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Abstract 
In mechanical measurement devices where measured values are indicated with 

a mechanical pointer and a graduated scale, the observation precision is increased 
often by adding an auxiliary mechanical pointer with a sub graduated scale. The 
auxiliary pointer moves in synchronization with the main pointer but at a higher 
speed. A constant velocity ratio between the auxiliary pointer and the main pointer is 
maintained via cogwheel type gearboxes. Mechanical solutions are not always 
suitable. A challenging idea is to use moiré phenomenon for its well known 
magnification and acceleration properties. Sharp moiré shapes with good luminosity 
and contrast can be however obtained only in highly periodic patterns. The periodic 
nature of patterns makes them inapplicable for indication of values. We present new 
discrete patterns assembled from simple moiré patterns of different periodicity. The 
elevation profile of our discrete pattern reveals a joint moiré shape with an arbitrarily 
long period. The luminosity and the sharpness of our shapes are as high as in simple 
highly periodic moiré. 

Keywords: moiré, instrumentation, metrology, multi-stripe moiré, multi-ring 
moiré, non-periodic moiré, optical speedup, moiré indicator, moiré pointer, moiré 
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1. Introduction 
A graduated scale and a mechanical pointer is a common part for almost all 

mechanical measurement devices. Often an auxiliary pointer and a scale with sub 
graduations are used for additional precisions. The auxiliary pointer moves faster, in 
synchronization with the main pointer. The pointers are connected via a tooth wheel 
type transmission system. The involute tooth shape is one that results in a constant 
velocity ratio, and is the most commonly used in instrumentation gearing, clocks and 
watches. Mechanical methods for changing the speed however can often be heavy and 
inapplicable. Lack of the force, such as in a compass, can be one of the serious 
obstacles. Inertia problems arising from discrete movements of mechanical parts at 
high speed, such as in chronographs, may be another obstacle. 

The magnification and acceleration properties of moiré superposition images 
are a well known phenomenon. The superposition of transparent structures, 
comprising periodic opaque patterns, forms periodic moiré patterns. A challenging 
idea would be to use optical moiré effect for creating a fast auxiliary pointer replacing 
completely the mechanical parts moving at high speeds. The periodic nature of known 
moiré patterns make them inappropriate for indication of values. Profiles with very 
long periods can be created with periodic moiré. It is possible to design circular layer 
patterns with radial lines such that their superposition produces a radial moiré fringe 
with an angular period equal to 360 degrees. Thus only single radial moiré fringe will 
be visible in the superposition pattern. However such long periods make the moiré 
fringes blurred. The dispersion area of the fringe can be as large as the half of the 
period. In section 4 we show a particular case where a radial periodic moiré can be of 
use with an additional design extension. However in general, the long period moiré 
fringes of classical periodic moiré are too inexact for indication purposes. 

A limited degree of sharpening of shapes in periodic moiré is possible using 
band moiré methods, namely moiré magnification of micro shapes [Hutley99], 
[Kamal98]. Such shapes however require serious sacrifices of the overall luminosity 
of the superposition image without significant improvements of the sharpness. 

Random moiré, namely Glass patterns, produce non-periodic superposition 
patterns [Amidror03a], [Amidror03b], [Glass69a], [Glass73a]. The obstacle is that the 
valid range of movements of layers is very limited. The auxiliary indicator would 
show the sub graduations only within the range of only one graduation of the main 
scale. Additionally, in random moiré the shapes are noisier than in simple periodic 
moiré. 

We developed new discrete patterns formed by merging straight stripes or 
circular rings of simple periodic moiré patterns. The composing stripes or rings are 
simple patterns with carefully chosen periods and phases. The composite pattern 
reveals a sharp moiré shape with an arbitrarily long periodicity. Movement of a layer 
along the stripes or along the circumferences of rings produces a faster movement of 
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the moiré shape. Such shape has all qualities for playing the role of the fast auxiliary 
indicator. The one of the layers can be put into slow mechanical motion by the main 
pointer of the measurement device. In our discrete patterns the shapes are as sharp as 
in highly periodic moiré patterns. The period of the moiré pointer can be as long as it 
is required by the display size of the instrument. In our discrete patterns, the choice of 
the period has no impact on the quality of the optical shape and a wide range of speed 
ratios can be obtained. 

Choice of stripes or rings depends on the type of the movement of layers. For 
linear movements the pattern comprises parallel stripes following the path of the 
movement. For circular movements the pattern consists of concentric rings with a 
center corresponding to the rotation axis. Our algorithm merges numerous simple 
periodic patterns into a composite pattern so as to form a continuous joint shape in the 
assembled superposition image. The underlying layer patterns do not join into 
continuous shapes within assembled layers. The composite patterns are constructed, 
such that the velocity ratios across all individual moiré patterns are identical. 
Consequently, the joint shape of the multi-stripe or multi-ring moiré pattern conserves 
its form during movements of the optical image. The speed ratio and the sharpness of 
moiré shape are constant within the full range of movements of the main pointer and 
layers. 

Circular multi-ring samples are the most interesting. They can be used for 
adding auxiliary optical pointers to numerous measurement device with circular dials 
and radial mechanical pointers such as clocks, watches, chronographs, protractors, 
thermometers, altimeters, barometers, compasses, speedometers, alidades, and even 
weathervanes. In mechanical chronographs, optical acceleration permits measuring 
fractions of seconds without having mechanical parts moving at high speed with 
related problems of force, inertia, stress, and wear. 

The paper is organized as follows. Section 2 introduces the classical periodic 
moiré and the methods for forming periodic moiré fringes of a desired shape. These 
methods are presented in scope of a new perspective for easily changing the curves of 
moiré shapes without affecting the periodicity and the velocity ratios, which are 
essential parameters for the metrology purposes. Linear movements are considered 
and a set of corresponding equations is introduced. Section 3 introduces the equations 
for creating curved moiré shapes for rotating layers preserving the angular periodicity 
and velocity ratio. Section 4 presents an application of classical moiré. In sections 4 
and 5 we present multi-ring moiré with various curved layer patterns and moiré 
superposition patterns. The conclusions are presented in section 7. 

 

2. Simple moiré patterns 

2.1. Superposition of layers with periodically repeating 
parallel lines 

Simple moiré patterns can be observed when superposing two transparent 
layers comprising periodically repeating opaque parallel lines as shown in Figure 1. 
The lines of one layer are parallel to the lines of the second layer. 
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Figure 1. Superposition of two layers consisting of parallel 

lines, where the lines of the revealing layer are 
parallel to the lines of the base layer [eps], [tif], [png] 

The superposition image does not change if the transparent layers with their 
opaque patterns are inverted. We denote one of the layers as the base layer and the 
other one as the revealing layer. When considering printed samples we assume that 
the revealing layer is printed on a transparency and is superposed on top of the base 
layer, which can be printed either on a transparency or on an opaque paper. The 
periods of the two layer patterns, i.e. the space between the axes of parallel lines, are 
close. We denote the period of the base layer as  and the period of the revealing 
layer as . In Figure 1, the period of lines of the base layer is equal to 6 units, and 
the period of lines of the revealing layer  is equal to 5.5 units. 

bp

rp

The superposition image of Figure 1 outlines periodically repeating dark 
parallel bands, called moiré lines. Spacing between the moiré lines is much larger 
than the periodicity of lines in the layers. 

Light areas of the superposition image correspond to the zones where the lines 
of both layers overlap. The dark areas of the superposition image forming the moiré 
lines correspond to the zones where the lines of the two layers interleave, hiding the 
white background. The labels of Figure 2 point on periodically interchanging light 
and dark bands. The light bands are formed due to overlapping layer lines, and the 
dark bands due to interleaving layer lines. 

 
Figure 2. Superposition of two layers consisting of horizontal 

parallel lines [eps], [png] 

Figure 3 shows a detailed diagram of the superposition image between two 
light zones, where the lines of the revealing and base layers overlap 
[Sciammarella62a, p.584]. 
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Figure 3.  Computing the period of moiré lines in a 
superposition image as a function of the periods of 
lines of the revealing and base layers 

The period  of moiré lines is the distance from one point where the lines of 
both layers overlap (at the bottom of the figure) to the next such point (at the top). Let 
us count the layer lines, starting from the point where they overlap. Since in our case 

, for the same number of counted lines, the base layer lines with a long period 
advance faster than the revealing layer lines with a short period. At the halfway of the 
distance , the base layer lines are ahead the revealing layer lines by a half a period 
( ) of the revealing layer lines, due to which the lines are interleaving, forming a 
dark zone. At the full distance , the base layer lines are ahead of the revealing 
layer lines by a full period , so the lines of the layers again overlap. The base layer 
lines gain the distance  with as many lines ( ) as the number of the 
revealing layer lines ( ) for the same distance minus one: 

mp

br pp <

mp
2/rp

mp

rp

mp bm pp /

rm pp /

1+=
b

m

r

m

p
p

p
p

 
(2.1)

From equation (2.1) we obtain the well known formula for the period  of 
the superposition image [

mp
Amidror00a p.20]: 

rb

rb
m pp

ppp
−
⋅

=
 

(2.2)

Page 5 of 34 



The superposition of two layers comprising parallel lines forms an optical 
image comprising parallel moiré lines with a magnified period. According to equation 
(2.2), the closer the periods of the two layers, the stronger the magnification factor is. 

If the numbers  and  are integers, then if at some moiré light 
zone the lines of both layers perfectly overlap, as shown in Figure 3, the layer lines 
will also perfectly overlap also at the centers of each other light zone. If  and 

 are not integers, then the centers of white moiré zones do not necessarily 
match with the centers of layer lines. In any case, equation (2.2) remains valid. 

bm pp / rm pp /

bm pp /

rm pp /

For the case when the revealing layer period is longer than the base layer 
period, the space between moiré lines of the superposition pattern is the absolute 
value of formula of (2.2). 

The thicknesses of layer lines affect the overall darkness of the superposition 
image and the thickness of the moiré lines, but the period  does not depend on the 
layer lines’ thickness. In our examples the base layer lines’ thickness is equal to 

, and the revealing layer lines’ thickness is equal to . 

mp

2/bp 2/rp

2.2. Speedup of movements with moiré 
The moiré bands of Figure 1 will move if we displace the revealing layer. 

When the revealing layer moves perpendicularly to layer lines, the moiré bands move 
along the same axis, but several times faster than the movement of the revealing layer. 
The four images of Figure 4 show the superposition image for different positions of 
the revealing layer. The base layer period is equal to 6 units and the revealing layer 
period is 5.7 units. Compared with the first image (a) of Figure 4, in the second image 
(b) the revealing layer is shifted up by one fourth of the revealing layer period 
( ), in the third image (c) the revealing layer is shifted up by half of the 
revealing layer period ( ), and in the fourth image (d) the revealing layer is 
shifted up by three fourth of the revealing layer period (

4/1⋅rp
4/2⋅rp

4/3⋅rp ). The images show 
that the moiré lines of the superposition image move up at a speed, much faster than 
the speed of movement of the revealing layer. 
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Figure 4. Superposition of two layers with parallel horizontal 

lines, where the revealing layer moves vertically at a 
slow speed [eps (a)], [png (a)], [eps (b)], [png (b)], 
[eps (c)], [png (c)], [eps (d)], [png (d)] 

When the revealing layer is shifted up perpendicularly to the layer lines by one 
full period  of its pattern, the superposition optical image must be the same as the 
initial one. It means that the moiré lines traverse a distance equal to the period of the 
superposition image , while the revealing layer traverses the distance equal to its 
period . Assuming that the base layer is immobile (

)( rp

mp

rp 0=bv ), the following equation 
holds for the ratio of the optical image’s speed to the revealing layer’s speed: 

r

m

r

m

p
p

v
v

=
 

(2.3)

According to equation (2.2) we have: 

rb

b

r

m

pp
p

v
v

−

=
 

(2.4)

In case the period of the revealing layer is longer than the period of the base 
layer, the optical image moves in the opposite direction. The negative value of the 
ratio computed according to equation (2.4) signifies the movement in the reverse 
direction. 

The GIF animation of the superposition image corresponding to a slow 
movement of the revealing layer is provided in Figure 5. The GIF file repeatedly 
animates a perpendicular movement of the revealing layer across a distance equal to 

. rp
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Figure 5. GIF animation of the slow vertical movement of the 

revealing layer [ps], [gif], [tif] 

2.3. Superposition of layers with inclined lines 
In this section we develop equations for patterns with inclined lines. When we 

are interested in optical speedup we can represent the case of inclined patterns such 
that the formulas for computing moiré periods and optical speedups remain valid in 
their current simplest form. For this purpose, the periods , , and  are defined 
so as to correspond to the distances between the lines along the axis of movements 
(the vertical axis in the examples of Figure 4 and Figure 5). In such a way equations 
(2.2), (2.3), and (2.4) remain valid also for inclined lines. The periods (p) are equal to 
the distances (denoted as T) between the lines, only when the lines are perpendicular 
to the movement axis (as in Figure 4 and Figure 5). 

rp bp mp

In this section we present equations for computing inclination angles relying 
on periods , , and  along the axis of movements. For rotational movements 
the p values represent the periods along circumference, i.e. the angular periods. 

rp bp mp

2.3.1. Computing moiré lines’ inclination as function of the 
inclination of layers’ lines 

The superimposition of two layers with identically inclined lines forms moiré 
lines inclined at the same angle. Figure 6 is obtained from Figure 1 with a vertical 
shearing. In Figure 6 the layer lines and the moiré lines are inclined by 10 degrees. 
Inclination is not a rotation. During the inclination the distance between the layer lines 
along the vertical axis (p) is conserved, but the true distance T between the lines 
(along an axis perpendicular to these lines) changes. The difference between the 
vertical periods  and , and the distances  and  is shown in the diagram of 
Figure 10. 

bp rp bT rT
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Figure 6. Superposition of layers consisting of inclined parallel 

lines where the lines of the base and revealing layers 
are inclined at the same angle [eps], [png] 

The inclination degree of layer lines may change along the horizontal axis 
forming curves. The superposition of two layers with identical inclination pattern 
forms moiré curves with the same inclination pattern. In Figure 7 the inclination 
degree of layer lines gradually changes according the following sequence of degrees 
(+30, –30, +30, –30, +30), meaning that the curve is divided along the horizontal axis 
into four equal intervals and in each such interval the curve’s inclination degree 
linearly changes from one degree to the next according to the sequence of five 
degrees. Layer periods  and  represent the distances between the curves along 
the vertical axis. In Figure 6 and Figure 7,  is equal to 6 units and  is 5.5. units. 
Figure 7 can be obtained from Figure 1 by interpolating the image along the 
horizontal axis into vertical bands and by applying a corresponding vertical shearing 
and shifting to each of these bands. Equation (2.2) is valid for computing the spacing 

 between the moiré curves along the vertical axis and equation (2.4) for computing 
the optical speedup ratio when the revealing layer moves along the vertical axis. 

bp rp

bp rp

mp

 
Figure 7. Two layers consisting of curves with identical 

inclination patterns, and the superposition image of 
these layers [eps], [png] 

More interesting is the case when the inclination degrees of layer lines are not 
the same for the base and revealing layers. Figure 8 shows four superposition images 
where the inclination degree of base layer lines is the same for all images (10 
degrees), but the inclination of the revealing layer lines is different for images (a), (b), 
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(c), and (d) and is equal to 7, 9, 11, and 13 degrees correspondingly. The periods of 
layers along the vertical axis   and  (6 and 5.5 units correspondingly) are the 
same for all images. Correspondingly, the period  computed with formula (2.2) is 
also the same for all images. 

bp rp

mp

 
Figure 8. Superposition of layers consisting of inclined parallel 

lines, where the base layer lines’ inclination is 10 
degrees and the revealing layer lines’ inclination is 7, 
9, 11, and 13 degrees [eps (a)], [png (a)], [eps (b)], 
[png (b)], [eps (c)], [png (c)], [eps (d)], [png (d)] 

The GIF animation of Figure 9 shows the superposition image when the 
revealing layer’s inclination oscillates between 5 and 15 degrees: 
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Figure 9. GIF animation, where the inclination of parallel lines 

of the revealing layer oscillates between 5 and 15 
degrees [ps], [gif], [tif] 

Figure 10 helps to compute the inclination degree of moiré optical lines as a 
function of the inclination of the revealing and the base layer lines. We draw the layer 
lines schematically without showing their true thicknesses. The bold lines of the 
diagram inclined by bα  degrees are the base layer lines. The bold lines inclined by rα  
degrees are the revealing layer lines. The base layer lines are vertically spaced by a 
distance equal to , and the revealing layer lines are vertically spaced by a distance 
equal to . The distance  between the base layer lines and the distance  
between the revealing layer lines are not used for the development of our equations. 
The intersections of the lines of the base and the revealing layers (marked in the 
figure by two arrows) lie on a central axis of a light moiré band between dark moiré 
lines. The dashed line of Figure 10 corresponds to the axis of the light moiré band 
between two moiré lines. The inclination degree of moiré lines is therefore the 
inclination 

bp

rp bT rT

mα  of the dashed line. 
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Figure 10.  Computing the inclination angle of moiré lines as a 

function of inclination angles of the base layer and 
revealing layer lines 

From Figure 10 we deduce the following two equations: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

⋅+−
=

⋅+
=

l
lpp

l
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(2.5)

From these equations we deduce the equation for computing the inclination of 
moiré lines as a function of the inclinations of the base layer and the revealing layer 
lines: 

rb

brrb
m pp

pp
−

⋅−⋅
=

ααα tantantan
 

(2.6)

Table 1 shows the moiré lines’ inclinations for several degrees of the revealing 
layer inclination, for the base layer inclination fixed to 30 degree, with a base layer 
period equal to 6 units, and with a revealing layer period equal to 5.5 units. The table 
shows that when the inclination of the lines of the revealing layer is the same as the 
inclination of the lines of the base layer, the inclination of moiré lines is also identical 
to the layer lines’ inclination. 
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Table 1. Inclinations of moiré lines of the superposition 
image for the base layer lines inclination equal to 30 degrees 
and for the revealing layer lines inclination from 25 to 35 
degrees: 

For the same set of paramete
moiré line inclination degree as a fun
two other curves correspond to cases
and 40 degrees correspondingly. The 
layers’ lines inclinations are equal, a
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Figure 11. Moiré lines inc
layer lines incli
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2.3.2. Deducing the
The periods , , and  u

Figure 10): 
bT rT mT

P

rα  mα  
25 -37.06 
26 -26.48 
27 -13.31 
28 1.70 
29 16.74 
30 30.00 
31 40.68 
32 48.93 
33 55.26 
34 60.16 
35 64.01 
 
rs, the bold curve of Figure 11 represents the 
ction of the revealing layer line inclination. The 
, when the base layer inclination is equal to 20 
circle marks correspond to the points where both 
nd the moiré lines inclination also become the 
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lination as a function of the revealing 
nation for the base layer lines 
l to 30 degrees [xls] 

 known formulas from our equations 
sed in the literature are computed as follows (see 
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bbb pT αcos⋅= , rrr pT αcos⋅= , mmm pT αcos⋅=  (2.7)

From here, using equation (2.6) we deduce the well known formula for the 
angle of moiré lines [Amidror00a]: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−⋅
⋅−⋅

=
brrb
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TT
αα
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(2.8)

Recall from trigonometry the following simple formulas: 

α
α

2tan1
1cos

+
=

 
212121 sinsincoscos)cos( αααααα ⋅+⋅=−  

(2.9)

From equations (2.8) and (2.9) we have: 

( )brbrrbrb
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(2.10)

From equations (2.2) and (2.7) we have: 

m
brrb
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TTT α
αα
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coscos

⋅
⋅−⋅

⋅
=

 
(2.11)

From equations (2.10) and (2.11) we deduce the second well known formula 
for the period  of moiré lines: mT

)cos(222
brrbrb
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m

TTTT

TTT
αα −⋅⋅⋅−+

⋅
=

 
(2.12)

Recall from trigonometry that: 

2
cos1

2
sin αα −

=
 

(2.13)

In the particular case when rb TT = , taking in account equation (2.13), 
equation (2.12) is further reduced into well known formula: 

⎟
⎠
⎞

⎜
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⋅
=

2
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m
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(2.14)

Still for the case when rb TT = , we can temporarily assume that all angles are 
relative to the base layer lines and rewrite equation (2.8) as follows: 
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⎞
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Recall from trigonometry that: 
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(2.16)

Therefore from equations (2.15) and (2.16): 
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(2.17)

Now for the case when the revealing layer lines do not represent the angle 
zero: 

2
90 br

bm
αααα −

+°+=
 

(2.18)

We obtain the well known formula [Amidror00a]: 

2
90 br

m
αα

α
+

+°=
 

(2.19)

Equations (2.8) and (2.12) are the general case formulas known in the 
literature, and equations (2.14) and (2.19) are the formulas for rotated identical 
patterns (the case when rb TT = ) [Amidror00a], [Nishijima64a], [Oster63a], 
[Morse61a]. 

Assuming in the known equation (2.8) that 0=bα , Figure 12 shows the charts 
of the moiré lines’ degree as a function of the revealing layer lines’ rotation degree for 
different values of  (see Figure 12). br TT /
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Figure 12. Moiré line inclination as a function of the rotation 

degree of the revealing layer [xls] 
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Only for the case when rb TT =  (the bold curve) the rotation of moiré lines is 
linear with respect to the rotation of the revealing layer. Comparisons of Figure 12 
and Figure 11 show the significant difference between shearing (i.e. inclination of 
lines) and rotation of the revealing layer pattern. 

2.3.3. The revealing lines inclination as a function of the 
superposition image’s lines inclination 

From equation (2.6) we can deduce the equation for computing the revealing 
layer line inclination rα  for a given base layer line inclination bα , and a desired 
moiré line inclination mα : 

m
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r
b

b

r
r p

p
p
p ααα tan1tantan ⋅⎟⎟
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⎛
−+⋅=

 
(2.20)

The increment of the tangent of the revealing lines’ angle ( )tan()tan( br αα − ) 
relatively to the tangent of the base layer lines’ angle can be expressed, as follows: 
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(2.21)

According to equation (2.4), 
b

r

p
p

−1  is the inverse of the optical acceleration 

factor, and therefore equation (2.21) can be rewritten as follows: 
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(2.22)

Equation (2.22) shows that relative to the tangent of the base layer lines’ 
angle, the increment of the tangent of the revealing layer lines’ angle needs to be 
smaller than the increment of the tangent of the moiré lines’ angle, by the same factor 
as the optical speedup. 

For any given base layer line inclination, equation (2.20) permits us to obtain a 
desired moiré line inclination by properly choosing the revealing layer inclination. In 
Figure 7 we showed an example, where the curves of layers follow an identical 
inclination pattern forming a superposition image with the same inclination pattern. 
The inclination degrees of the layers’ and moiré lines change along the horizontal axis 
according the following sequence of alternating degree values (+30, –30, +30, –30, 
+30). In Figure 13 we obtained the same superposition pattern as in Figure 7, but the 
base layer consists of straight lines inclined by –10 degrees. The corresponding 
revealing pattern is computed by interpolating the curves into connected straight lines, 
where for each position along the horizontal axis, the revealing line’s inclination 
angle is computed as a function of °−= 10bα  and mα , according to equation (2.20). 
Figure 13 demonstrates what is already expressed by equation (2.22): the difference 
between the inclination patterns of the revealing layer and the base layer are several 
times smaller than the difference between the inclination patterns of moiré lines and 
the base layer lines. 

Page 16 of 34 



 
Figure 13. The base layer with inclined straight lines and the 

revealing layer computed so as to form the desired 
superposition image [eps], [png] 

Another example forming the same superposition pattern as in Figure 7 and 
Figure 13 is shown in Figure 14. Note that in Figure 14 the desired inclination pattern 
(+30, –30, +30, –30, +30) is obtained using a base layer with an inverted inclination 
pattern (–30, +30, –30, +30, –30). 

 
Figure 14. Inversed inclination patterns of moiré and base 

layer curves [eps], [png] 

The GIF animation of Figure 15 shows a superposition image with a constant 
inclination pattern of moiré lines (+30, –30, +30, –30, +30) for modifying pairs of 
base and revealing layers. The base layer inclination pattern gradually changes and 
the revealing layer inclination pattern correspondingly adapts such that the 
superposition image’s inclination pattern remains the same. 

Page 17 of 34 



 
Figure 15. The revealing, base, and superposition images, 

where the base layer inclination pattern gradually 
changes, and the revealing layer correspondingly 
adapts such that the superposition image’s 
inclination pattern remains the same [ps], [tif], [gif] 

3. Superposition of periodic circular patterns 

3.1. Superposition of circular periodic patterns with radial 
lines 

Similarly to layer and moiré patterns comprising parallel lines (see Figure 1, 
Figure 2, and Figure 3), concentric superposition of dense periodic layer patterns 
comprising radial lines forms magnified periodic moiré patterns also with radial lines. 

Figure 16 is the counterpart of Figure 1, where the horizontal axis is replaced 
by the radius and the vertical axis by the angle. Full circumferences of layer patterns 
are equally divided by integer numbers of radial lines. The number of radial lines of 
the base layer is denoted as  and the number of radial lines of the revealing layer is 
denoted as . 

bn

rn
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Figure 16. Superposition of two layers with regularly spaced 

radial segments (a portion of the revealing layer is 
cut out to show a part of the base layer in the 
background) [eps], [png] 

The periods  and  denote the angles between the central radial axes of 
adjacent lines. Therefore: 
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(3.1)

According to equations (3.1), equation (2.2) can be rewritten as follows: 
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(3.2)

Therefore the number of moiré radial lines  corresponds to the difference 
between the numbers of layer lines: 

mn

brm nnn −=  (3.3)

If in the layer patterns, the full circumferences are divided by integer numbers 
of layer lines, the circumference of the superposition image is also divided by an 
integer number of more lines. 

The optical speedup factor of equation (2.4) can be rewritten by replacing the 
periods  and by their expressions from equations (3.1): rp bp
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(3.4)

The values  and  represent the angular speeds. The negative speedup 
signifies a rotation of the superposition image in a direction inverse to the rotation of 
the revealing layer. Considering (3.3), the absolute value of the optical speedup factor 
is: 

rv mv
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Radial lines have constant angular thickness, giving them the forms of 
segments, thick at their outer ends and thin at their inner ends. The values of , , 
and  do not depend on the angular thickness of radial lines. In our examples the 
angular thicknesses of layer lines are equal to the layer’s half-period, i.e. the thickness 
of the base layer lines is equal to  and the thickness of the revealing layer lines 
is . 

mp mn

rm vv /

2/bp
2/rp

In Figure 16, the number of radial lines of the revealing layer is equal to 180, 
and the number of radial lines of the base layer is 174. Therefore, according to 
equations (3.4) and (3.3), the optical speedup is equal to 30, confirmed by the two 
images (a) and (b) of Figure 17, and the number of moiré lines is equal to 6, 
confirmed by the image of Figure 16. 

 
Figure 17. Rotation of the revealing layer by 1 degree in the 

clockwise direction rotates the optical image by 30 
degrees in the same direction [eps (a)], [png (a)], [eps 
(b)], [png (b)] 

Figure 18 shows a GIF animation of the superposition image of Figure 16, 
where the revealing layer slowly rotates in the clockwise direction. 
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Figure 18. GIF animation of the superposition image of the 

layers with periodic radial lines, where the revealing 
layer slowly rotates clockwise [ps], [tif], [gif] 

3.2. Superposition of circular patterns with radial curves 
In circular periodic patterns curved radial lines can be constructed using the 

same sequences of inclination degrees as used in section 2.3 for curves of Figure 7. 
The inclination angle at any point of the radial curve corresponds to the angle between 
the curve and the axis of the radius passing through the current point. Thus inclination 
angle 0 corresponds to straight radial lines as in Figure 16. With the present notion of 
inclination angles for bα , rα , and mα , equations (2.6) and (2.20) are applicable for 
circular patterns without modifications. 

Curves can be constructed incrementally with a constant radial increment 
equal to r∆ . Figure 19 shows a segment of a curve, marked by a thick line, which has 
an inclination angle equal to α . 

β∆

r∆≈

α )tan(α⋅∆r

r
 

Figure 19. Constructing a curve in a polar coordinate system 
with a desired inclination 

While constructing the curve, the current angular increment β∆  must be 
computed so as to respect the inclination angle α : 
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Figure 20 shows a superposition of layers with curved radial lines. The 
inclination of curves of both layers follows an identical pattern corresponding to the 
following sequence of degrees (+30, –30, +30, –30, +30). Layer curves are iteratively 
constructed with increment pairs ),( β∆∆r  computed according to equation (3.6). 
Since the inclination patterns of both layers of Figure 20 are identical, the moiré 
curves also follow the same pattern. 

 
Figure 20. Superposition of layers in a polar coordinate system 

with identical inclination patterns of curves 
corresponding to (+30, –30, +30, –30, +30); a portion 
of the revealing layer is cut away exposing the base 
layer in the background [eps], [png], multi-page [tif], 
[gif] 

Similarly to examples of Figure 7, Figure 13, and Figure 14, where the same 
moiré pattern is obtained by superposing different pairs of layer patterns, the circular 
moiré pattern of Figure 20 can be analogously obtained by superposing other pairs of 
circular layer patterns. Taking into account equations (3.1), equations (2.6) and (2.20) 
can be rewritten as follows: 
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(3.8)

Taking into account equation (3.4), equation (3.8) can be also rewritten as 
follows: 
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(3.9)

For producing the superposition image of Figure 20, thanks to equations (3.8) 
and (3.9), other pairs of layer patterns can be created as shown in Figure 21. In the 
first image (a) of Figure 21, the base layer lines are straight. In the second image (b), 
the base layer lines inclination pattern is reversed with respect to the moiré lines. 
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Figure 21. Superposition images with identical inclination 

pattern (+45, –45, +45, –45, +45) of moiré curves, 
where in one case the base layer comprise straight 
radial segments, and in the second case the base layer 
comprise curves which are the mirrored 
counterparts of the resulting moiré curves [eps (a)], 
[png (a)], [eps (b)], [png (b)] 

Figure 22 shows an animation, where the moiré curves of the superposition 
image are always the same, but the inclination pattern of the base layer curves 
gradually alternates between the following two mirror patterns (+45, –45, +45, –45, 
+45), and (–45, +45, –45, +45, –45). For each instance of the animation, the revealing 
layer lines are computed according to equation (3.8) in order to constantly maintain 
the same moiré pattern. 

 
Figure 22. Animation of the superposition image, where the 

base layer lines gradually change their inclination 
pattern from (+45, –45, +45, –45, +45) to (–45, +45, –
45, +45, –45) [eps], [tif], [gif] 

Equations (3.4) and (3.3) remain valid for patterns with curved radial lines. In 
Figure 20 there are 180 curves in the revealing layer and 171 curves in the base layer. 
Therefore optical speedup factor according to equation (3.4) is equal to 20, and the 
number of moiré curves according to equation (3.3) is equal to 9, as seen in the 
superposition image of Figure 20. 

4. Layer patterns with spirals in a single ring 
One can form a radial moiré fringe with a period equal to . In the 

superposition image of such pattern we will see only one moiré fringe. This fringe 
will not have sharp contours and will appear large and blurred. The radial moiré 

°360
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fringe can be formed by layer patterns with radial lines or rather radial sectors. For 
small speed rations, fine granularity of layer patterns with radial lines cannot be 
maintained. As the speed ratio decreases, the superposition image becomes coarse and 
the moiré shape becomes visually not identifiable. The fine granularity can be 
maintained by using spiral shaped lines in layer patterns. The layer patterns with 
spirals can be computed such that the moiré fringe is kept radially oriented. By 
reducing the spiral elevation rate in both layers, sufficiently fine layer patterns can be 
obtained. However, strongly inclined spirals resulting to fine patterns make the 
superposition moiré images less tolerant to mechanical inaccuracies such as surface 
deformations of layers or disparities in concentric superposition of layers. 

In Figure 23 we show that a design extension of simple spiral patterns with a 
single moiré fringe may result to a useful application. 

 
Figure 23. Mono-ring moiré with a speed ratio equal to 60; a 

single moiré fringe; the spirals of one of the layers 
are clipped within contours of labels [eps], [png], 
[gif], [tif] 

The example is obtained by taking a simple spiral pattern of a base layer and 
by cleaning in such pattern all areas lying outside the contours of twelve labels. In 
such a way, instead of revealing a large and blurred moiré fringe, our superposition 
pattern reveals more attractive image consisting of labels within the concerned area. 
The area rotates at a 60 times faster speed than the mechanical rotation speed of the 
revealing layer. The spirals of two layers are computed so as to produce a moiré 
fringe with radial orientation. 

5. Multi-ring moiré 
Refer to equation (3.4) for circular patterns. An optical rotation k times faster 

than the rotation of the revealing layer can be obtained if: 
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According to equation (3.3) the number of moiré spots for different values of 
i: 
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(5.2)

Therefore, the same moiré speedup factor k can be obtained with different 
pairs of revealing and base layer patterns corresponding to different numbers  of 
moiré bands. We can construct several nested concentric circular patterns for the same 
value of k and for different values of i. 

mn

For example, Figure 24 shows four nested adjacent rings, where the value i 
increments from 1 to 4 when counting from the inner ring toward the outer ring. The 
number of dark moiré radial lines in each ring changes from 1 to 4. The acceleration 
factor k is equal to 60. Therefore the revealing layer of the most inner ring has 60 
radial lines and the corresponding base layer has 59 lines. Correspondingly the layers 
of the most outer ring have 240 and 236 radial lines. In Figure 24 a part of the 
revealing layer is cut out, exposing the base layer. All rings are constructed such that 
the lines of the revealing and base layers perfectly overlap at the angle zero. Therefore 
a light moiré radial band appears at the angle zero of each individual rings. 

 
Figure 24. Four nested rings whose layer lines overlap at angle 

zero [eps], [png] 

For the inner ring, the dark moiré band is located at 180 degrees from zero 
angle zero. The first dark moiré band of the second ring is located at 90 degrees. The 
first dark moiré band of the third ring is located at 60 degrees and for the most outer 
ring at 45 degrees. 
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The patterns of the base and revealing layers of each ring can be printed so as 
a dark moiré band appears at the angle zero. For this purpose, both layer patterns of 
each ring must be rotated by a degree γ : 

mn⋅
°

−=
2
360γ

 
(5.3)

Figure 25 corresponds to the superimposition image of Figure 24, but the ring 
patterns are constructed according to equation (5.3) such that dark moiré bands appear 
at the angle zero in all rings. The black moiré bands of all adjacent rings became 
horizontally aligned forming a joint radial shape. 

The index i of the rings, is equal to 1, 2, 3, and 4, counting from the inner ring 
toward the outer ring. Therefore, according to equation (5.2) the number of moiré 
spots for the inner ring is equal to 1 and the number of moiré spots of the outer ring is 
equal to 4, as seen on Figure 25. A part of the revealing layer is cut away exposing the 
base layer. We consider that the base layer patterns of all rings form a single joint 
base layer, and the revealing layer patterns of all rings form a joint revealing layer. 

 
Figure 25. Four nested rings with an acceleration factor equal 

to 60 for all four rings [eps], [png] 

According to equation (5.1), rotation of the revealing layers at a given angular 
speed must rotate the superimposition image at another angular speed which is 
identical for all rings. Therefore the radial moiré band traversing all rings will remain 
aligned all the time during the rotation. Rotation of the revealing layer rotates the 
optical image at a k times faster speed. 

The acceleration factor k of the superimposition image of Figure 25 is equal to 
60. Therefore the rotation of the revealing layer by –1 degree rotates the optical image 
by –60 degrees (compare the image of Figure 25 with the first image of Figure 26). 
Rotation of the revealing layer by –2 degree rotates the optical image by –120 degrees 
(compare the image of Figure 25 with the second image of Figure 26). The negative 
rotation angles correspond to the rotation in clockwise direction. The rotations of the 
revealing layer in Figure 25 and Figure 26 can be noticed by observing the cut out 
region of the revealing layer. 
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(a) (b) 
Figure 26. Multi-ring moiré for different angles of rotation of 

the revealing layer [eps (a)], [png (a)], [eps (b)], [png 
(b)] 

The image of Figure 27 animates the superposition image for a slow rotation 
of the revealing layer by 6 degree in clockwise direction. During this time the 
superimposition image makes a full rotation of 360 degree. 

 
Figure 27. A GIF animation of the superposition image, when 

the revealing layer turns by 6 degree in clockwise 
direction and the superposition image makes one full 
360-degree rotation [ps], [tif], [gif] 

The superimposition of multi-ring patterns forms a complex moiré image, but 
at one position a continuous shape is outlined. When rotating the revealing layer, the 
optical shape rotates without deformations at a k times faster speed. 

The widths of the rings of the multi-ring patterns must not be obligatorily the 
same. The number  of the ring’s moiré bands also must not necessarily increment 
with the ring number. Figure 28 shows a superimposition image with 12 rings, where 
at the beginning the number of moiré bands increments, but after reaching a maximal 
limit at a ring , the number of moiré bands starts decrementing. The maximal 
number of moiré bands is set to 10. Therefore the number of moiré bands  follows 

mn

0j

mn
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the following sequence (1, 2, 3, … 8, 9, 10, 9, 8). The ring widths are not constant and 
are computed so as the largest ring is the ring , at which  has its maximal value. 
The adjacent rings gradually decrease their widths as we move away from the largest 
ring. 

0j mn

 
Figure 28. Multi-ring moiré superposition image with variable 

ring widths [eps], [png] 

The width  of the j-th ring can be computed by equation (5.4), where j is 
the sequential number of the ring,  is the number of the widest ring,  is the 
minimal ring width, and  is the maximal ring width. 

jw

0j minw

maxw

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+

=
1,min1

min

max
0

max

w
wjj

wwj

 

(5.4)

6. Multi-ring moiré with inclined line patterns 

6.1. Straight radial moiré lines with curved layer lines 
Recall that for measuring the line inclination in circular patterns we use the 

angle between the line and the radial axis as shown in Figure 19. In Figure 28, 
inclination of moiré lines of the superposition image is of 0 degree for all rings. The 
desired degree of moiré inclination can be obtained by different pairs of base and 
revealing layer patterns, as shown in section 3.2. 

It is sufficient to choose for every ring an inclination pattern of the base layer 
and then, the corresponding inclination pattern of the revealing layer can be computed 
thanks to equation (3.8) or (3.9). Taking into account that in multi-ring patterns the 
speedup factor k used in equations (5.1) is the same for all rings, equation (3.9) can be 
rewritten as follows: 
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For a particular case, when 0=mα , i.e. when we desire straight radial moiré 
lines, equation (6.1) is further reduced to: 
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(6.2)

For any inclination of the base layer pattern, the revealing layer pattern can be 
computed according to equation (6.2) to ensure straight radial moiré lines. Figure 29 
shows a superposition image with straight moiré lines, similarly to Figure 25. In 
contrast to Figure 25 the base layer lines are not straight. The overall inclination 
pattern of the entire base layer across all rings follows the following sequence of 
inclination degrees )30,30,30,30( °+°−°+°− . 

 
Figure 29. Multi-ring moiré superposition image, where the 

inclination of moiré lines is of 9 degree and the 
inclination of the base layer lines follows the 
following inclination pattern (–30, +30, –30, +30) 
[eps], [png], [ps], [gif] 

Figure 30 is the counterpart of Figure 28. In both figures the pattern of 
variable ring widths is computed by equation (5.4). The inclination pattern of the base 
layer of Figure 30 (across all rings) corresponds to )30,30,30( °+°−°+ , but the 
revealing layer line inclinations are computed so as the superposition image forms the 
same straight moiré lines as in Figure 28. 
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Figure 30. Multi-ring moiré superposition image, where the 

inclination of moiré lines is of 0 degree and the 
inclination of the base layer lines follows the 
following inclination pattern (+30, –30, +30) [eps], 
[png] 

6.2. Curved moiré lines in multi-ring patterns 
In Figure 25, Figure 28, Figure 29, and Figure 30 we assemble the base layer 

and revealing layer patterns from rings rotated according equation (5.3), such that in 
the superposition image, the moiré fringes are aligned along the angle zero. 

Equation (5.3) does not hold for cases when the moiré fringes themselves are 
curved. The curved moiré fringes of individual rings must join into a continuous 
moiré shape across the multi-ring superposition pattern. The angle γ  of equation (5.3) 
for every successive ring must be additionally adjusted by the angular shift gained by 
the moiré curve while traversing the preceding rings. 

Let )(rmα  be the inclination of the moiré line as a function of the radius r. Let 
 and  be the inner and outer radiuses of the j-th ring. According to equation (3.6) 

the angular gain 
jr 1+jr

jβ  of the moiré curve within the j-th ring is expressed as follows: 
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The aggregate angular gain j,1β  up to the j-th ring is computed as follows: 
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Equation (5.3) must be rewritten so as to consider also the adjustment brought 
by equation (6.4): 
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Thanks to the angular adjustments of ring patterns computed by equation 
(6.5), in Figure 31 a continuous joint moiré curve appears across all rings of the multi-
ring superposition image. There are 14 rings of equal width. The acceleration factor is 
equal to k. The number  of moiré spots increments starting from 1, for the inner 
ring, through 14 for the most outer ring. The base layer line inclination pattern 
corresponds to the following sequence of angles (–80, +10, –10, +10, –30). The 
revealing layer line inclination pattern is computed according to equation (6.1) so as 
to ensure the following moiré inclination pattern (+30, –30, +30, –30, +30). A small 
part of the revealing layer is cut away exposing the uncovered part of the base layer 
pattern. 

mn

 
Figure 31. Multi-ring moiré with a continuous serpentine-

shaped moiré curve [eps], [png] 

Figure 32 shows a serpentine-shaped moiré curve in a multi-ring moiré with a 
variable ring width pattern of Figure 28 described by equation (5.4). There are 14 
rings; the acceleration factor is equal to 30.  The base layer inclination pattern is (–80, 
5, 0, –5, –80), the moiré inclination pattern is (30, –30, 30, –30, 30); the revealing 
layer inclination pattern is computed with equation (6.1). 
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Figure 32. Multi-ring pattern with serpentine-shaped moiré 

curve and with variable ring width [eps], [png], 
multi-page [tif], [ps], [gif] 

7. Conclusions 
Many basic measurement devices comprising one scale and one mechanical 

pointer have often their developed versions with a supplementary scale with sub-
graduations and an auxiliary mechanical pointer which moves faster and aims at 
increasing the precision of the measured value. A cogwheel type mechanical 
transmission system is required for a fast movement of the auxiliary pointer in 
synchronization with the main pointer. 

A challenging idea is to employ optical moiré shapes for the auxiliary fast 
indicator without any mechanical transmission system. Moiré shapes can be obtained 
by superposition of transparent layers carrying correlated opaque patterns. The 
following requirements need to be satisfied: (a) the moiré shapes must be sharp, (b) 
highly periodic moiré shapes cannot be used for indication, (c) the periodicity of 
moiré shapes must be very long corresponding to the visible window of the 
superposition image, such that one and only one shape is visible at a time, e.g. in 
circular moiré the period of moiré shapes must be equal to 360 degree; (d) the optical 
speedup of the mechanical movement must be linear; (e) the said above must be valid 
for the full range of mechanical movements of the main pointer which mechanically 
moves the revealing layer, e.g. in circular patterns for the full range of 360 degree 
rotation of the revealing layer. 

Sharp moiré shapes are easily formed in simple periodic moiré patterns; 
however their periodicity is very high and cannot be used for indication. Long 
periods, such as 360 degrees for circular moiré, can be obtained with simple moiré 
patterns; however the moiré shape becomes blurred and not acceptable for indication. 
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The known random line moiré offers aperiodic shapes. Their shapes are however 
noisy compared with their periodic counterparts. More importantly the random 
patterns are completely aperiodic and not offering the required long periodicity. 

In this paper we introduced multi-stripe and multi-ring moiré patterns with 
very long periods suitable for measurement purposes and with moiré shapes as sharp 
as in highly periodical patterns. 

We developed equations for producing straight and curved auxiliary moiré 
pointer. It is possible to obtain a moiré shape with any desired curve that can be 
represented by a function. Our equations help to obtain the desired moiré shape for 
changing base layer patterns by correctly computing the correspondingly matching 
revealing layer pattern. 

The choice of the shape of the moiré fringe must have no impact on the speed 
factor of the auxiliary moiré pointer. We developed our equations so as to preserve 
the speedup formulas in their simplest form (2.2), (2.3), and (2.4) regardless the 
inclination patterns of layers and moiré shapes. The period values p and speed values 
v, represent the periods and velocities along the axis of the movement of the revealing 
layer. 
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