calls  

This appendix presents the API functions of the SFIO library. The SFIO interface consists 
of file management, data access and error management operations. 

Section A.1. File management operations  
File management operations are mopen, mclose, mchsize, mdelete and mcreate. 

MFILE* mopen(char *name, int stripeUnitSz); 
void mclose(MFILE *f); 
void mchsize(MFILE *f, long size); 
void mdelete(char *name); 
void mcreate(char *name); 

All the presented file management operations are collective. Operation mopen returns to 
the compute node a pointer to the logical striped file descriptor. The striped file name required 
for the mopen, mdelete and mcreate commands is a string containing the specification of the I/O 
nodes together with the paths of subfiles representing the global striped file. The global file 
name format is a simple semi-column separated concatenation of local subfile names (including 
their hostnames) in the right order. The format is as follows: 

 "<host>/<path>;<host>/<path>..." 

For example: 

"tonep0/tmp/a.dat;tonep1/tmp/a.dat;" 

The mchsize operation changes the size of the logical file. If the specified size is smaller 
than the current, the operation truncates the logical file to the new size. 

Section A.2. Data access operations 
There are single block and multi-block data access requests. 

void mread(MFILE *f, long offset, 
    char *buffer, unsigned size); 
void mwrite(MFILE *f, long offset, 
    char *buffer, unsigned size); 
void mreadc(MFILE *f, long offset, 
    char *buffer, unsigned size); 
void mwritec(MFILE *f, long offset, 
    char *buffer, unsigned size); 
void mreadb(MFILE *f, 
    unsigned numberOfBlocks, 
    long offsets[], 
    char *buffers[], 
    unsigned sizes[]); 
void mwriteb(MFILE *f, 
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    unsigned numberOfBlocks, 
    long offsets[], 
    char *buffers[], 
    unsigned sizes[]); 

The data access requests are blocking and non-collective. The functions mreadc and 
mwritec are the optimized versions of the mread and mwrite functions. The multiple block data 
access operations mreadb and mwriteb are optimized. The numberOfBlocks argument in mreadb 
and mwriteb operations specifies the number of blocks to be accessed by the single operation in 
the logical file. The information about each block has to be provided by three arrays offsets, 
buffers and sizes each having a number of elements given by the variable numberOfBlocks. The 
offsets array contains the positions of each block in the logical file. The buffers array contains 
the addresses of each block in the user memory and the sizes array provides the size of each 
memory block in bytes. 

Section A.3. Error management operations 
Error management is provided by merror and its collective counterpart merrora functions. 

void merrora(unsigned long *ioerr); 
void merror(unsigned long *ioerr); 
void prioerrora(); 

Functions merror and merrora return an array of error statistics accumulated on all I/O 
nodes. At the same time, they reset the error counters at the I/O nodes. Statistics are 
accumulated for operating system I/O calls and listed according to open, close, creat, unlink, 
ftruncate, lseek, write and read local OS functions. The function prioerrora is a collective 
opera¬tion which prints the error statistics to the standard output of the application. 
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Appendix B. Congestion graph coloring heuristic 
approach 

The search for a liquid schedule requires the partitioning of the traffic into sets of 
mutually non-congesting transfers. This problem can also be represented as a conflict graph 
coloring problem [Beauquier97]. Vertices of the conflict (or congestion) graph represent the 
transfers. Edges between vertices represent congestions between the transfers. 

Figure 62 shows a congestion graph that corresponds to the all-to-all traffic pattern across 
the network of Figure 28, which consists of 25 transfers. These transfers are shown in Figure 29 
as pictograms and in Figure 30 as sets of communication links. The vertices of the congestion 
graph are labeled with two indexes . Vertex  represents the transfer from the sending 
node i to the receiving node j. Vertex , for example represents the transfer from node  to 
node , denoted as  in Figure 29 and as {  in Figure 30. 

),( ji ),( ji
)1,4( 4t

1r },, 14 rt ll bal

An edge between two vertices is present if one or more links are shared between the two 
corresponding transfers. Therefore each edge of the congestion graph can be labeled by the 
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(1,2) (1,4) 

(1,1) (1,5)

(2,3)
(2,2) (2,4)

(2,1) (2,5) 

(3,3)
(3,2) (3,4)

(3,1) (3,5) 

(4,3)
(4,2) (4,4)

(4,1) (4,5) 

(5,3)
(5,2) (5,4) 

(5,1) (5,5)

Figure 62.  Congestion graph corresponding to the traffic pattern of 
Figure 29 across the network of Figure 28: the vertices of the 
graph represent the 25 transfers, the edges represent 
congestions between the transfers 
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) causing the congestion. In Figure 62 we marked in bold the edges occurred due to the 
bottleneck links abl  and bal  (see the network diagram in Figure 28). The 15 bold edges between 

any two of the following vertices (1,4), (1,5), (2,4), (2,5), (3,4), (3,5) represent the congestions 
due to the bottlen k link ab . The other 15 bold edges between the vertices (4,1), (4,2), (4,3), 
(5,1), (5,2), (5,3) represent the congestions due to the bottleneck link bal . 

According to the graph coloring problem, the vertices of the graph must be colored such 
that no two vertices have the same color if they are connected. T  o

ec  l

ng problem is to properly color the graph using a minimal number of colors. The graph 
coloring problem is known as NP-complete, but various heuristic algorithms exist. 

Once the graph is properly colored, vertices having the same color can represent a time 
frame of the liquid schedule, since the corresponding transfers can be carried out si

ut congestions. Whenever a liquid schedule exists, an optimal solution of the graph 
coloring problem corresponds to a liquid schedule and the chromatic number of the graph’s 
optimal coloring is therefore the length of the liquid schedule. A heuristic graph coloring 
algorithm however may find solutions requiring more colors than the optimal solution, reducing 
therefore the throughput of the corresponding schedule. 

The congestion graphs corresponding to the traffic patterns across the network of the 
Swiss-T1 cluster supercomputer have a relatively low 

le, an all-to-all data exchange on the Swiss T1 cluster with 32 transmitting and 32 
receiving processors results in a graph with 10243232 =×  vertices and 48704 edges (the 
corresponding complete graph 1024K  has 523776 edges that is eleven times more). 
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Figure 63.  Number of edges in the 362 congestion graphs corresponding 
to the traffic patterns of Figure 40 and Figure 41 

 86 



We compared our method of finding a liquid schedule with the results obtained by 
applying the heuristic fast graph coloring algorithm DSatur [Brelaz79], [Culberson97], 
[Rolland-Balzon02], [Trick94], which carries out the steps shown in Table 3. 

Table 3. DSatur graph coloring heuristic algorithm 

1. Arrange the vertices by decreasing order of 
degrees. 

2. Color a vertex of maximal degree with color 
1. 

3. Choose a vertex with a maximal saturation 
degree (defined as the number of different 
colors to which it is adjacent). If there is 
an equality, priority is given to the vertex 
having the maximal degree in the uncolored 
sub-graph. 

4. Color the chosen vertex with the least 
possible (lowest numbered) color. 

5. If all the vertices are colored, stop. 
Otherwise, return to step 3. 

Although the heuristic algorithm is fast, it often induces additional colors. For 26% of all 
test traffic patterns (shown in Figure 40 and Figure 41) across the network of the Swiss-T1 
cluster supercomputer (Figure 39 and Table 2), the heuristic graph coloring algorithm induces a 
loss in the overall communication throughput. For the 94 traffic patterns (out of 362) affected by 
the heuristic algorithm, Figure 64 shows the reduction in throughput. The losses occur due to the 
additional unnecessary colors indtroduced by the heuristic graph coloring algorithm. 
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Figure 64.  Loss in throughput induced by schedules computed with the 
DSatur heuristic algorithm 
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For 66% of the considered topologies (or traffic patterns), the performance loss is 
between 2% and 9%. For the remaining 34% of topologies the loss of performance is between 
9% and 19%. 

The computation time of the heuristic algorithm is polynomial and is therefore faster than 
the algorithm searching for the liquid schedule. However, for massive data exchanges, the cost 
of the liquid scheduling algorithm, not exceeding most of the time 1/10 of a second (see 
Appendix A), is negligible compared with the gain in communication time attained by liquid 
schedules. 

The liquid scheduling algorithm can efficiently color a congestion graph if additional 
information about the routes of transfers (represented by a vertex in the congestion graph) is also 
provided. The algorithm does not rely only on information about the conflicts between all 
possible pairs of the transfers. The liquid scheduling relies also on the fact that the transfers are 
sets consisting of communication links. 

For example the fast algorithm for retrieving the full teams of a traffic, retrieves first all 
full teams of the traffic’s skeleton (see Subsection 3.6.2). The traffic skeleton, in turn, comprises 
the transfers using the bottleneck links of the network. It is an example where the algorithm uses 
not only information on the conflicts between the transfers (i.e. the congestion graph), but also 
information on the content of the transfers. 

Therefore, in the case of the liquid scheduling algorithm, the transfers cannot be 
abstracted into vertices of a graph. A graph provides only information about a presence or an 
absence of a conflict between any given pair of vertices. By limiting the input of the problem 
only to a conflict graph, the liquid scheduling algorithm would not receive information about the 
bottleneck links and could therefore not be able to operate. Therefore the liquid scheduling is not 
a general graph coloring algorithm. 
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Appendix C. Comparison of the liquid scheduling 
algorithm with Mixed Integer Linear 
Programming 

The problem of liquid scheduling can be formulated and solved with Mixed Integer 
Linear Programming (MILP), see [CPLEX02], [Fourer03]. The problem of minimizing the 
number of timeframes (and/or wavelengths) can be represented as an MILP objective. 

We represent the network as a directed graph ))(),((( GEGVG = . The routing is 
represented by a parameter , indexed above by the source and destination nodes 
( , ) and below by the network link 

ds
eR ,

)(GVs∈ )(GVd ∈ )(GEe∈ . This parameter indicates if 

the transmission (flit stream flow for wormhole switching or lightpaths for optical networks) 
from the source s to the destination d traverses the link e. It is set to 1 if the transmission  

uses link e and to 0 otherwise. 

),( ds

{ }1,0, ∈ds
eR  (30)

Given is also the traffic pattern X comprising pairs of communication nodes . The 
transmissions  of the traffic pattern are allocated to timeframes 

),( ds
Xds ∈),( }1{ Tt K∈  

according to the variable . The variable  is 1 if the transmission ds
tA , ds

tA , Xds ∈),(  is 

allocated to the timeframe t and is 0 otherwise. 

{ }1,0, ∈ds
tA  (31)

The objective is to allocate the transfers such that the number T is minimized. We may 
formulate this as follows: 

Minimize: T 

subject to: 

{ }TtGEeRA
Xds

ds
e

ds
t K1),(10

),(

,, ∈∀∈∀≤⋅≤ ∑
∈

 (32)

and 

∑
=

∈∀=
T

t

ds
t XdsA

1

, ),(1
 

(33)

Relation (32) represents the simultaneity constraint: number of the transfers in a 
timeframe t using a given network link e can be either 0 or 1 (for all links  and 
timeframes ). Equation (33) represents the partitioning constraint. The traffic X is 
partitioned into time frames of a schedule, therefore each transfer of the traffic must be 

assigned to one and only one time slot. 

)(GEe∈
}1{ Tt K∈

),( ds

The present problem is hard to solve with MILP. For the 362 test bed topologies 
introduced in Subsection 3.8.1 (see Figure 40 and Figure 41), we compared Mixed Integer 
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Linear Programming (MILP) method with liquid scheduling algorithm. The computation speed 
of MILP is far below that of our liquid scheduling algorithm (Figure 65). Our algorithm is on 
average about 4000 times faster than MILP. 
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Appendix D. Assembling a liquid schedule: 
Considering teams of the reduced traffic 
instead of the teams of the original 
traffic 

The basic algorithm for constructing liquid schedules (see Subsection 3.7.2) assumes that 
a liquid schedule can be assembled by considering various combinations of teams of the original 
traffic. For example if a certain combination of teams of X is already selected (from the set 

 of all teams of X) and there still remains a subtraffic  of not yet carried out 

(scheduled) transfers, then, according to the basic algorithm, the teams of the original traffic 

)(Xℑ′ subX

})({ subXAXA ⊂ℑ′∈  must be considered in the choice of the next timeframe (Subsection 

3.7.2, equation (11) and Figure 38). 

The following two theorems prove that we can restrict our choice of possibilities when 
selecting successive time frames without affecting the solvability, meaning that if the solution 
space is not empty then at least one solution will be found. 

Theorem 1 shows that by removing a time frame (i.e. a team) from a liquid schedule, we 
form a new liquid schedule on the remaining traffic. The remaining traffic may have additional 
bottlenecks. For example, in Figure 35, from time frame 3 on, links  and  appear as 
additional bottlenecks and from time frame 5 on, the links  and  also appear as additional 

bottlenecks (making the total number of bottlenecks equal to 6). 

t3l r3l

t4l r5l

Additionally emerged bottlenecks allow us to limit our choice from a large set of teams of 
the original traffic to a smaller set of teams of the reduced traffic. According to theorem 2, this 
does not affect the solvability. The statement appears logically clear (in terms of the remaining 
transmissions to be carried out). The exercise of giving a formal proof is provided for the sake of 
keeping the mathematical model complete. 

THEOREM 1. Let α  be a liquid schedule on X and A be a time frame of α . Then }{A−α  

is a liquid schedule on AX − . 

PROOF. By definition, a schedule is liquid if its length is equal to the duration of the traffic 
(equation (9) of Subsection 3.7.1). Clearly A is a team of X. Remove the team A from X so as to 
form a new traffic AX − . The duration of the new traffic AX −  is the load of the bottlenecks 
in AX − . 

The load of bottlenecks of X in X is the highest and therefore is more than the load of all 
other links at least by 1. By removing a team of X the load of all bottleneck links is reduced by 
1. Therefore, a link which is bottleneck in X is still a bottleneck in AX − . Thus the bottlenecks 
of AX −  include the bottlenecks of X. 

The load of a bottleneck of X is decreased by one in the new traffic AX −  and therefore 
the duration of AX −  is the duration of X decreased by one, i.e. 1)()( −Λ=−Λ XAX . The 
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schedule α  without the element A is a schedule for AX −  by definition of a schedule given in 
Subsection 3.7.1 (a schedule is a collection of simultaneities partitioning the traffic). Obviously 

1)(#}){(# −=− αα A . Therefore the new schedule }{A−α  has as many time frames as the 
duration of the new traffic AX −  is. Hence }{A−α  is a liquid schedule on AX − .  ■ 

In other words, if the traffic has a liquid schedule, then a schedule reduced by one team is 
a liquid schedule on the reduced traffic. The repeated application of Theorem 1 implies that any 
non-empty subset of a liquid schedule is a liquid schedule on the correspondingly reduced 
traffic. 

THEOREM 2. If, by traversing each team A of a traffic X none of the sub-traffics AX −  
has a liquid schedule, then the traffic X does not have a liquid schedule either. 

PROOF. Let us prove the theorem by contradiction and suppose that X has a liquid 
schedule α . Then, a time frame A of α  shall be a team of X. Further, according to Theorem 1, 
the schedule }{A−α  shall be a liquid schedule for AX − . Therefore, for at least one team A 

of X, the sub-traffic AX −  has a liquid schedule. This proves the theorem.  ■ 

Theorem 2 implies that if X has a liquid schedule, at least one team A of X will be found, 
such that the sub-traffic AX −  has a liquid schedule β . Obviously }{A∪β  will be a liquid 

schedule for X. 

Instead of considering for the set of possible time frames all teams of the original traffic 
included in the current sub-traffic , i.e. subX })({ subXAXA ⊂ℑ′∈ , we propose to consider for 

the set of possible time frames (at the current node of the construction tree) all teams of the 
current sub-traffic, i.e. . )( subXℑ′

By induction, theorem 2 implies that if a solution for X (i.e. a liquid schedule on X) exists, 
then this algorithm will necessarily find it. 

Since the teams of the current sub-traffic  together with the bottlenecks of the 
original traffic X must also use the additional bottlenecks of , the number of teams of the 
current subtraffic  is smaller or equal to the number of teams of the original traffic 

whose transfers belong to the current subtraffic: 

subX

subX
)( subXℑ′

}))(({#))((# subsub XAXAX ⊂ℑ′∈≤ℑ′  (34)

Therefore less possible teams need to be considered when building the schedule. The 
solution space is not affected, since theorem 2 is valid at any level of the search tree. 

The construction algorithm traverses the tree in depth-wise order (Figure 38). A solution 
is found when the current node (sub-traffic) forms a single team. The path from the root to that 
leaf node forms the set of teams yielding the liquid schedule. The example of a liquid schedule 
of Figure 35 shows that each timeframe incorporates additionally also the bottlenecks (marked 
in bold) of the remaining reduced traffic. Therefore each timeframe is also a team of the reduced 
traffic. A node, in the construction tree, is a dead end if the corresponding sub-traffic does not 
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have a team (see for example Figure 36 and Figure 37). In that case the algorithm backtracks 
and evaluates other choices. Evaluation of all choices ultimately leads to a solution if it exists. 
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Appendix E. Assembling a liquid schedule: 
Considering full teams of the reduced 
traffic instead of all its teams 

Assuming the liquid schedule construction algorithm of Subsection 3.7.3, we can build a 
liquid schedule by further limiting the choice of teams of the reduced subtraffic to its full teams. 

Let us modify a given liquid schedule so as to convert one of its teams into a full team. 
Let a traffic X have a liquid schedule α . Let A be a time frame of α . If A is not a full team of 
X, then, by moving the necessary transfers from other time frames of α , we can convert the 
team A into a full team. Evidently, by doing so, the properties of liquidity (partitioning, 
simultaneousness and length) of α  are not affected. Therefore if X has a solution then it has 
also a solution when any one of its selected time frames is full. 

Therefore, if it is possible to built a liquid schedule, then it can be built by a choice of a 
full team A of the current reduced traffic . Thus, the choice of the teams in the construction 

tree of Figure 38 may be narrowed from the set of all teams to the set of full teams only, i.e. 
. This yields the optimization of Subsection 3.7.4 (equations (13), (14) and 

(15)). An efficient algorithm for retrieving the set of all full teams  is presented in 

Table 1. 

subX

)()( subsub XX ℑ=ℵ
)( subXℑ

Figure 35 shows a liquid schedule constructed with full teams. It can be easily verified 
that, for any given timeframe, all transfers of the following timeframes are congesting with at 
least one transfer of that timeframe. 
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Appendix F. Overall overview of all liquid schedule 
construction optimizations 

Liquid scheduling permits to optimally partition a traffic into subsets of non-congesting 
transfers. Its construction relies on the fast retrieval of full teams (saturated collection of non-
congesting transfers using all bottleneck links of the network) presented in Section 3.6 and on 
their assembly into a schedule, as presented in Section 3.7. The overall liquid schedule 
construction algorithm is briefly outlined in Table 4. 

Table 4. Overall overview of liquid schedule construction algorithm 
and its all relevant optimizations 

1. Full teams are enumerated by recursively 
partitioning the solution space using 
inclusion and exclusion constraints: 

1.1. The blank optimization identifies empty 
partitions at early stages of the search 
tree; 

1.2. The idle optimization identifies partitions 
containing no full teams at early stages of 
the search tree; 

1.3. The skeleton optimization speeds up the 
retrieval of full teams, first by 
considering only the transfers necessary to 
keep all bottleneck links busy and then by 
adding up other non-congesting transfers. 

2. We construct liquid schedules by 
partitioning the traffic into teams: 

2.1. The construction of the liquid schedule is 
accelerated by limiting the choice at each 
time frame to the teams, which must 
incorporate in addition also the newly 
emerging bottleneck links (i.e. teams of the 
reduced traffic); 

2.2. By additionally limiting the choice only to 
full teams of the reduced traffic we further 
speed up the construction of the liquid 
schedule. 

Measurements on real traffic carried out on 362 different network configurations of the 
Swiss-T1 cluster supercomputer (Section 3.8) have shown that by applying the liquid scheduling 
algorithm of Table 4, we are able to increase the overall communication throughput by a factor 
between 1.5 and 2 (see Figure 66). 
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Figure 66.  The overall measured throughputs of hundreds of different 
traffic patterns carried out according to a liquid schedule 
and according to a topology unaware schedule 
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Appendix G. Probability of simultaneous link failures 
in multi-path routing patterns 

When introducing in Subsection 4.3.1 equation (23) for the Redundancy Overall 
Requirement (ROR), we rely on the assumption of a single link failure. Only if this assumption 
holds, ROR is the proportionality coefficient for the number of redundant packets that the sender 
needs to transmit during a given communication time, in order to protect the communication 
against randomly occurring link failures. 

In this Appendix, we delimit the conditions under which the single link failure assumption 
holds. We also analyze how our theory should be extended in order to consider also the 
probability of multiple simultaneous link failures. 

Section G.1. Limitations of the single link failure 
assumption 

The probability that the single link failure assumption does not hold depends on the 
failure rate of one single link, the duration of a single failure and the number of links in the 
network (which is proportionally increasing the overall failure rate in the network). We assume 
that all links have an equal failure probability and duration. 

We will consider a Poisson process for evaluating the probability of overlapping failures 
of two different links. This is the probability that our assumption of a single link failure does not 
hold.  

The events in the Poisson process occur randomly in time. 

Let X be the interarrival time between two events. 

Let G denote the right-tail distribution function of X: 

 0)()( ≥>= ttXPtG   (35)

 
where  is the probability that 
the interarrival time 

)( tXP >
X  between two 

failures is longer than t  
 

It is known [Wiki-Poisson06], [Siegrist01] that the right-tail distribution function G of 
equation (35) is an exponential function and is expressed as follows: 

0)()( ≥=>= ⋅− tetXPtG tr  
where r  is the rate parameter 

(36)

In our model r is the overall rate of link failures in the network. 
Let  denote the probability that the interarrival time is below or equal to t. Then 

according to equation (36): 

)(tF

01)(1)()( ≥−=−=≤= ⋅− tetGtXPtF tr  (37)
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Let for the sake of simplicity assume that all link failures last a fixed period of time equal 
to t. Let N be the number of links in the network. Let d be the average time between two link 
failures (e.g. between the two points at which begin the two respective faulty states each lasting 
a duration t). The overall mean rate r of network link failures is then computed as follows: 

d
Nr 1
⋅=

 
(38)

Two consecutive link failures will overlap if the interarrival time between these two 
failures is smaller than the failure duration t. The probability of this is . Therefore, 

according to equations (37) and (38): 

)(tF

d
tN

etF
⋅−

−=1)(  
(39)

The chart of Figure 67 shows F as a function of t, i.e. the probability that the interarrival 
time between two consecutive failures is less than t. If t is considered as a failure duration, then 
the chart represents the probability of overlapping of two consecutive link failures as a function 
of the failure duration. In this example the average time between failures of one single link is 
one hour and there are 50 links in the network. For example if the duration of a single link 
failure is 1 second, then the probability of overlapping of two consecutive failures is 2.74%. 
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Figure 67.  The probability that the interarrival time between two 
consecutive failures in a Poisson process is less than a given 
time, , 3600/1=r 50=N  

Let the Failures Overlapping Probability (FOP) be the acceptable probability that two 
consecutive link failures overlap in time. We then say that if the probability of overlapping of 
two consecutive failures is below FOP, then our assumption of single link failure (Subsection 
4.3.1) holds and our theory of Chapter 1 is valid. Let us compute the maximal number of links in 
the network ensuring that the probability of overlapping of two successive failures does not 
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exceed the acceptable FOP. For a given average time d between two failures of the same link, 
and for a given failure time t of a single link failure, according to equation (39), we have: 

d
tN

eFOP
⋅−

−=1  
(40)

FOPe
N

d
t

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
1

 

(41)

⎟
⎠
⎞

⎜
⎝
⎛−

−
=

d
t
FOPN )1ln(

 

(42)

and therefore: 

( )FOP
t
dN −⋅−= 1ln

 
(43)

With equation (43) one can verify that if the acceptable FOP is 5%, and that in average 
each network link fails once a day for a period of 5 seconds, the communication flow can follow 
a routing footprint consisting of nearly 900 links and the probability of even partial overlapping 
of failures will stay below the acceptable upper limit. Or in other words with 900 underlying 
network links the probability of partial or full overlapping of two consecutive link failures does 
not exceed 5%. 

Section G.2. Extension of ROR for considering also the 
overlapping failures 

For frequent and long failures the equation (23) of ROR based on the assumption of a 
single link failure at a time may not be valid anymore (see Subsection 4.3.1). In this case the 
equation of ROR must be extended. 

Assuming that the probability of overlapping of three simultaneous failures is essentially 
zero, let us denote by  the sum of fractions of time during which only single link failures 
occur and by  the sum of fractions of time during which two links are in a faulty state. The 
coefficients  and  are fractions relative to the total failure time (i.e. the total sum of times 

during which at least one link is in a faulty state). Therefore: 

1k

2k

1k 2k

121 =+ kk  (44)

The ROR coefficient, which considers also the possibility of overlapping of two faulty 
states, must be therefore computed according the following equation: 

2211 RORkRORkROR ⋅+⋅=  (45)

In equation (45)  is an ROR metric assuming only non-overlapping failures. 
Therefore  can be computed according to equation (23) as follows: 

1ROR

1ROR

 101



∑
<≤∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

1)(|

)(
1 1

lrtLl t

lr

FEC
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ROR
 

(46)

Do not confront t and r with the temporary notations used in Section G.1. In equation (46) 
and in the further equations (as introduced in Section 4.3), t represents the tolerable limit of 
packet losses (the constant tolerance of the streaming media) and r represents the routing 
function, i.e. the fraction of flow traversing through the given link under the given routing. 

2R  in equation (45) is an ROR metric assuming exclusively overlapping failures of two 

links, i.e. all states during which two link failures are taking place simultaneously. The 
coefficients  and  are the two respective weights. 1k 2k

Assume now that two links  and  are in a faulty state at the same time. According to 

the routing function r, when all network links were operational, the first link carried out the 
 portion of the traffic and the second link the  portion respectively. Clearly: 

1l 2l

)( 1lr )( 2lr

1)(0 1 ≤≤ lr  (47)

1)(0 2 ≤≤ lr  (48)

If the links are completely parallel and independent, meaning that no part of flow passing 
through link  passes after also through link  and vice versa, then the loss rate observed at the 

receiver during the time of the simultaneous failure of these two links will be the sum of the two 
fractions: 

1l 2l

)()( 21 lrlrloss +=  (49)

If the links are completely sequential, meaning that the flow of one link completely passes 
through the other link then: 

( ))(),(max 21 lrlrloss =  (50)

The loss rate  as a function of two links  and , observed at the receiver 

during the time of simultaneous failures of these two links respects therefore the following 
relations: 

),( 21 llloss 1l 2l

( ) )()(),()(),(max 212121 lrlrlllosslrlr +≤≤  (51)

The  coefficient is the sum of the transmission rate increment factors across all 
possible pairs of simultaneously failing network links . The transmission rate increment 
factor (TRIF) for a simultaneous failure of a single pair of two links  and  is expressed as 

follows: 

2ROR
),( 21 ll

1l 2l

1),( )2,1(
21 −=

t

llloss

FEC

FEC
llTRIF

 

(52)
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The  coefficient therefore can be written as follows, as a sum across all possible 
pairs of : 

2ROR
),( 21 ll

∑ ∑
<≤∈

<≤
≠∈

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⋅=

1)1(|1
1)2(
21|2

)2,1(
2 1

2
1

lrtLl
lrt

llLl t

llloss

FEC

FEC
ROR

 

(53)

Because the nested sums of equation (53) counting each pair twice, we include a 
compensating coefficient 1/2. 

Then, finally the global ROR coefficient which considers also simultaneous failures of 
two links can, according to equations (46) and (53), be rewritten as follows: 

∑ ∑∑
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(54)

In the future, we intend to search for an analytical expression for the coefficients  and 
 (equations (44) and (45)). We also need a method for computing the function  

(equation (51)). 

1k

2k ),( 21 llloss
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MEMS  Micro-Electro-Mechanical Systems 
MILP  Mixed Integer Linear Programming 
MPEG  Moving Picture Experts Group 
MPI  Message Passing Interface 
MPICH  “CH” in MPICH stands for “Chameleon”, symbol of adaptability to one’s 

environment and thus of portability 
MYRINET  is a high-speed local area networking system designed by Myricom to be used as an 

interconnect between multiple machines to form computer clusters 
NAT  Network Address Translation 
NP-complete  Non-deterministic Polynomial time 
NYSE  New York Stock Exchange, http://www.nyse.com/
O/E  Optical/Electrical conversion 
O/E/O  Optical/Electrical/Optical conversion 
OADM  Optical Add/Drop Multiplexer 
OBS  Optical Burst Switching 
OLT  Optical Line Terminal 
ORNL  Oak Ridge National Laboratory, http://www.ornl.gov/
OS  Operating System 
OSI  Open System Interconnection Protocols, is an ITU-T standard, comprises numerous 

standard protocols that are based on the OSI reference model 
OSPF  Open Shortest Path First 
OXC  Optical Cross-Connect 
PAD  Packet Assembler/Disassembler, a communications device that formats outgoing 

data into packets of the required length for transmission in an X.25 packet 
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QoS  Quality of Service 
ROR  Redundancy Overall Requirement 
RS  Reed-Solomon 
RTP  Real-time Transport Protocol 
RTT  Round Trip Time 
SAN  Storage Area Networks 
SCS  Supercomputing Systems 
SFIO  Striped File I/O 
SIP  Service Initiating Protocol 
SNL  Sandia National Laboratories, http://www.sandia.gov/
SONET  Synchronous Optical Network 
Sprint Intl  Sprint International (NYSE:S), a leading US based telecommunication carrier, 

http://www.sprintlabs.com/
SRI  Stanford Research Institute 
TCA  Target Channel Adapter, in InfiniBand Architecture 
TCP  Transmission Control Protocol 
TDM  Time-Division Multiplexing, a technology in circuit-switched digital telephony 
Teleglobe  a leading US/Canadian telecommunication carrier acquired by VSNL in 2005, 

http://www.vsnlinternational.com/
TNET  High-performance switch-based communication network aiming at low-latency and 

high-bandwidth 
UA  User Agent 
UCLA  University of California, Los Angeles 
UDP  User Datagram Protocol 
UNIX  Uniplexed Information and Computing System (it was originally spelled “Unics”) 
VAX  Virtual Address Extension, a computing architecture that supports an orthogonal 

instruction set (machine language) and virtual addressing developed by DEC 
VCT  Virtual Cut-Through 
VMS  Virtual Memory System or Open VMS, is the name of a high-end computer server 

operating system that runs on the VAX and Alpha family of computers developed 
by Digital Equipment Corporation, and more recently on Hewlett-Packard systems 
built around Intel Itanium CPU 

VOIP  Voice Over IP 
VPN  Virtual Private Network 
VSNL  Videsh Sanchar Nigam Limited (NYSE:VSL), India’s leading international 

telecommunications service provider, http://www.vsnl.in/
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WAP  Wavelength Assignment Problem 
WDM  Wavelength Division Multiplexing 
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WSXC  Wavelength-Selective Cross-Connect 
X.25  an ITU-T protocol standard for WAN communications that defines how 

connections between user devices and network devices are established and 
maintained 

X.28  An ITU standard (1977) for exchange of information between a DTE and a PAD; 
commonly known as PAD commands 

X.400  an OSI standard developed by the ITU-T (at the time the CCITT) in cooperation 
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XOR  Exclusive OR 
YerPhI  Yerevan Physics Institute 
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